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Abstract

Our goal isto devel op acognitivemodel of how humansacquire
skillson complex cognitive tasks. We are pursuing thisgoal by
designing computational architectures for the NRL Navigation
task, which requires competent sensorimotor coordination. In
this paper, we analyze the NRL Navigation task in depth. We
then use data from experiments with human subjects learning
this task to guide usin constructing a cognitive model of skill
acquisition for the task. Verbal protocol data augments the
black box view provided by execution traces of inputs and
outputs. Computational experiments allow us to explore a
space of aternative architectures for the task, guided by the
quality of fit to human performance data.

| ntroduction

Our goal isto develop a cognitive model of how humans ac-
quire skills by explicit instruction and repeated practice on
complex cognitive tasks. We are pursuing this goal by de-
signing computational architectures for the NRL Navigation
task, which requires sensorimotor coordination skill. Our
model design is grounded in human performance data on the
task (both motor output and verbalizations). In this paper, we
further develop and test the model reported in Gordon and
Subramanian (1996b), which is based on action models for
actively learning visual-motor coordination. Action models
predict action consequences. The agent (our cognitive model)
actively interacts with its environment by gathering execution
traces, which are time-indexed streams of visual inputs and
motor outputs, and by learning a compact representation of
an effective policy for action choice from such traces, guided
by action models.

This paper begins with an analysis of the NRL Navigation
task and the requirements of an optimal controller for this
task. We then briefly describe the human experiments from
which our model (different from the optimal controller) was
constructed, followed by an overview of our cognitive model
from Gordon and Subramanian (1996b). Our objective is
to construct the simplest model that accounts for essential
elements of performance common to all individuals. The
following sections explore two main topics arising from the
verbal protocols: shift of attention between subtasks, and
the nature of sensory predictions in the action models. We
concludethat human learners shift focus between two primary
subtasks of the task. This conclusion is clearly grounded in
supporting evidence: the verbal protocol data, results with
our cognitivemodel, and results using an aternative (control)
architecture. Results regarding the nature of human sensory
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predictions, on the other hand, are less definitive than those
regarding focus. We show how differences in learning rates
on thetask can be partially accounted for by variations on the
type of sensory predictions.

The NRL Navigation and Mine Avoidance
Domain

The NRL navigation and mine avoidance domain, devel oped
by Alan Schultz at the Naval Research Laboratory and here-
after abbreviated the “Navigation task,” is a simulation that
can be run either by humans through a graphical interface, or
by an automated agent. The task involves learning to navi-
gate through obstacles in a two-dimensional world. A single
agent controls an autonomous underwater vehicle (AUV) that
has to avoid mines and rendezvous with a stationary target
(goal) before exhausting its fuel. The mines may be station-
ary, drifting, or seeking. Time is divided into episodes. An
episode begins with the agent on one side of the mine field,
and random target and minelocations; it endswith one of three
possible outcomes: the agent reaches the goal (success), hits
amine (failure), or exhaustsitsfuel (failure). Reinforcement,
inthe form of a binary outcome, isreceived at the end of each
episode. An episodeisfurther subdividedinto decision cycles
corresponding to actions (decisions) taken by the agent.

The agent has a limited capacity to observe the world it
isin; in particular, it obtains information about its proximal
environs through a set of seven consecutive sonar segments
that give it a 90 degree forward field of view for a short
distance. Obstacles in the field of view cause a reduction
in sonar segment length; one mine may appear in multiple
segments. The agent also has arange sensor that providesthe
current distance to the target, a bearing sensor that indicates
the direction in which the target lies, and a time sensor that
measures the remaining fuel. A human subject performing
this task sees visual gauges corresponding to each of these
sensors. Theturn and speed actions are controlled by joystick
motions. Theturn and speed chosen on the previous decision
cycle are additionally available to the agent.

Evidence of Task Complexity: Building an
Optimal Controller

Given its delayed reward structure and the fact that the world
is presented to the agent via sensors that are inadequate to
guarantee correct identification of the current state, the Nav-
igation world is a partialy observable Markov decision pro-
cess (POMDP). The state space defined by the sensors for
the NRL Navigation task is about 10%*; optimal controllers



for POM DPs have been constructed tabularasa only for state
spaces on the order of 100 states (Cassandra, Littman, &
Kaelbling, 1994) because of the time (and therefore, sample)
complexity.

