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During incremental concept learning from examples, tentative hypotheses are formed
and then modified to form new hypotheses. When there is a choice among hypotheses, bias is
used to express a preference. Bias may be expressed by the choice of hypothesis language, it
may be implemented as an evaluation function for selecting among hypotheses already gen-
erated, or it may consist of screening potential hypotheses prior to hypothesis generation. This
paper describes a use of the third method. Bias is represented explicitly both as assumptions
that reduce the space of potential hypotheses and as procedures for testing these assumptions.
There are advantages gained by using explicit assumptions. One advantage is that the assump-
tions are meta-level hypotheses that are used to generate future, as well as to select between
current, inductive hypotheses. By testing these meta-level hypotheses, a system gains the
power to anticipate the form of future hypotheses. Furthermore, rigorous testing of these
meta-level hypotheses before using them to generate inductive hypotheses avoids consistency
checks of the inductive hypotheses. A second advantage of using explicit assumptions is that
bias can be tested using a variety of learning methods.
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1. Introduction

Bias plays an important role in the major subfield of machine learning called
empirical induction. Empirical induction of a concept from examples is performed by
formulating hypotheses that approximate an unknown target concept based on experi-
ence with instances classified (e.g., by a teacher) as positive or negative examples of
the target concept. If learning is incremental (on-line rather than batch), hypotheses
are formed and then modified to remain consistent with the growing set of known
instances. The major modification techniques are generalization and specialization.
A hypothesis is consistent with the instances if it logically implies all known positive
instances and no known negative instances. The number of hypotheses that are con-
sistent with the instances may be large. Since the purpose of each hypothesis is to
predict over future instances, a judicious choice of certain hypotheses over others can
improve these predictions, thereby enhancing system performance. Any basis for
hypothesis preference is considered bias.2

To illustrate bias, this paper will refer to a scenario consisting of a robot in a
totally automated factory that has to pick new, raw parts out of a bin. The robot needs
to feed each of these parts to a milling machine by ‘‘fixturing’’ them (placing the parts
into a fixture that clamps them). It has no prior knowledge of which specific part
characteristics are correlated with the ability of the part to be successfully fixtured
prior to being milled. However, the robot has sufficient visual and tactile sensors to
detect whether or not the fixturing operation has succeeded. Therefore, the robot
needs to learn the concept of parts that can be successfully held in place by the fixture
of this particular machine, i.e., ‘‘fixturable’’ parts. Learning this concept will improve
the robot’s performance because the robot will no longer waste time trying potentially
unsuccessful parts, yet will try as many parts as it considers capable of success.
Within the bin are parts of size small and large; of material steel, brass, bronze,
copper, and aluminum; and of shape sphere, cone, cylinder, cube, and brick. (We
assume the robot can recognize these features.) Suppose a small, copper cube has
been fed into the machine by the robot and machined successfully. This, then,
becomes a positive example. Suppose, further, that a small, brass sphere will not
remain secure within the fixture. This becomes a negative example. Many
hypotheses, or predictions over future instances, can be made that are consistent with
these two examples. One possible hypothesis is that cubes will be successful and
spheres will fail. This hypothesis may have been formed because of a belief that the
shape of an object is the only feature that is relevant for determining an object’s abil-
ity to be fixtured. Another possible hypothesis is that copper parts will succeed and
brass parts are expected to fail. One of these two hypotheses will be a better predictor
than the other. A preference for one of the two hypotheses is considered bias. During
incremental induction, hypotheses may be generalized to include new instances. For
each new instance, there are usually many, generalized hypotheses that can be formed
to include it. Therefore, bias continues to be important as hypotheses are modified
during incremental learning.

Three major techniques exist for biasing induction. The first technique consists
of using a restricted hypothesis language. Restricting the language effectively limits
the hypothesis choice because not all hypotheses are expressible. By adding terms to
____________________________________
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the language, a system with restricted hypothesis language can shift (alter) its bias
(Utgoff 1986). The second bias technique, called testing, is used in systems such as
Michalski’s AQ and Fisher’s COBWEB to evaluate hypotheses that have already been
generated (Michalski 1983; Fisher 1987). AQ, for example, bases hypothesis prefer-
ence on measures such as simplicity or degree of fit to the data. The third bias tech-
nique, called screening, has previously received less attention than the other two
methods. Screening biases induction by reducing the number of hypotheses prior to
hypothesis generation. This paper discusses the implementation of a system, called
PREDICTOR (Gordon 1988), for which the primary focus is the screening method of

