An Algorithm to Find Minimal Sound and
Complete Partitions for Model Checking®

Diana Gordon
Naval Research Laboratory, Code 5510
Washington, D.C. 20375

gordon@aic.nrl.navy.mil

May 19, 1998

This research is part of a larger effort on abstraction for model checking,
being done in collaboration with Insup Lee and Sampath Kannan (University
of Pennsylvania). For a better understanding of the broader context of this
project within the PARAGON framework, see Sokolsky et al. (1998). The
main objective of this project is to fully automate the process of finding
sound, and possibly also complete, abstractions. Abstraction is needed to
reduce the computational complexity of model checking. An abstraction is
sound if whenever model checking succeeds in the abstract, it is guaranteed
to succeed for the original system. An abstraction is complete if whenever
model checking succeeds for the original system, we can show this by model
checking in the abstract. Soundness is clearly the more important of the
two characteristics, but in some applications completeness is also desirable.
We are beginning by considering abstractions that consist of partitioning the
variable values in a system. Our goal is to minimize these partitions, in order
to maximize the reduction in the complexity of model checking. This report
focuses exclusively on this type of abstraction. Other abstractions will be
explored in future work.

The results in this report build on the research described in Clarke et
al. (1994), and use their framework. Familiarity with that paper is assumed

*NCARATI Technical Report ATC-98-010

here. We use the following abbreviations. A is the abstraction mapping
(which is called % in Clarke et al., and consists of the surjections h; for
each variable v;), C' is the concretion mapping (which undoes abstraction),
¢ is a property, and M is the model of the system, which is itself a finite-
state transition system. Properties are assumed to be formulas in YCT'L*, in
negation normal form. Given any partition A satisfying C'(A(¢)) = ¢, Clarke
et al. present a transition-preserving (by their Definition 3.2) mapping for
A on M that is sound (and, with an additional restriction, also complete).
This research builds on the work of Clarke et al. by providing an algorithm
that automates the selection of a partition that satisfies C(A(¢)) = ¢, and
therefore the partition is sound (and complete) when coupled with the Clarke
et al. algorithm. It is also shown here that the partition found by this
algorithm is the minimal sound and complete partition, where it is minimal
with respect to the set of all systems whose abstraction is A(M).

1 Definitions

Sound: A(M) = A(¢) = M = ¢.
Complete: M ¢ = A(M) = A(¢).

V ={v;|1 <¢ <n}istheset of all variables. Let D; = {d; , | 1 < ¢ < m}
be the set of all values of variable v; (for simplicity we assume a uniform
domain size for variables). We use {d;x},{d; ;} , etc to denote subsets of the
values of v;. Let D;(#) be the set of all values of variable v; that appear in
property ¢, and let D;(¢) be the complement of that set, i.e., all values of v;
not in ¢. Let PART(D;) be the partition of the values D; of variable v; that
results from the abstractions below.

A consists of the surjections h; : D; — ﬁi, where DZ is a set of abstract

values {cZ” | 1 < r < m}, for the abstract variable ¢; corresponding to v;.
Sometimes we abbreviate a set of surjections by stating A({d;+}) = cim for
some set {d;;} of values of v; and some abstract class c;lm of ;. A(¢) and
C(¢), as well as A(M), are defined in Clarke et al. In their paper, A(M) is
referred to as M. Furthermore, the Clarke et al. paper uses ¢ to denote an
abstract property provided by the user. Here, we assume a concrete property
¢ provided by the user (and note that this reduces the burden on the user!),
and we automate finding abstraction A such that C'(A(¢)) = ¢.

2 Sound and Complete Partitions

This section provides an algorithm, consisting of a pair of abstractions, that
generates a partition of the values of each variable. Also included are results
that these partitions are sound and, under certain conditions, complete. But
first we begin with lemmas needed for the soundness and completeness re-
sults.

Lemmal: If C(A(¢)) = ¢ then A is sound.