Our motivation for building an optimal controller for the
task istwofold: first, it givesusan upper baselinefor compar-
ison with human performance; second, it allows us to inde-
pendently analyze the complexity of learning the task without
considering constraintsimposed by human learning. The task
analysis allows usto ask: (1) what is hard about learning the
task? (2) what is an appropriate decomposition of the task
to learn an optimal controller (3) what is an appropriate dis-
cretization for the task to learn an optimal controller with a
bounded amount of training? (4) what is the role of action
models in the learning process® (5) is an optimal controller
stochastic or deterministic? Answers to these questions help
us understand the task better and indirectly guide the design
of a suitable space of alternative architectures for modeling
human learning.

Sincethe focus of our present paper isthe cognitive model-
ing of human performance on the task, we provide asummary
of the answersto the above questions that are relevant to our
present goal. The theoretical and experimental details of our
investigation of the design of optimal controllersfor this task
are in Subramanian and Gordon (1997).

An optimal controller for thistask achieves a performance
score of 100% for the task configuration of 25 mines, small
mine drift and no sensor noise. This is also the task config-
uration for our human experiments on this task. The optimal
controller was created by reinforcement learning (Gordon &
Subramanian, 1996a). The learner wasinitialized with a con-
troller with a specific task decomposition, a specific abstrac-
tion of thestate spacethat significantly reduced the complexity
of learning, and with a correct but incomplete action choice
policy. These three aspects of the initial controller are de-
scribed in detail below. It should be noted that tabula rasa
reinforcement learning failed to achieve over a 3% success
rate even with training runsin excess of 10,000 episodes.

The structure of the optimal controller reflects the decom-
position of the task into two subtasks: avoiding mines and
heading toward the target. As we shall show later, this de-
composition is also the one adopted by humans. The partial
action policy statesthat when the sonarsindicate proximity to
mines, the optimal action is chosen to achieve the avoidance
subgoal; when far from mines, the optimal action is based
on the bearing sensor and the target achievement subgoal.
This controller is tuned by reinforcement learning to acquire
the appropriate cutoffs on sonar values to switch between the
avoidance and target achievement subgoals. For thistask con-
figuration, we show that a uniform discretization of all sensor
values into three qualitative ranges is sufficient to represent
the optimal controller; this causes a reduction in the state
space from 10%* to 729! Since the learning is very rapid, the
results on the utility of learning action modelsin this domain
arenot very clear-cut. Thefairly coarse discretization in both
the sensor and the action space forces the optimal controller

'our navigation problem has different dynamics than the ones
faced by animals like rats and ants (Gallistel, 1990), which have a
richer sensor base and can use higher level featureslike landmarks.

2\We conjecture that it accelerates the rate of learning.

to be stochastic.

Our experiments with the construction of an optimal con-
troller highlight what is difficult about this task: it is compu-
tationally infeasible to learn the task without an appropriate
task decomposition. The tabular rasa reinforcement learner
shows that acquiring the optimal strategy for this task based
purely on experience in interacting with the simulation is
nearly impossible. Thisis because each episode is up to 200
steps long and has a single binary reward at the end, which
makes credit assignment extremely difficult. Human learn-
ers bring their experience in navigation to bear on this task
and are already equipped with the right task decomposition.
The optimal controller experiments also show the need for
building an appropriate discretization of the sensor values.®
The action choice policy (mapping from sensor state space to
action) needs a compact representation, and our experiments
show that afairly coarse discretization sufficesto represent it.
How humans discretize the task will be an important compo-
nent of our cognitive model of learning performance on the
task. The optimal controller handles partial observability by
maintaining sensor history. Knowledge of action in the pre-
vioustime step isall that is needed for thistask configuration
involving 25 mines. Finaly, the key strategic aspect in this
task appears to be learning when and how to shift attention
between the two subtasks.