bias.3 Bias in PREDICTOR is represented explicitly both as assumptions that are used
to screen the hypotheses and as procedures for testing these assumptions. Screening is
performed by generalization heuristics. These heuristics are condition-action pairs.
Each heuristic condition consists of a procedure to test a biasing assumption. (An
example of a biasing assumption is the irrelevance of the material of parts to their
ability to be fixtured. A procedure to test the assumption might consist of trying two
objects having the same size and shape but different materials.) The heuristic action
consists of applying a generalization operator (such as the elimination of any refer-
ence to the material of objects) to the current, as well as future, hypotheses.4 Although
heuristics for selecting generalization operators have occasionally been used in other
systems, such as that of Winston (1975), there has not yet been a careful study of this
subject. This paper presents new generalization heuristics based on original
definitions, as well as comparative evaluations of different heuristics.

Explicit bias in the form used by PREDICTOR offers a couple of advantages for
an inductive system in addition to the computational benefit gained from screening
prior to generating competing hypotheses. The first advantage is that the bias is a
meta-level hypothesis used to generate inductive hypotheses. Since the bias is itself a
hypothesis, it may be tested and confirmed or refuted. A system that tests its
hypothesis generator has the power to anticipate the form of future hypotheses,
thereby reducing the search space for future, as well as current, inductive hypotheses.
Furthermore, the testing of the bias may be done using different degrees of rigor at
different times in the learning process. A ‘‘cautious’’ mode of learning will
thoroughly test the assumptions prior to hypothesis generation. If the cautious mode
is employed, the inductive hypotheses are guaranteed to be consistent with previous
instances (though consistency with future instances is not assured). Therefore, cau-
tious learning avoids the costly process of instance reexamination or any other con-
sistency checks just after generalizing. Furthermore, generalization errors are reduced
when cautious heuristics are used. Generalization heuristics that operate in the cau-
tious mode are called consistency-preserving. Alternatively, generalization may
proceed in a less cautious manner. With less cautious generalization, learning
proceeds more rapidly but the number of errors is increased. When generalization
errors occur, however, the system can recover gracefully using, once again, the expli-
cit bias. Error resolution methods rigorously retest the biasing assumptions. If any of
the assumptions are violated, they can be retracted (which shifts the bias) and the error
remedied by directed backtracking to a previous hypothesis. Backtracking is used in
____________________________________

3 PREDICTOR is implemented in Quintus Prolog and runs on a SUN workstation.
4 Eliminating any reference to a feature essentially removes that feature from the hypothesis language.

Therefore, we could view this method of screening as performing bias shifts that incrementally add restrictions to the
hypothesis language.
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lieu of specialization to make hypotheses more specific.5

A second advantage of explicit biasing assumptions is that multiple learning
methods may be employed for testing the bias. This paper describes how active learn-
ing uses the procedures for testing the biasing assumptions in order to propose fruitful
examples to try next. The backtracking mechanism, mentioned above, is one method
for bias testing. This paper also describes how a domain theory is used to obtain bias-
ing information to augment empirical induction.

The remainder of this paper is divided into seven sections and a summary. The
next section presents the unbiased SELECT-INHIBIT method of learning positive and
negative hypotheses. Then, in Section 3, we discuss the biasing assumptions and the
generalization heuristics, along with original definitions of their corresponding condi-
tions. Heuristics have been developed for three assumptions, namely, the irrelevance,
independence, and cohesion of object features for the target concept. These three
assumptions have been chosen because we consider them to be significant for any sys-
tem that empirically learns concepts from examples using features. Section 4
discusses error resolution, active learning, and analytical learning. A detailed exam-
ple of the system’s inputs and outputs are presented in Section 5. We conclude with
empirical results followed by discussions of related work and plans for future
research. To avoid confusion, the remainder of this paper will refer to the bias as
‘‘assumptions’’ and the inductive hypotheses as ‘‘hypotheses’’.

2. The SELECT-INHIBIT method of concept learning

Before discussing bias, we first present the initial, unbiased induction algorithm,
called ‘‘SELECT-INHIBIT’’, along with a hypothesis pair representation. The
SELECT hypothesis is maintained for learning the concept. It matches (covers) all
known positive examples. The INHIBIT hypothesis, which matches all known nega-
tive examples, is kept for learning the negation of the concept. The SELECT and
INHIBIT hypotheses may be viewed as sets. An instance description is implied by
one of these hypotheses whenever the instance is an element of that set. The SELECT
and INHIBIT sets are kept disjoint. One reason for maintaining a pair of disjoint
hypotheses is that the costly process of checking hypothesis consistency with
instances can, under certain conditions, be avoided. (See Section 3.) Another reason
is that two, nonintersecting hypotheses explicitly subdivide the world into a region
believed to be positive, a region believed to be negative, and a region for which there
is no reason for hypothesizing either positive or negative. Furthermore, input and
overgeneralization errors are more easily discovered if the hypotheses are kept dis-
joint. Maintenance of a negative hypothesis in addition to a positive one can be par-
ticularly useful for active learning. When inducing disjunctive concepts using active
learning, it is often helpful to focus on negative examples (Bruner et  al. 1986). This is
one of the ways in which the INHIBIT hypothesis is used.