Proof: Given any finite-state transition system M, and abstraction A for
partitioning variable values, the Clarke et al. paper provides a method to
automatically derive A(M) — an approximation of the minimal abstract tran-
sition system. Concretion C' (to undo A) is defined for any property ¢ in
Definition 5.4 of Clarke et al. By Corollary 5.7 in Clarke et al., A(M) |=
A(¢) = M | C(A(¢)) for any VCT L* formula ¢. Therefore, if C(A(4)) = ¢,
then M |= ¢. O

Lemma2: If C(A(¢)) = ¢, and the abstraction is an “exact” approximation
(i.e., satisfies Defn 4.3.4 of Clarke et al.), then A is complete as well as sound.

Proof: By Section 4.3 of Clarke et al., any partition that satisfies Definitions
3.2,4.3.4, and C(A(¢)) = ¢ will be both sound and complete (“exact”). O

We next define our algorithm for finding partitions. This algorithm is
presented in two parts, corresponding to the two abstractions that are made.

ABSTRACTION1: For each variable, put all variable values that do not
appear in the property in the same equivalence class. Formally, Vi,1 <17 < n,
let D;(¢) ={d;1,....dix}, 1 <k < m. Then create a class ciu € PART(Dy),
1 <1 < m, for which hi(d;1) = hi(di2) = ... = hi(d;x) = a?” Using our
abbreviation, Vi, 1 <17 <n, A(D;(¢)) € PART(D;).

Lemma pl: For each variable v;, Abstractionl creates a partition over

D;(¢). (proof is obvious)

Theorem1: Abstractionl is sound.

Proof: Abstractionl does not abstract any variable values in the property.
Therefore, C(A(¢)) = ¢ (with Abstractionl as A), and thus by Lemmal

Abstractionl is sound. O

ABSTRACTIONZ2: For each variable, variable values in the property are
abstracted to a single class if they only appear jointly as a disjunction of
non-negated values and/or a conjunction of negated values, but they never
appear outside of this disjunction/conjunction in the property. Inequalities
can be considered a special case of Abstraction2. Formally, V2,1 <2 < n
ranging over the variables, do the following. For every subformula of ¢ of
the form V{d; 1} or A{—d; 1} do the following. Determine whether this is the
largest subformula of ¢ of the form V{d; ;} (called ¢,,q.) or A{—d; ;} (called
tae) (1 <k < 'm) such that every subformula of ¢ of the form V{d;;} or
N—d; ;}, where {d; ;} C {d;}, is embedded within (i.e., part of) a ¢4, ©
a ¢ . If yes, then create a class d;; € P ART(D;), 1 <1 < m, for Wthh
Yk, hi(di) = dhg. Using our abbreviation, A({d;}) € PART(D;).!

For example, ((((v; =

V(01 # dig) A (v 7’é dy

straction hy(dy1) = hq(dy,
(v1

by using ((vy = dy 1) V
di2)) as ¢4,

dl 1) (v = dl 2) \ (Ul = d1,3)) A (Uz = d2,2))
12)) A (v2 = dy1))) in the property allows the ab-
) dy 1. This abstraction could have been made

dy 2)) as Qpae or by using ((vy # dig) A (v #

Lemma p2: For each variable v;, Abstraction2 creates a partition over

Di(9).

Proof: Need to prove exclusive and exhaustive. First we prove exclusive.
All members of D;(¢) appear in some subformula of ¢ of the form V{d; s}
or A{—d;r}. Suppose all elements of {d,;} are in one equivalence class, and
all elements of {d;, } are in another equivalence class, where {d,;} and {d; ,}
are overlapping subsets of D;(¢). Let {d;,} be the elements of their inter-
section. Then there are two possibilities. One is that every subformula of ¢
of the form V{d; x} or A{=d;} that contains {d;,} also contains {d;,} and
vice versa. Then this violates the statement that Abstraction2 chooses the

! This algorithm for Abstraction2 can be made more efficient for implementation.