Data from Human Subjects

In the experiments with humans, seven subjects were used,
and each ran for two or three 45-minute sessions with the
simulations. Weinstrumented* thesimulation (Gordonet. al.,
1994) to gather execution traces for subsequent analysis. We
also obtained verbal protocolsby recording subject utterances
during play and by collecting answers to questions posed at
the end of theindividual sessions.

Two striking results we got from our data with the human
subjects were (1) the fundamental similaritiesin task decom-
position (avoid mines; navigate to target) employed by sub-
jectsand (2) theremarkable differencesin individual learning
and performance on this task. For example, see Figure 1,
with the best and worst learning curves of the subjects. The
verbal protocols, combined with the learning curves, suggest
the need for acore model that captures similaritiesin the con-
ceptualization of the task, and parametric variations on the
core model that account for performance differences.

3The relationship between state space discretization and value
function approximationisin Mooreand Atkeson (1995) values, while
methods of state aggregation are detailed in Singh, Jaakola, and Jor-
dan (1995). Our own current work (Subramanian & Gordon, 1997)
explores this connection as well as agorithms for state aggregation
for very high dimensiona discrete state spaces. This paper only
focuses on cognitive modeling and not on the automatic generation
of the optimal controller.

“Notethat although human subjects use ajoystick for actions, we
do not model the joystick but instead model actions at the level of
discreteturnsand speeds(e.g., turn 32 degreestotheleft at speed 20).
Human joystick motions are ultimately translated to these turn and
speed values before being passed to the simulated task. Likewise,
thelearning agents we construct do not “see” gauges but instead get
the numeric sensor values directly from the simulation (e.g., range
is 500).



A Cognitive M odel

Our goal isto build thesimplest model that accountsfor human
subject data in learning performance. In particular, some
subjects become proficient at this task (no sensor noise, 25
mines) after only afew episodes. Modeling such an extremely
rapid learning rate presents a challenge. In developing our
learning methods, we have drawn from both the machine
learning and cognitive science literature. In this section, we
briefly describeour basiccognitivemodel, M ¢ ,cu s, previously
reported in Gordon and Subramanian (1996b).

One of the more striking aspects of the verbal protocols
we collected was that subjects exhibited a tendency to build
internal models of actions and their consequences, i.e., for-
ward models of the world. These expectations produced sur-
prise, disappointment, or positive reinforcement, depending
on whether or not the predictions matched the actual results
of performing the action. For example, one subject had an
expectation of the results of a certain joystick motion: “Why
am | turning to theleft when | don’t feel likel am moving the
joystick much to the left?” Another expressed surprise; “It
feels strange to hit the target when the bearing is not directly
ahead” Yet athird subject devel oped a specific model of the
conseguences of his movements: “One small movement right
or left seems to jump you over one box to the right or left,”
where each box refersto a visual depiction of a single sonar
segment in the graphical interface. Therefore, our cognitive
model uses action models to predict the consequences of ac-
tions. We believe that even though the evidence for the use
of action models in the optimal controller is unclear, it is an
essential component for modeling human performance on this
time-critical task —i.e., humans compensate for their limited
processing speeds and memory on this task by anticipating
events at least one step into the future. Jordan and Rumel-
hart (1992) emphasize thecritical role of aforward, projective
element in cognitive models.

Our cognitive model M ..., has four components:

Asonars : SENSOrS x actions — sonars
Apearing : SENSOrs x actions — bearing
Pyonars - SONAS — RN

Pyearing : bearing — %

The A mappings (action models) predict the next sonar and
bearing readingsgivenall current sensor readings and the cur-
rently chosen action. The P mappings rate the desirability of
the sonar and bearing configurations. For sonars, high utili-
tiesare associated with large values (no or distant mines), and
for the bearing sensor high utilities are associated with values
closer to the target being straight ahead. Our cognitive model
factorsthe prediction of sonar and bearing valuesinto A; ., qrs
and Apeqring and the assessment of the desirabilities of sonar
and bearing configurations into Psonars aNA Pyearing. This
factorization reflects the task decomposition used by our sub-
jectsthat isreveal ed consistently intheverbal protocols: mine
avoidance depends on sonar readings, and target achievement
relies on bearing readings. Currently, Psopnars @d Prearing,
which reflect background relevance knowledge about thetask,
are supplied by us, while A,,,4rs @nd Apeqring are learned
by direct interaction with the simulation.