The language for the SELECT and INHIBIT hypotheses includes two classes of
lambda abstractions. The first class consists of abstractions whose body is in the form
of disjunctions of conjunctions. These abstractions are in a restricted disjunctive nor-
mal form (restricted DNF) that has disjuncts consisting of the conjunction of values of
features considered relevant. For example, if a small cube and a large sphere are both
positive examples, the following hypothesis could be created (we omit the notation
____________________________________

5 Backtracking may result in the removal of hypothesis language restrictions made earlier.
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‘‘lambda(x)’’):
SELECT: { x | ((val(size,x,small) & val(shape,x,cube)) v

(val(size,x,large) & val(shape,x,sphere))) }
where ‘‘val’’ is the relation that assigns feature values to objects. In other words, rela-
tion val(r, x, z) means that z is a value of feature r for object x. Although the
hypotheses begin with the disjunction of instance descriptions, generalization opera-
tors such as dropping features from the hypotheses make these DNF hypotheses more
general.

The second class consists of internal disjunctive abstractions (defined in Michal-
ski (1983)). These abstractions are conjunctions of object features with internal dis-
junction of values (called internal disjunctive form, or IDF), e.g.,

SELECT: { x | ((val(size,x,small) v val(size,x,large)) &
(val(shape,x,cube) v val(shape,x,sphere))) }.

Note that the second representation does not preserve attribute (feature) dependency
information with respect to concept membership. For instance, small spheres are also
included, whereas they could be negative examples.

A few more language assumptions must be mentioned. Feature values in these
abstractions are assumed to be either nominal or structured (in an ISA-hierarchy). In
order to simplify the generalization heuristics, no negation is currently used in either
type of abstraction. The absence of negation could cause the production of clumsier
hypothesis descriptions. For example, if the target concept were ‘‘not sphere’’ and the
domain of possible shapes was large, expressing the negation as the disjunction of
alternative shapes could be cumbersome. In fact, if not all possible shapes were
known, then the correct concept could not be learned. Nevertheless, for the concepts
described in this paper (Section 6), the INHIBIT hypothesis is adequate for expressing
negation. The final assumption is that the codomains (set of all possible values) of the
features are assumed finite.

PREDICTOR executes a repeating cycle of predictions and updates as new
instances appear. One instance is accepted at a time. Every time a new instance is
accepted (which may have been requested by the system), a prediction is made based
on whether it matches one of the hypotheses. An instance matches a hypothesis if its
description, which consists of the conjunction of its feature values, is implied by the
hypothesis. There are four cases that may occur. The new instance may match
SELECT only, INHIBIT only, neither, or both. When an instance matches neither
hypothesis, no prediction is made. For an unmatched, positive example, an associated
SELECT hypothesis is created or modified to include the example. Likewise, an
INHIBIT hypothesis is created or modified for an unmatched, negative example. The
system predicts positive if the SELECT hypothesis matches a new instance and nega-
tive if the INHIBIT hypothesis matches it. This prediction could be correct, requiring
no action, or incorrect, requiring backtracking through the space of previous
hypotheses, described in Section 4. This leaves the case where both hypotheses match
the instance. Since PREDICTOR keeps the two hypotheses disjoint, this case never
occurs.

PREDICTOR is similar to its predecessors. The system’s cycle of predictions
and feedback is quite similar to the mode in which the incremental, concept learning
program STAGGER operates (Schlimmer 1986). Maintenance of disjoint hypotheses
covering the positive and negative examples can also be done by AQ (Michalski
1983). The unique contribution of PREDICTOR is its explicit bias in the form of
hypothesis generating assumptions. In the next section, we discuss PREDICTOR’s
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generalization heuristics that bias induction by screening potential hypotheses.

3. Generalization heuristics for biasing induction

In this section, we present the general definition of a generalization heuristic,
followed by specific definitions of generalization heuristics associated with
irrelevance, independence, and cohesion. First, though, we define axioms used in the
system.