largest subformula of class values, i.e., ({d;;} U {d;,}) is larger than {d;.}
or {d;,} and would therefore have been made a class by Abstraction2. The
other possibility is that not every subformula of ¢ of the form V{d;s} or
A{—d;;} that contains {d,;} also contains {d;,} and vice versa. Then in
some subformula of ¢, V{d;,} is embedded in one of V{d,;} or V{d;,} but
not both (or A{—d;,,} is embedded in one of A{—d;;} or A{—d;,} but not
both). But for Abstraction2 to make {d;:} an equivalence class, every sub-
formula of ¢ of the form V{d,,} or A{—d; .}, where {d;,,} C {d;.}, must
be embedded within V{d,;} or A{—d,;}. Likewise for {d;,}. For both possi-
bilities mentioned above we reach a contradiction, and therefore exclusivity
holds.

Next we prove exhaustive. Recall that all members of D;(¢) appear in
some subformula of ¢ of the form V{d; s} or A{=d;;}. Every subformula of ¢
of the form V{d; 1} or A{—d, } is considered by Abstraction2 as a candidate
equivalence class. Each candidate satisfies only one of the following: a) it the
largest subformula of ¢ that satisfies the embedding criterion, in which case
{d; 1} is made into a class, or b) it satisfies the embedding criterion but is
not the largest subformula that does, or ¢) it does not satisfy the embedding
criterion. If b) is the case, then by the embedding criterion every subformula
of the candidate V{d;;} (or A{—d;;}) is embedded in a subformula ¢,
(or ¢ .,.) of ¢ whose variable values abstract to some equivalence class. In
other words, {d;;} is a subset of the values of some class. Finally, ¢) is the
case if {d;r} is not a subset of the values of any class. In particular, there
exists some subformula of ¢ of the form V{d, s} or A{=d,} such that not
every subformula of ¢ of the form V{d; ;} or A{=d;;}, where {d;;} C {d; .},
is embedded within a subformula of the form V{d; s} or A{—d;,}. But this
cannot happen because even if there is no other V{d;;} or A{—d;;} where
{d;;} # {d; 1}, at the very least V{d;} or A{—d; s}, where {d;r} C {d; s},
is embedded within a subformula of the form V{d; s} or A{=d,}. Therefore
¢) cannot occur. We conclude that every value of v; occurring in ¢ will be
part of some equivalence class, i.e., PART(D;) is exhaustive for D;(¢). O

Lemma p3: By taking the union of the classes created by Abstractions 1
and 2, we get a partition (called PART(D;) for each v;) over all values of
each variable v;.

Proof: Immediate from Lemmas pl and p2. O

5

Theorem?2: Abstraction? is sound.

Proof: The proof of Theorem?2 has its intuitive basis in two key facts: 1) All
abstractions can be moved inward to subformulas of ¢ of the form V{d,}
or A{—d;} because of p.1523 Clarke et al. rules on abstraction as well as
the fact that abstractions are transition-preserving as defined in Clarke et
al. 2) All concretions can be moved inward to the subformulas of the form
V{d;r} or A{=d; .} by Clarke et al.’s Definition 5.4 of concretion. Therefore
the relevant parts of property formulas boil down to one or more instances
of subformulas of these types. We prove Theorem 2 for abstractions of the
values in subformulas of ¢ of the form V{d;x}. The proof for A{—d; s} is
similar.

By p.1523 and Definition 5.4 of Clarke et al., for any property formula ¢
of the form ¢ = ...V {d;x}... (since each disjunction is independent of the
others with respect to C'(A()), wlog we focus on only the one disjunction),
A(9) = AWNVAdig})-.., and C(A(¢)) = ...C(A(V{dix}))... where we can
ignore the elliptic portion of the property because of the independence just
mentioned. Therefore, we need only prove that C(A(V{d;x})) = V{dis}-

For every v;, PART(D;) partitions the variable values that occur within
any subformula of the form V{d;;}. This is true because PART(D;) is a
partition over all values of v; (Lemma p3, and more particularly Lemma p2),
and therefore a subset of the values will be in a sub-partition of PART(D;).
Furthermore, A(V{d;x}) = czm V..V aAlM, 1 <1 < m, such that for each cim,
1 < r <[, there exists a (unique) {d;,} C {d;x} such that A({d;,}) = cZ”
This is true because of the following. Suppose not. Then for at least one r,
1<r <l A{d;,}U{d;.}) = cim, where {d; ,} C {d;x} but {d;.} € {d;r}-
But this contradicts the requirement of Abstraction2 that every subformula
of (V{d;,} V{d;.}), including itself, that occurs in ¢ be embedded within
(V{dip} V{di:}).