The bearing predictions are discretized into 12 values
in clock notation; the sonar predictions (with 220 numeric

possibilities) are discretized into five equi-spaced qualita
tive categories (no-mines, mine-far, mine-mid, mine-close,
mine-very-close) for the group of seven segments. The
action set consists of three turns: turn-right, turn-left,
or go-straight, at a fixed speed (20/40). At each time
step, a focus heuristic is used to pick one of the pairs
(Asonar87 Psonars) or (Abearinga Pbearmg) to select an ac-
tion. The focus heuristic states that if all of the sonar val-
ues are below a certain empiricaly determined threshold
(150/220), the pair (Asonars, Psonars) Picks the next turn;
else (Asecaring, Prearing) 1S chosen for picking the next turn.
Actions are selected by performing a one-step lookahead of
the current state using the appropriate A mapping, and by
picking the action that maximizes the corresponding P value
of the projected state.

We next investigate two key architectural questions. First,
what impact does our task decomposition have onthelearning
rate? Second, what is the nature of the sensory predictions:
are they sufficiently consistent to be a part of the core model,
or should they be aparameter that can vary? If thelatter, what
are the performance tradeoffs between variations?

A Study of Focusof Attention

Theverbal protocol data provides abundant evidencethat sub-
jectsshift their focus of attention between avoiding minesand
navigating to the target. As stated earlier, avoiding mines
involvesreliance on the sonar gauge, whereas navigation gen-
erally employsthe bearing gauge. All of our subjects ranked
the sonar gauge as the most important and bearing as the sec-
ond most important.®> Subjects appeared to use the strategy:
“When mines are close, avoid the mines. When they are not,
navigate towards the goal.” Evidence in the protocols for
the focus heuristic includes statements such as “| allow the
bearing to vary anywhere within view until there are no more
mines in front of me —then | pay attention to the bearing of
the goal”

Arbib and Liaw (1995) note anal ogous arbitration between
approach and avoidance behaviorsin frogs. The default per-
ceptual schemarecognizes*all moving objects’ and activates
the accompanying motor schemaof snapping. However, when
the pretectum detects a*“large moving object,” this perceptual
schema is activated, which then activates the accompanying
“avoid” motor schema, thereby overriding and suppressing
the default snapping schema.

To test the impact of our task decomposition (focus heuris-
tic) upon the learning rate, we have ablated this aspect of our
cognitivemodel by lumping the prediction of the next sensors
into asingle map A, and the evaluation of the sonar and bear-
ing readings into a single utility assessment P. Thisversion
of our model, M ofocus, Projects the composite next set of
sensors and chooses actions that optimize the composite P
value of the projected sensor set.

We empirically test the following hypothesis:

e Hypothesis 1: The slope of M;,...,’S learning curve is
closer than My, f,.us'S t0 the slope of subject 1's learning
curve, for the Navigation task.

SMany of the subjects of Drs. Ron Sun and Edward Merrill at
University of Alabamaalso gave this gauges ranking on this task.



The justification for Hypothesis 1 is that subjects are using
this task decomposition (focus heuristic) because it improves
their learning and performance on the task. We choose to
compare here, as well as throughout the experiments, with
subject 1 because out of all seven subjects, subject 1's verbal
protocol s best reflect the decomposition and prediction issues
studied in this paper (e.g., subject 2 struggled alot with speed
selection problems).

The experimental tests of our hypothesesare dividedinto a
training (learning) phase and atesting phase.® Training phase
length is varied at 25, 50, 75, and 100 episodes. For each
training length, all variants of the model see the sametraining
data. The testing phase remains fixed at 400 episodes.” Each
episode can last a maximum of 200 time steps, i.e., decision
cycles. In al experiments, the number of mines is fixed
at 25, thereis a small amount of mine drift, and no sensor
noise. These task settings match exactly those used in the
human subjects experiments. Performance is averaged over
10 experiments because the algorithms are stochastic during
training, and testing results depend upon the data seen during
training. In the graphs, curves show mean performance on
thetask. Standard deviation bars are at each data point.