3.1. Axioms

To increase clarity this section uses a variable, t, that has values representing
incremental time steps. If t=0 is the first time step in incremental induction, when no
instances have been accepted, then each inductive time step, t = 1, t = 2,..., is associ-
ated with the acceptance of one new training instance, i(t). A training instance con-
sists of an instance description and the information as to whether it is a positive or
negative example of the target concept. We let I+(t) be the set of instances known to
be positive at time t, and I−(t) be the set of instances known to be negative at time t.
Then the following axioms hold, where t is universally quantified.

[A1] I+(0) = I−(0) = ∅.
[A2] (I+(t +1) = I+(t) ∪ {i (t)}) if i (t) is positive,  else  (I+(t +1) = I+(t)).
[A3] (I−(t +1) = I−(t) ∪ {i (t)}) if i (t) is negative,  else  (I−(t +1) = I−(t)).
[A4] SEL (0) = INH (0) = ∅. (SEL stands for SELECT, INH for INHIBIT)
[A5] (I+(t) ⊆ SEL (t)) and (I−(t) ⊆ INH (t)).

These axioms are assumed for the definitions in the remainder of this section.

3.2. General definitions

In this subsection we define a training scenario. We also formalize the notion of
a generalization heuristic.

A training scenario is a quintuple < I+, I-, SEL, INH, i > (where each quintuple
element is a function over t) that satisfies [A1]-[A5]. In the following, we are dealing
with a training scenario.

A generalization heuristic, G, consists of a condition, CONDG, and an operator,
OPG. A generalization heuristic states that whenever its condition holds, the
corresponding generalization operator may be applied. If OPG is the generalization
operator associated with heuristic G, then OPG, applied at time t, does the following:

OPG(SEL (t), INH (t), i (t)) = (SEL (t +1), INH (t +1)).

In addition to determining the form of the hypotheses at time t + 1, the generalization
operator, OPG, also influences the form of the hypotheses at time > (t + 1). Note that
given a sequence of training instances and operator applications, the entire training
scenario is determined.

Each of the heuristic conditions is a procedural method for testing whether a
biasing assumption holds. In addition to using these conditions in the generalization
heuristics, PREDICTOR also uses them for active learning and error resolution,
described in Section 4. Each generalization operator used in PREDICTOR
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corresponds to one of the rules described in Michalski (1983) or Michalski and Stepp
(1983). The default generalization operator of the system is add-feature-values.
Whenever a new instance is accepted, this operator adds the instance description, gen-
eralized using the current, biasing assumptions, to the appropriate hypothesis (as a
new disjunct) if the hypotheses are in DNF. If the hypotheses are in IDF, feature
values are generalized if necessary and added to the internal disjuncts. Further gen-
eralization is optional and is performed by generalization heuristics. These heuristics
can alter both the bias and the current hypotheses. In order to simplify the directed
backtracking (explained in Section 4), PREDICTOR fires at most one of these gen-
eralization heuristics for each new instance. If multiple generalization heuristic con-
ditions are satisfied and no metaheuristic (or bias) exists for selecting between them,
then the choice between their operators is arbitrary.

Below, we discuss specific examples of generalization heuristics.

3.3. The irrelevance generalization heuristic

This subsection presents a definition of absolute irrelevance, followed by the
condition and operator associated with the irrelevance generalization heuristic. For-
mal definitions of the irrelevance and independence heuristics may be found in the
appendix of this paper.

We have developed definitions of absolute irrelevance, absolute independence,
and absolute cohesion that clarify the meaning of irrelevance, independence, and
cohesion within a nonincremental learning context. These absolute conditions are
idealized conditions for which the universe of objects, the universe of features, the
universe of feature values, as well as the classes of all objects, are known prior to the
outset of learning. The absolute conditions are the biasing assumptions that PREDIC-
TOR tries to confirm or refute in an incremental setting. The generalization heuristics,
which are designed for incremental learning, are based on the definitions of the abso-
lute conditions. The heuristics try to determine whether the absolute conditions hold
based on the instances seen so far. If not all instances have been seen, their conclu-
sions may be wrong.

The definition of absolute irrelevance states that feature r is irrelevant to learn-
ing concept C if and only if any two objects that have identical values for every
feature except, perhaps, feature r, both behave identically with respect to target con-
cept membership regardless of the value of r.