By Definition 5.4 for concretion, and putting together the disjunctions,
C(A(V{d;r})) = V{dix}.

The above proof holds whenever the operators connecting subformulas in
¢ are not Next, Until, or Release. The proof for these operators is trickier.
We prove only for Next. Proofs for Until and Release are similar. The tricky
part of Next is the fact that we need to be concerned with transitions. We

will see that Clarke et al.’s assumption that all abstractions are transition-
preserving (Defn 3.2) gives us the guarantee we require. Note that for any
subformula 1 of ¢ such that ¢ = ...Next(®)..., A and C can be moved inward
to the Next. Now C'(A(Next(¢))) = Next(C(A(¢)))) by p.1523 and Definition
5.4 of Clarke et al., but mainly results from A being transition-preserving.
Furthermore, C'(A()) is moved inward in ¢ to the innermost subformulas of
the forms V{d; ;} and A{=d;}, so the proof becomes like above.

Since C(A(¢)) = ¢ in all the above cases, by Lemmal Abstraction2 is
sound. O

Theorem3: Abstractionsl and 2 are both sound and complete when Defi-
nition 4.3.4 of “exactness” holds.

Proof: By Lemma2. O

3 Minimal Sound and Complete Partitions

This section contains the result that Abstractions 1 and 2 jointly form the
minimal (with respect to the set of all systems whose abstraction is A(M))
sound and complete partition for each variable. It is possible to find a smaller
partition than that generated by Abstractions 1 and 2 by exploiting knowl-
edge of the particular system M (see the example below). Unfortunately,
this appears to be very difficult to automate. Therefore, for the sake of au-
tomation we focus on partitions that are minimal with respect to the set
(M) = {M"| A(M") = A(M)}, i.e., the set of all finite-state transition
systems M’ whose abstraction is A(M).

Theorem4: Abstractions 1 and 2 jointly yield the smallest partition with
respect to I'(M) that is sound and also complete when 4.3.4 of Clarke et al.
holds. Note that there may be a smaller sound and complete partition with
respect to M in particular, but it is not necessarily sound and complete with
respect to other members of I'(M).

Proof: There are only two ways to create a smaller partition than Abstrac-
tions 1 and 2: a) Merge property and non-property variable values into one

class. b) Merge property variable values not already merged. The lemmas
address these two cases, and the theorem follows directly from the lemmas. O

Lemma 4.1: If an abstraction violates the criteria for Abstractionl, then
either soundness or completeness or both is violated for some M’ € I'(M).

Proof: First consider the problem that occurs when adding non-property
values to a class formed from a disjunction of non-negated property values.
Assume abstract class czm = {d;} (i-e., Yk, hi(dix) = aAlZ-J), where this class
Cii,l was formed from the property disjunction V{d; }. Suppose we add {d; ,.,,}
to this class, where {d; ,,} consists of values not in the property. Then ‘ii,l =
({dix} U {dinp}). Then soundness fails for any system M’ € I'(M) such that
M' has a state for which the concrete property expects V{d;} but instead
the variable v; has a value in {d; ,,} in this state. An example is the concrete
Invariance property ¢; = VG (V{d,}). Next consider the problem that oc-
curs when adding non-property values to a class formed from a conjunction
of negated property values. Assume abstract class czm = {d; 1}, where this
class was formed from the property conjunction A{—d;;}. Suppose we add
{d; ., } to this class, where {d, ,,} consists of values not in the property. Then
Cii,l = ({dix} U {dinp}). Then completeness fails for any system M’ € I'(M)
(under the conditions of Definition 4.3.4 of Clarke et al.) such that M’ has a
state for which the concrete property succeeds due to a state having a value

in {di,np}- O

Lemma 4.2: If an abstraction violates the criteria for Abstraction2 (by
making a smaller partition), then either soundness or completeness or both
is violated for some system M’ € I'(M).