We comparethe variants of themodel with subject 1'slearn-
ing curve. Notethat we cannot dividethe human learning into
atraining phase and atesting phase during which the human
stops learning. The curve of the human has performance
averaged over asliding window of 10 previous episodes.

Figure 2 showsthe results of testing Hypothesis1. M;,cys,
which has the stated task decomposition and the focus heuris-
tic, better modelsthe subject’slearning curve and statistically
significantly outperforms M, ,0c4s. Thus, our hypothesisis
confirmed and we see the value of dividing the task into two
subtasks and modeling the shift of focus between subtasks.

Because there is indication that this task decomposition
(focus heuristic) iswidely employed and can yield large ben-
efitsin performance, we further test its value on an alternative
(reinforcement learning) architecture. We use a standard ¢-
learner (Watkins, 1989), that we modified for thistask to allow
for fair comparisons with variants of M. The details of the
g-learning architectures, called Q ;ocus 8Nd Qo ocus TOr with
and without the focus heuristic, are irrelevant here. Details
arein Gordon and Subramanian (1996a).

We empirically test the following hypothesis:

e Hypothesis 2: The slope of Qy..us's learning curve is
closer than Q.. 70.4s'St0 the slope of subject 1's learning
curve, for the Navigation task.

Thejustification for Hypothesis 2 is that the task decomposi-
tion seemsto bea good model for the task, independent of the
architectural choice.

Hypothesis2 isal so confirmed (see Figure 3). We conclude
there is significant value in using our task decomposition.

We note that both hypothesis 1 and 2 were tested using
a paired, two-tailed t-test with o« = 0.05 (compensating for
unequal variances whenever indicated by the F'-ratio). All
paired differences between learning curves of variants of the
model described in this section are statistically significant.

5We used C4.5 (Quinlan, 1986), which learns the action models
in batch and has high noise tolerance - an advantage for a POMDP.

"We experimented with the number of episodes and chose a set-
ting where performance improvement leveled off for all algorithms.

A Study of Sensor Predictions

Our cognitivemodel M .., hastwo action models: A,onars,
which predicts the qualitative magnitudes of the sonar seg-
ments, and Aycaring, Which predicts the magnitude of the
bearing, on the next time step. When using these action mod-
els, our cognitivemodel chooses the turn that would yield the
“best” next prediction, as evaluated by Psonars OF Prearing.
Evidence in the cognitive literature (Kent, 1981) suggests
people learn specific values, but over time these specifics are
chunked into relevant categories. For example, although peo-
ple might memorize every size, color, and shape of birdsthey
have seen, over time they generalize to a prototypical bird.

Rarely did the verbal protocolsrefer to such specific expec-
tationsas “bearing will be slightly to theleft.” More oftenthe
subjects were using coarse categories in their expectations,
such as “left,” “close” “further,” or “larger” Nevertheless,
few subjects verbalized their expectations, and the evidence
onthistopicislessclear thanthe evidencefor thefocusheuris-
tic. Some verba statementsindicated magnitude (value) pre-
dictions, though the granularity of these predictions varied.
Other statements reflected predictions of change (derivative)
in sensor values. Variation occurred in both inter- and intra-
subject protocols. To reflect such a mixture of responses, our
cognitive model will be parameterized in this respect.

We compare the learning curves of differences of vari-
ous versions of our model to better understand the perfor-
mancetradeoffs. Wefirst comparetwo versions of our model:
M ocus, as described earlier, and M ocus+deriv, @ Variant of
M ocus that predicts and evaluates sensor derivatives rather
than magnitudes. Derivative predictions are quantized into
three categories. increasing, decreasing and no change.