It is now possible to define a condition, CONDIRR (r,C,t), that is associated with
the irrelevance heuristic and is based on the above definition. The generalization
heuristic is defined for the subset of the universe of objects which consists of those
objects seen so far. The subscript IRR(r,C,t) means that feature r is considered
irrelevant to the target concept C at time t. Let {r 1, . . . ,rn} be the set of features con-
sidered relevant at time t. We define an instance description to be

(val( r 1,x,v 1) &...& val( rn,x,vn)),
where vi is a value in the codomain of ri for 1 ≤ i ≤ n. Then CONDIRR (r,C,t) states that
if you take any instance description of an element of the SELECT (resp. INHIBIT)
hypothesis, and you change the value of r to any other element of its codomain, you
still describe an element (if such an object exists) of the SELECT (resp. INHIBIT)
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hypothesis.6

The operator OPIRR (r,C,t), which is associated with the irrelevance generalization
heuristic, is drop-feature(r). The effect of operator application is that feature r is omit-
ted from both the SELECT and INHIBIT hypotheses (current and future).

The irrelevance generalization heuristic, GIRR (r,C,t), states that whenever the
irrelevance condition CONDIRR (r,C,t) holds, the irrelevance generalization operator
OPIRR (r,C,t) may be applied to the irrelevant feature r.

The irrelevance condition is not as strict as absolute irrelevance. This is why
GIRR (r,C,t) generalizes. To be certain that absolute irrelevance holds, objects of every
combination of values for all features (if such objects exist) would have to be included
in either SEL(t), INH(t), or i(t). Since the irrelevance operator generalizes future
hypotheses, prediction errors may occur.

As an example of GIRR (r,C,t), assume the codomain of feature ‘‘material’’ is
{copper, brass}, that of ‘‘size’’ is {small, medium, large} and that of ‘‘shape’’ is
{cylinder, brick, sphere}. Furthermore, suppose the current SELECT hypothesis (at
time t) is the following:
SELECT(t):

{ x | ((val(size,x,small) & val(material,x,copper) & val(shapex,cylinder))
v (val(size,x,small) & val(material,x,brass) & val(shape,x,cylinder))
v (val(size,x,large) & val(material,x,copper) & val(shape,x,brick)))}

and the next instance has the description, ‘‘(val(size, i(t), large) & val(material, i(t),
brass) & val(shape, i(t), brick))’’. If ‘‘material’’ is ignored, there are two different
classes of objects described by the SELECT hypothesis combined with the new
instance. The first class includes small cylinders. The second includes large bricks.
Furthermore, every small cylinder comes in all materials and every large brick comes
in all materials. Therefore, CONDIRR (r,C,t) is satisfied, so the system may apply
OPIRR (r,C,t) to infer
SELECT(t+1): { x | ((val(size,x,small) & val(shape,x,cylinder)) v

(val(size,x,large) & val(shape,x,brick)))}.
‘‘Material’’ will henceforth be omitted from SELECT and INHIBIT. Note that since
this is a generalization over as yet unseen instances, it could be wrong. For instance,
it may turn out that all copper spheres are positive whereas all brass spheres are nega-
tive, in which case ‘‘material’’ is relevant. This error will be detected by subsequent
inconsistency and resolved by backtracking.

In addition to omitting the irrelevant feature from future pairs of hypotheses, the
fact that the feature is irrelevant to learning the target concept is added to the database
of facts. This statement of irrelevance of a feature can be considered a meta-level
hypothesis used to generate inductive hypotheses. If a subsequent prediction error
occurs, this metal-level hypothesis about irrelevance can be retested given the new
(and larger) set of examples known at that time. This technique of error resolution is
described in the Section 4. First, though, we present two more generalization heuris-
tics.

3.4. The cohesion generalization heuristic

A structured feature is one for which there exists a tree of feature values that
increase in generality as the tree is ascended from the leaves to the root. Each tree
____________________________________

6 When internal disjunction is used, this becomes the truth-preserving rule of Michalski (1983).
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node may be viewed as a set, or class. Thus, the tree describes a partial ordering of
terms, as in Figure 1. The purpose of the cohesion heuristic is to decide when to climb
the tree. We next define absolute cohesion and the cohesion generalization heuristic.

The definition of absolute cohesion states that the subclasses of feature value v
are cohesive with respect to target concept membership if and only if any two objects
that have identical values for all features except r, and that both have value v (or some
subclass) for feature r, behave identically with respect to target concept membership.

