Adaptive Supervisory Control of
Interconnected Discrete Event Systems

Diana Gordon !
Naval Research Laboratory, Code 5515
Washington, D.C. 20375-5337

Email: gordon@aic.nrl.navy.mil

Abstract

Interconnected discrete event systems are able to model
large-scale structures, such as in multi-agent applica-
tions. These structures, however, are often subject
to change. At present, the literature on supervisory
control offers only a few remedies for the synthesis of
adaptive or robust discrete event systems. This paper
proposes a novel approach to adaptive supervision for

adaptive systems.

1 Introduction

Interconnected Discrete Event Systems (IDES) pro-
vide for the modeling of practical systems in the fields
of communications, flexible manufacturing, and traf-
fic management. The method of supervisory control
of discrete event systems, the building blocks of IDES,
addresses a number of related problems albeit on the
assumption that the system is fixed and known [1-5]. A
particular characteristic of any IDES, however, is that
it is subject to change either by design or due to failure.
For example, at the highest level, an existing subsys-
tem may fail or a new subsystem may be connected. At
a lower level, the structure of a subsystem may change

as well. In turn, such structural changes hamper the

LOffice of Naval Research N0001499WR20010
2Naval Academy Research Council and the Office of Naval
Research Grant N0001499WR 20020

Kiriakos Kiriakidis 2

Department of Weapons and Systems Engineering

United States Naval Academy
Mail Stop 14a
Annapolis, MD 21402

Email: kiriakid@novell.nadn.navy.mil

application of supervisory control theory to the class of
IDES. At present, the literature offers but a few works
on adaptive or robust supervisory control to tackle the
problem of uncertainty in the IDES model [6-8]. Fur-
thermore, although these works advance the develop-
ment of a theory for uncertain discrete event systems,
the literature lacks any design methods for emerging

engineering applications.

The contribution of this paper is the development of
a design method for adaptive IDES control capable of
handling a particular kind of uncertainty, namely, sub-
system failure. The proposed approach combines su-
pervisory control, verification, and learning as follows.
As a first step, a desired language in the form of a
Finite State Automaton (FSA) is specified. A supervi-
sor controls the IDES so that the system executes this
desired language. Furthermore, the desired language
is required to satisfy important behavioral constraints,
called “properties.” In order to guarantee that the de-
sired language satisfies the properties, it is advisable to
check this using formal verification. Because the prop-
erties are important, they must be maintained regard-
less of structural changes. Suppose a subsystem fails.
Then the learning mechanism deletes from the desired
language events that pertain exclusively to the failed
subsystem. It then patches the desired language FSA in
accordance with an automaton repair algorithm. Ver-

ification is repeated to ensure that the resulting lan-

guage includes the aforementioned properties. An al-
ternative repair algorithm that requires no verification,
at the cost of yielding a smaller desired language, is
also available [9]. In the end, the method synthesizes
a supervisor for the new language and closes the loop

around the IDES.

In the next section, we formulate the problem and de-
scribe the proposed solution. We discuss the verifi-
cation algorithm in Section 3. Section 4 presents the
repair algorithm. In Section 5, we illustrate the advo-
cated approach through a simulated example. Section 6

concludes the paper.

2 Problem Formulation

Let us denote an IDES, which comprises N subsys-
tems, as G(§). The structure of G(&) changes with the
event-valued variable £ (e.g., £ = &; means that the i-
th subsystem has failed, i € {1,...,N}.) Suppose that
a supervisor Sgq exists so that the closed loop with
the current IDES, G(§)/Soia, executes a desired lan-
guage, Koq- One embeds in the desired language sev-
eral properties that need to hold in spite of structural
changes that may occur to the IDES. These properties
determine sequences of events that guarantee the sat-
isfactory operation of the IDES. By assumption, the
core of subsystems that constitutes the IDES after all
possible failures have occurred is able to generate such
sequences of events. For example, on the assumption
that the second and fifth subsystems of an IDES will

never fail, one considers the following property

P: If the fifth subsystem pauses, the second will

eventually take action

Suppose an event & occurs and, because of the struc-
tural changes this implies, the closed loop of the new

IDES with the old supervisor no longer executes Kq-

In turn, the closed loop loses one or more of the afore-
mentioned properties. Herein, we propose an adaptive
scheme to obtain a new supervisor, Spew, by taking into
account the structural change in the system. By design,
the new supervisor results in a closed loop, G(£)/Snew,

that possesses the desired properties.