Proof: To violate the criteria for Abstraction2, for some variable v; in the
property we need to do one of the following. We either need to add property
variable values to what Abstraction2 would consider a class, or exclude values
from it. If we excluded values from it and added them to no other class but
instead put them in a class of their own, this would generate a larger partition
than that generated by Abstraction2. Therefore, we need only prove that
adding values to a class violates soundness or completeness or both.
Abstraction2 would abstract some subformula V{d; z} of ¢ as A(V{d;r})

= czm V..V czu, 1 <1 < m, such that for each ch, 1 < r <[, there exists
a (unique) {d;,} C{d;r} such that A({d;,}) = d; . Suppose we add values
to some d”, 1 <r <. In other words, A({d; ,} U{d;.}) = d”, where {d; .}
¢ {d;,}. By the definition of Abstract10n2 ¢ has at least one subformula
V{d;,} where V{d,,} is not embedded in (\/{dw} V {d;.}). Soundness fails
for any system M’ € I'(M) such that M’ has a state for which the concrete
property expects V{d;,} but instead the variable v; has a value in {d;.} in
this state.

Likewise, Abstraction2 would abstract some subformula A{—d,;} of ¢
as as AN {~d;x}) = —rdll A . —ndzl, 1 <1 < m, such that for each d”,
1 < r < I, there exists a (umque) {d;,} C {dhk} such that A({d;,}) =
cim. Suppose we add values to some c?m, 1 < r < [. In other words,
A({di,} U{di.}) = di,, where {d;.} € {di,}. By the definition of Abstrac-
tion2, ¢ has at least one subformula A{—d; ,} where A{—d, ,} is not embedded
in (A{—d;,} N{—d;.}). Completeness fails for any system M’ € I'(M) (under
the conditions of Definition 4.3.4 of Clarke et al.) such that M’ has a state
for which the concrete property e.g., VG A{=d;,}, succeeds due to a state
whose value of v; is in {d;.}. O

Note: The following is an example of how a smaller partition than Ab-
stractions 1 and 2 may be found by exploiting knowledge of particulars of a
system, e.g., knowledge of particular states. To illustrate, let ¢; = VG ((((v1
= dia) V (01 = dip)) A (va = dag)) V ((v1 = dig) V (01 = diz)) A (02 =
d22))). Then we can create a partition that is smaller than that produced by
Abstraction2, namely, hy(di1) = hi(di2) = hi(di3) = 0?1’1. If the concrete
system consists only of the states ((v1 = dy1) A (v2 = d21)), ((v1 = di2) A
(v = d31)), ((vy = di2) A (vg = da3)), and ((v; = dy3) A (vg = da2)), then
this abstraction is sound. On the other hand, if the concrete system has state
((v1 = d13) A (v2 = da1)) then this abstraction is not sound. Unfortunately,
it appears to be very difficult to automate the generation of a partition by
exploiting the particulars of a system.

Acknowledgements

Thanks to Insup Lee and Sampath Kannan for many useful discussions, sug-
gestions, and feedback on this work. Insup suggested the topic of fully au-
tomating the search for minimal, sound partitions. This research was sup-

ported by the Office of Naval Research N001498WX20296, and was done as
part of the Semantic Consistency MURI sponsored by Ralph Wachter.

References

Clarke, E., Grumberg, O., & Long, D. (1994). Model checking and ab-
straction. ACM Transactions on Programming Languages and Systems,

16(5), 1512-1542.

Sokolsky, O., Lee, 1., and Ben-Abdallah, H. (1998). Specification and anal-
ysis of real-time systems with PARAGON. (submitted)

10