We next define cohesion in an incremental setting. The cohesion of class v with
respect to the target concept means that subclasses {a 1, . . . ,an} of class v in the gen-
eralization tree of descriptive terms appear to behave as a unit with respect to target
concept membership. In other words, cohesion holds if for each description of an
object included in the SELECT (resp. INHIBIT) hypothesis, if the value of feature r is
changed from ai to aj (1 ≤ i, j ≤n) then any object satisfying this new description is
also a member of the SELECT (resp. INHIBIT) hypothesis. For instance, if
{cube,brick} is the set of subclasses of ‘‘prism’’, and ‘‘small cube’’ describes certain
elements of the SELECT hypothesis, then ‘‘small brick’’ must also describe elements
of SELECT in order to satisfy the condition for cohesion of prismatic-shaped objects.

The cohesion heuristic operator is climb-generalization-tree(r,v). This operator
replaces the names of all subclasses of feature value v in the hypotheses with v. In the
example above, the generalization tree would be climbed to ‘‘small prism’’. It is
important to note that when a generalization tree exists, irrelevance is a special case of
cohesion and drop-feature(r) is a special case of the generalization operator climb-
generalization-tree(r,v).

The next subsection presents the third and final generalization heuristic used by
PREDICTOR.

3.5. The independence generalization heuristic

This section presents the definition of absolute independence and the condition

and operator associated with the independence generalization heuristic.7

In order to simplify the definition of absolute independence, we define the
independence of two features. The definition of absolute independence states that
features r 1 and r 2 are independent with respect to concept C if and only if whenever
you take the descriptions of two objects for which the target concept holds and you
switch the values of r 1 (or of r 2) in the two descriptions, you still describe objects for
which the target concept holds. The current version of PREDICTOR addresses only
the independence of all features. If the absolute independence of all features holds,
then one feature is sufficient for learning the target concept.

The condition associated with the generalization heuristic for independence,
CONDIND (R,C,t), is based on the definition of absolute independence. If we let R(t) be
the set of features considered relevant, then the subscript IND(R,C,t) means that all
elements of R(t) are considered independent with respect to C at time t. Let VSEL(t) be
the set of all feature values (of all features) currently found on the SELECT
hypothesis; and let VINH(t) be defined similarly. Then if every instance description
formed from feature values in VSEL(t) describes an element of SELECT, and every
instance description with feature values combined from VINH(t) describes an element
____________________________________

7 The term ‘‘dependent’’ is used here to refer to attribute value dependence with respect to target concept
membership. The term does not denote statistical correlations between the attribute values themselves.
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of INHIBIT (assuming these objects exist), CONDIND (R,C,t) holds. The check for
independence may be performed by taking the Cartesian product of values in VSEL(t)
or VINH(t). In other words, independence holds for the following hypothesis:
SELECT(t): { x | ((val(material,x,brass) & val(shape,x,cylinder)) v

(val(material,x,copper) & val(shape,x,cylinder)) v
(val(material,x,brass) & val(shape,x,brick)) v
(val(material,x,copper) & val(shape,x,brick)))}.

Independence cannot hold if a combination of feature values distinguishes target con-
cept membership as in the following:
SELECT(t): { x | ((val(material,x,copper) & val(shape,x,cylinder)) v

(val(material,x,brass) & val(shape,x,brick)))}
INHIBIT(t): { x | ((val(material,x,brass) & val(shape,x,cylinder)) v

(val(material,x,copper) & val(shape,x,brick)))}.

Unlike the two previously described generalization heuristics, the independence
heuristic alters the logical form of the hypotheses.8 Its associated operator, convert-
form, transforms the current and future hypotheses from DNF to IDF. Although this is
a truth-preserving transformation for the current hypotheses if the condition for
independence is met, it is not in general truth preserving. The reason for this is that
the operator also affects future hypotheses because the bias exists that absolute
independence holds. If future hypotheses are in IDF, then a greater degree of general-
ization will occur.

In practice, PREDICTOR applies this heuristic to only one hypothesis at a time

anysize

anymaterial

anyshape

small large

element alloy

aluminum copper brass steel bronze

prism curved_solid

cube brick sphere cone cylinder

FIG. 1. The generalization tree of descriptive terms.

____________________________________

8 It is wise to apply the heuristic only after a couple of examples have been seen.
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in order to reduce the cost of testing the condition. However, we have still found the
independence heuristic to be more expensive and less effective in practice than the
other two heuristics. The program of Subramanian and Feigenbaum takes advantage
of the independence (called ‘‘factorability’’) of a subset of the features rather than
requiring all features to be independent as PREDICTOR does (Subramanian and
Feigenbaum 1986). Future versions of PREDICTOR should possess a heuristic
detecting partial independence. Preliminary tests indicate that PREDICTOR performs
well (though the results are not as general) using only cohesion and irrelevance, even
when dependencies exist, because cohesion and irrelevance are intra-feature rather
than inter-feature generalizations. (See Section 6.) The next subsection describes
further work with the cohesion and irrelevance heuristics.