First, upon occurrence of a failure event, &;, a learning
algorithm removes the events that pertain to the i-th
subsystem from the desired language. Second, another
algorithm repairs the desired language FSA. Third, ver-
ification is in order to check whether the properties are
still valid. Fourth, to complete the design one synthe-
sizes the new supervisor, Spew, based on the resulting

desired language.

3 Verification Algorithm

The method that we use to verify whether the de-
sired language FSA D satisfies property P is automata-
theoretic (AT) model checking, which is very popular
in the verification literature, e.g., [10]. Model check-
ing determines whether D |= P, ie., D models P.
AT model checking assumes D and P are expressed as
FSAs. Therefore, asking whether D = P is equivalent
to asking whether £(D) C £(P). This is equivalent to
L(D)NL(P) = 0, which is algorithmically tested by first
taking the synchronous product of the desired language
FSA D and the FSA corresponding to =P, i.e., D®—P.
The FSA corresponding to =P accepts m The syn-
chronous product ® implements language intersection.
The algorithm then determines whether £(D ® —P) #
(), which implies £(D) N L(P) # 0, i.e., D j~ P. This
algorithm assumes w-automata [11], which means that
sequences of events (called strings) accepted by the au-

tomaton have infinite length. If the FSA D is not an

w-automaton, conversion is simple [11].

The algorithm to determine whether £(D ® —P) #

() is implemented as a check for cycles in the prod-
uct FSA D ® —P that are accessible from some ini-
tial state and that satisfy any other conditions in the
FSA acceptance criterion. The acceptance criterion for
FSA D ® —P consists of all conditions that strings in
L(D®-P) must satisfy, which includes the requirement
that strings must begin in an initial state; see, for ex-
ample, [11]. A cycle is a sequence of states (sg, ..., $n)
such that s, = sg. A cycle that is accessible from an
initial state and that satisfies the FSA acceptance cri-
terion implies a nonempty language (£(D ® —P) # ().
This is because a string is in the language of an FSA
if it is an infinite-length sequence of events that satis-
fies the FSA acceptance criterion. All infinite behavior
eventually ends up in a cycle because an FSA has a

finite number of states.

Most current model checking algorithms have worst-
case time complexity that is polynomial in the size of
the FSA. Denote by |STATES| and |[EVENTS]| the
number of states and events in the FSA, respectively.
The AT model checking algorithm that we use has
worst-case time complexity O((|B|+1) % (|STATES)|
|[EVENTS)|)) where B is a specially designated sub-
set of the set of all states (i.e., |B| < |[STATES]) that
depends on the property.

4 Automaton Repair Algorithms

Recall that our approach enables adaptation to changes
via a learning mechanism that deletes from the de-
sired language events pertaining to a failed subsystem.
Note that deleting events generally implies deleting
FSA transitions, which can fracture the FSA into mul-
tiple isolated components. To restore continuity, the
fractured FSA needs to be repaired by patching the
gaps that result from deleted transitions. This section
presents an algorithm for repairing this FSA. Herein,

we denote the FSA transition function as d(s;, o) = sj,

where s; and s; are states and o is an event.

Figures 1 and 2 show our algorithm for repairing the
FSA following learning. Our motivation in designing
this algorithm was a desire to preserve as much of the
original FSA as possible, including preserving the order
of transitions. In these figures, SUCC)p,.(s) is the set
of all pre-learning successors of state s, SUCCpost(8)
is the set of all post-learning successors of s, dpre($, o)
is the particular pre-learning successor of state s for
event o, and dpost(s, o) is the post-learning successor
of s for event 0. Also, EVENTS,,. is the set of all
pre-learning events, EVENTS),s: is the set of all post-
learning events, and EVENTSA is the set of events
deleted by learning. In other words, EVENTS)05 =
EVENTS,e \ EVENTSA. Finally, STATES is the
set of all states in the FSA.