Adsonars : SENSOrS x actions — d(sonars)/dt
Adyearing : SENSOrs x actions — d(bearing)/dt
Pdsonars . d(SonarS)/dt — SR

Pdyearing : d(bearing)/dt — R

Because there is no clear evidence for subjects preferring
magnitude versus derivative predictions, we do not have a
hypothesis about which will perform better. Figure 4 presents
the empirical comparison of the two versions of the model.
In retrospect, it is not surprising to find that M;,cus+deriv
outperforms M;,..s since the former captures the goal of
improving sensor values more explicitly and in a much more
succinct form. However, what isquite surprising isthe degree
towhich My ,custderiv OUtPEforms My ocys.

We further test this performance advantage without the use
of the focus heuristic to be certain it is independent of this
heuristic. To do this, we compare M, ,focus, Which makes
magnitude predictions, wWith M, ocustderiv, Which makes
derivative predictions.

Figure 5 shows the results of this comparison. The results
are quite surprising. Not only does My, ofocus+deriv OULPEr-
form Mp,jocus, but the performance of our model with the
derivative predictionsisnearly the same regardless of whether
it does or does not use the focus heuristic (compare Figures
4 and 5)' Both Mfocus+deriv and Mnofocus—{-deriv are excel-
lent performers and appear to closely approximate the curve
of subject 1. We conjecture that although derivative predic-
tions are more effective than the task decomposition for this
particular Navigation task, our subjects also used the task



decomposition because people have evolved to solve a wide
range of tasks. Approach/avoidanceis broadly applicable.

In afinal experiment, we test whether M;,cus+4eriv did
better than M., because it had fewer categories, or if it
was because they were derivatives. To answer this, we use a
version of M., that makes magnitude predictions but the
magnitudesaredivided into fewer (nominal) categoriesthanin
M ocus. Thecategories chosen best reflect theverbal protocol
data. Bearing valuesare“ahead,” “behind,” “right,” and “left.”
Sonar values are “far,” “mid,” and “close” This version of
the model is abbreviated M ocus+fewear. A COMparison of
Mfocusn Mfocus+deriv ’ and Mfocus+fewcat isin Figure 6.

Figure 6 suggests that the derivative predictions yield the
best performance. Apparently, there is a distinct advantage
in predicting the change in sensor values, rather than sensor
magnitudes on the next time step, to select a turn. Human
vision is designed to notice changes, e.g., see Kent (1981),
and our results confirm the value of this design.

Thedifferencesbetween the curvesfor M ocus+ fewear @Nd
M ocus arenot statistically significant (« = 0.05). All other
paired differences between learning curves of variants of the
model in Figure 6, as well as all other figures in this section,
are significant (« = 0.05).

Although the verbal protocol dataindicates mixed usage of
prediction types, our results here show the tradeoffs between
the different types. To model human learners, the most accu-
ratemodel isonethat can be parameterized to reflect inter- and
intra-individual choices. Future experiments will determine
the conditionsunder which each type of prediction is made so
that we can parameterize our cognitive model in this respect.

Discussion and Future Wor k

The development of an optimal controller for this task, and
data collected from experiments with human subjects, have
taught us that the NRL Navigation task challenges human
learners because: (1) the states are only partially observable,
(2) the time-critical nature of the task requires the determina-
tion of what is relevant to focus on when, and (3) predictions
of the reward and/or sensor values are required for effective,
time-constrained learning.

In this paper, we designed a cognitive model of skill ac-
quisition on the NRL Navigation task that captures core sim-
ilarities in task decomposition in our human subjects. We
demonstrated the use of action modelsin human subjects and
constructed variations in the types of predictions supported
by these action models. The results from a systematic study
of the task decomposition confirm the goodness of fit of our
core model to human performance data. The results from our
study of magnitude versus derivative predictions by the action
models accounts for substantial differencesin learning rates.

In the future, we plan to explore other design decisionsin
our model. We also plan to gather more detailed data about
predictions made by subjects, as well as focus of attention
(using an eyetracker) to sharpen our understanding of these
issues. Related work along these lines eval uates the scanning
behavior and mental workload of aircraft pilots, who also
make decisions based on gauges (e.g., see Itoh et a., 1990).
With more detailed human data, we plan to model individual
subjects at alevel that will enable us to predict the forms of
their trgjectories.
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