3.6. Cautious and uncautious heuristic modes

Different problem-solving situations may require different degrees of cautious-
ness for generalizing hypotheses. For example, in our scenario of a robot that fixtures
parts in an automated factory, suppose there is another robot that inspects parts. The
inspection robot has two bins: one for good (i.e., fixturable) parts, which get tran-
sported to the robot that places the parts into the milling machine fixture, and another
bin for bad (i.e., not fixturable) parts, which are thrown out. The inspection robot gets
raw parts and puts those parts that it believes to be good or bad into their proper bins.
We assume it gets feedback very quickly if a part is placed in the wrong bin. If the
inspection robot has no reasonable basis for selecting one of the bins (no prediction),
it must run a very time-consuming series of tests that yields further information help-
ful for deciding. One can now imagine two extremes of penalties for overgeneraliza-
tion (that can result in prediction errors). In the first case, the parts are expensive and
breakable. There is a high cost associated with incorrectly predicting that either a part
is good or that it is bad. If the robot incorrectly predicts the part is good then it could
be broken. On the other hand, if the robot incorrectly predicts the part is bad then a
perfectly good part will be discarded. Cautious generalization is appropriate, there-
fore, and when the rationale is weak for predicting good or bad, the robot should run
the extra tests (assuming they do not risk breakage). On the other hand, for the second
case, suppose the parts are inexpensive and not fragile, yet production time is critical.
In this situation, there is a small penalty for overgeneralization and the inspection
robot could minimize production time by generalizing more and allowing more pred-
iction errors. Increased generalization of the two hypotheses about good and bad parts
would avoid the extra tests and cause learning to proceed more rapidly.

PREDICTOR is capable of selecting the cautiousness of its learning by choosing
the strictness of the preconditions for firing its generalization operators. The
irrelevance heuristic, as well as the cohesion heuristic, may be used in one of three
modes. In the first mode, the full heuristic condition is fired, which is described
above, and tests each instance description of the hypothesis (which is a hypothesis
disjunct if hypotheses are in DNF). This full heuristic condition checks to see if all
values of the feature being checked for irrelevance or cohesion can be substituted for
the original value in the instance description without describing an object of the
wrong class. This mode is the most cautious. It results in the fewest subsequent pred-
iction errors. The second mode, like the first mode, checks each instance description
of the hypothesis. However, in the second mode only a subset of the values of the
feature in question is tested rather than all values. The third mode, which applies only
to DNF hypotheses, ignores the remaining instance description (values of features
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other than the one being tested). For example, the third mode of the irrelevance
heuristic states that if any two disjuncts (which may differ in their values of features
other than f) of the same hypothesis have different values for feature f, then feature f is
considered irrelevant and dropped from all disjuncts of both hypotheses. This is the
least cautious of the modes (called the ‘‘two-disjunct’’ mode). Nevertheless, this is
quite similar to heuristics that have been used in other inductive systems (e.g., Wins-
ton (1975); Mitchell (1978)). The preference between these modes, as well as the
number of children to be tested if the second mode is chosen, is decided in PREDIC-
TOR by metaheuristics. These metaheuristics make the selection based on a user-
input penalty for prediction errors. The metaheuristics also consider the number of
values to be tested when deciding if the first mode is appropriate.

Heuristics used in the first and most cautious mode offer a special benefit. They
are consistency-preserving. That is, they are guaranteed not to violate the disjointed-
ness (consistency) of SELECT and INHIBIT (though they do not guarantee future
predictions will be correct).9 Since axiom [A5] holds, if consistency between these
two hypotheses is maintained, then it is guaranteed that the SELECT hypothesis will
match none of the known negative instances and the INHIBIT hypothesis will match
no known positive instances. Consistency-preserving generalization heuristics
guarantee that consistency will be maintained whenever they are used for generalizing
a hypothesis to include a new instance that matches neither hypothesis. Therefore,
there is no need to reconsult previous instances or even to check the disjointness of
SELECT and INHIBIT immediately after generalizing with consistency-preserving
heuristics. When heuristics that are not consistency-preserving are used, such as the
second and third modes of the cohesion heuristic, a language-specific hypothesis con-
sistency check is made by PREDICTOR.