Prior to calling the main procedure in Figure 1, vari-
able “visited” is initialized to false for every state in the
FSA. Procedure “repair-method” is then called with
the initial FSA state as parameter s. Procedure repair-
method does a depth-first search through the set of
all states that are accessible from the initial state af-
ter learning. For each state visited on the depth-first
search, “visited” is set to true so that it is not re-visited.
Each state s that is visited which has no post-learning
successors is considered an “unlinked-vertex.” In this
case, procedure “find-linked-vertex” is called to find
the first pre-learning descendent of the unlinked-vertex
that has a post-learning successor. This descendent is
considered to be the “linked-vertex.” Procedure “copy-
connections” sets the successors of the unlinked-vertex
equal to the successors of the linked-vertex for all post-
learning events. If time permits, following this repair
method the agent may simplify the FSA by removing
unused (i.e., inaccessible) states and grouping states
into equivalence classes as in the state minimization

algorithm of [12].

The disadvantage of this repair algorithm is that it re-
quires re-verification to be sure the resulting FSA still
satisfies the property after patching has been done. In
the event that re-verification fails, i.e., it indicates that
the property has been violated, we have proposed an

alternative repair algorithm [9)].

The time complexity of the algorithm in Figures 1
and 2, excluding optional FSA simplifications such as
removing unused states or grouping states into equiv-
alence classes, is O(|STATES| = (|JEVENTSA| +
|[STATES| + ((|[STATES| — 1) * |EVENTSp|) +
|[EVENTSpost|)). This is because in the worst
case all states could be visited during depth-first
search and for every one of these states the follow-
ing could be executed. First, all deleted EVENTS
could be tested before finding one that satisfies
((Opre(s,7) # 0) and (dpre(s,7) # s)), which takes
time O(|JEVENTSAl). Next, “visited2” is reinitial-
ized to 0 for every state, which is O(|STATES]).
Then find-linked-vertex is called which, in the worst
case, searches all remaining states and their pre-
learning transitions, requiring time O((|]STATES| —
1) % |[EVENTS,.|). Finally, copy-connections copies
the transitions for all post-learning EVENTS, which
takes time O(|EVENT Spost]). The additional tests in
procedure repair-method for SUCCp,st(s) == 0 and
SUCCpre(s) # 0, as well as for 0 € EVENTSpost,

add nothing more to this complexity.

5 A Simulation Example

Let us demonstrate the advocated adaptive supervisory
control approach on an example scenario inspired by
the Pathfinder mission to Mars. Figure 3 depicts a
simplified model for the collection, the short-, and long-
range transmission of packages of data. The system
comprises the following subsystems: a far rover (F), an

intermediary rover (I), and a lander (L). The events

qQ, ..., ¢ are controllable. The states s; of each FSA i

are as follows:

F: collecting (sp = 1), transmitting (sp = 2)
I: receiving (s; = 1), transmitting (s; = 2)

L: receiving (s1, = 1), transmitting (s1, = 2)

The current desired language, Ko14, is the language of
the FSA Dgjq in Figure 4, i.e., Kqq = £(Dg1a)- Clearly,
the desired language K4 specifies that the supervisor
will enable event € once has occurred. In words, the

FSA of Kgq satisfies the following property:

P: If F transmits, L will eventually receive

Because such property is essential for the system’s op-
eration, the design needs to guarantee that it continues

to hold in spite of changes in the system.

Suppose now that the intermediary rover, I, fails. Dur-
ing the learning stage, the proposed adaptive scheme
removes from the desired language the events 7 and
d—these events affect the I subsystem only. In turn, it
reconstructs the language FSA using the main repair
algorithm. The result is the new language, Kcw, in

Figure 5. From verification, Ky has the property P.

6 Conclusion

This paper tackles the problem of the supervision of an
uncertain IDES. Occurrence of a failure event implies
that a certain subsystem is no longer able to facilitate
the desired properties of the IDES. The proposed adap-
tive supervisory control approach modifies the specified
language to restore operation and preserve the desired

properties.

References

[1] P. J. Ramadge and W. M. Wonham, “Supervi-
sory control of a class of discrete event processes,”
SIAM J. Control and Optimization, vol. 25, no. 1,
pp. 206-230, 1987.

2] W. M. Wonham and P. J. Ramadge, “On the
supremal controllable sublanguage of a given lan-
guage,” SIAM J. Control and Optimization, vol. 25,
no. 3, pp. 637659, 1987.

[3] Y.DuandS. H. Wang, “Control of discrete-event
systems with minimal switching,” International Jour-

nal of Control, vol. 48, no. 3, pp. 981-991, 1988.

[4] W. M. Wonham and P. J. Ramadge, “Modular
supervisory control of discrete-event systems,” Mathe-
matics of Control, Signals, and Systems, vol. 1, no. 1,

pp. 13-30, 1988.

[5] J. G. Thistle, “Supervisory control of discrete
event systems,” Mathematical and Computer Mod-

elling, vol. 23, no. 11, pp. 25-53, 1996.

[6] F.Lin, “Robust and adaptive supervisory control
of discrete event systems,” IEEE Transactions on Au-

tomatic Control, vol. 38, no. 12, pp. 1842-1852, 1993.

[7] S. Young and V. K. Garg, “Model uncertainty in
discrete event systes,” SIAM J. Control and Optimiza-
tion, vol. 33, no. 1, pp. 208-226, 1995.

[8] Y.-L. Chen, S. Lafortune, and F. Lin, “How to
reuse supervisors when discrete event systems evolve,”
in Proceedings of the IEEE Conference on Decision and
Control, (San Diego, CA), pp. 1442-1448, Dec. 1997.

9] D. Gordon and K. Kiriakidis, “Design of adap-
tive supervisors for discrete event systems via learn-
ing,” in Proceedings of the ASME Dynamic Systems
and Control Division, International Mechanical Engi-

neering Congress and Fzposition, (Orlando, FL), Nov.

2000.

[10] M. Vardi and P. Wolper, “An automata-theoretic

approach to automatic program verification,” in Pro-

ceedings of the First Annual IEEE Symposium on Logic
in Computer Science, (Cambridge, MA), pp. 322-331,
June 1986.

[11] P. Kurshan, Computer Aided Verification of Co-
ordinating Processes. Princeton, New Jersey: Prince-

ton University Press, 1994.

[12] J. Hopcroft and J. Ullman, Introduction to Au-
tomata Theory, Languages, and Computation. Menlo

Park, California: Addison-Wesley, 1979.

procedure repair-method (s)
visited(s) = true;
if ((SUCChpost(s) == 0) and (SUCChpre(s) # 0)) then
unlinked-vertex = s;
linked-vertex = 0;
for each 7 € EVENTSA do
if ((Opre(s,7) # 0) and (dpre(s, T) # s)) then
for each s’ € STATES do
visited2(s’) = 0;
od
find-linked-vertex(dpre(s, 7));
exit for-loop;
fi
od
if ((linked-vertex # 0) and (linked-vertex # unlinked-vertex)) then
copy-connections(unlinked-vertex, linked-vertex);
fi
fi
for each 0 € EVENT Spost do
if ((visited(dpost (s, o)) == false) and (dpost(s,o) # 0)) then
repair-method(dpost (s, 0));
fi
od

end

Figure 1: The main procedure of the repair algorithm.

procedure find-linked-vertex (s)
visited2(s) = true;
for each 0 € EVENT Spre do
if (dpost(s, o) # 0) then
linked-vertex = s;

exit-for-loop;

else if ((dpre(s, o) # 0) and (visited2(dpre (s, o)) == false)) then

find-linked-vertex(dpre(s, o));
fi
od

end

procedure copy-connections (sl, s2)
for each 0 € EVENT Spost do
dpost(81,0) = dpost(52,0);
if (0post (s2,0) == s2) then
dpost (s1,0) = s1;
fi
od

end

Figure 2: The subroutines of the repair algorithm.
F: 1 I 1 L:1

al |B v |9 €| | ¢

F: 2 I. 2 L:2

Figure 3: The simplified model of the Mars mission

Nl a 28 3~ 446 5 5 1
@ . ® °
€
€ a 7 6 8 ¢
> -0 -0 >
9
¢
Figure 4: The desired language FSA, Dgq, of the Mars
mission
Nl a 2 8 3 €
@e—0—
I € a 7 0
> -®
¢

NeJ

Figure 5: The desired language FSA after repair-method

and simplification