Avoidance of a consistency check is a desirable property because of the compu-
tational savings. Like PREDICTOR, the Candidate Elimination Algorithm of
Mitchell (1978) also avoids rechecking instances and maintains consistency. How-
ever, the Candidate Elimination Algorithm does not combine this advantage with the
use of explicit heuristics for biasing the generalization.

This section has concentrated on bias determined by the generalization heuris-
tics. The next section presents other learning strategies of the system that test the
same biasing assumptions as the generalization heuristic conditions.

4. Bias and active learning, analytical learning, error resolution

We now discuss PREDICTOR’s three methods, besides generalization heuris-
tics, for using the assumptions that bias the learning. The first two, active learning and
analytical learning, examine the bias prior to generalizing. The third, error resolution,
may re-examine the biasing assumptions after generalization has occurred.

4.1. Active Learning

Although the system has a choice of which mode to use for the generalization
heuristics, the strictest (most cautious) mode of checking the conditions is very useful
for formulating system requests for future examples in order to increase the speed of
____________________________________

9 See the appendices for formal proofs that the full irrelevance and independence heuristics are consistency-
preserving. We have not included the proof associated with the cohesion heuristic because is is quite similar to the
proof for irrelevance.
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induction. Those examples which have not yet been seen, but which would satisfy one
of the full generalization heuristic conditions if they were of the desired class, are pro-
posed as examples to try next. For example, if a small cube and a large brick are posi-
tive examples, PREDICTOR suggests trying a small brick and a large cube. The
motivation for this suggestion is that if the proposed examples are both positive, then
convert-form can be immediately applied. We have run tests and demonstrated that
using the conditions of the heuristics to guide example selection can significantly
improve learning. The effectiveness of this approach, however, becomes more limited
as the number of possible values for each feature becomes large. PREDICTOR only
enables active experimentation when the cost (based on the number of feature values)
is below a prespecified level.

There exist a number of variations of active learning that are being investigated
by researchers in machine learning. Some systems devise and perform experiments in
order to detect reasoning errors (e.g., Carbonell and Gil (1987)). Others use active
learning for selecting the next instance(s) in an incremental setting (Sammut and Ban-
erji 1986; Porter and Kibler 1986). The role of active learning in PREDICTOR is the
latter. Just as bias may occur prior to or after forming alternative hypotheses, active
learners that select a next instance may or may not form the potential hypotheses
before selecting desired instances. For example, the program of Sammut and Banerji
(1986) forms potential generalizations and then suggests instances to try next whereas
Porter and Kibler’s (1986) program, like PREDICTOR, generates examples prior to
generalizing.

A learner that can take an active role in proposing examples has the potential to
significantly reduce the time required to learn a concept. Rather than wading through
a large number of instances with low information content, active learners can process
high information examples during the early stages of learning.

4.2. Analytical Learning

In addition to active learning, PREDICTOR also employs a variant of a tech-
nique called explanation-based generalization (EBG) (Mitchell et  al. 1986), which is
a special case of explanation-based learning (EBL) (DeJong and Mooney 1986).
Whereas empirical learning methods (which are inductive) detect similarities and
differences between numerous examples in order to refine hypotheses, explanation-
based learning (which is deductive) uses a domain theory to learn from very few
instances. EBG is able to generalize from a single instance by using the domain theory
to prove that the instance is a member of the target concept. The proof is then gen-
eralized to find the weakest precondition under which the instance satisfies the con-
cept. To perform EBG, a domain theory needs to be augmented with the additional
information specifying which instance features are considered operational (easily
measured or detected). The hypothesis resulting from explanation-based learning will
include a subset of the operational features.

There are three different ways in which systems have combined empirical and
analytical methods. Some programs, for example Pazzani’s (1988), use empirical
learning to augment and repair problems with EBL, such as an incorrect or incomplete
theory. These systems focus on EBL. For other programs, such as that of Carpineto
(1988), the focus is on the empirical learning. EBL provides a justified focus on the
relevant features of examples. The third way in which empirical and analytical
methods are combined is by giving them equal priority. In Sims (1987), for example,
an agenda calls both empirical and analytical tasks as needed.
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The focus in our system is on empirical learning and, in particular, on the bias.
Only partial information is used from EBL. Similarly to Carpineto (1988), we are
interested in gleaning feature relevance information using the domain theory. How-
ever, we also use the domain theory to decide feature cohesion and independence
information. Unlike previous EBL programs, the parts of the domain theory relevant
to both the target concept and the negation of the target concept are explored. This is
not only consistent with the use of both SELECT and INHIBIT hypotheses, but it is
also considered important if the domain theory is incomplete. Using a theory about
the ability of parts to be fixtured, one may, for example, be able to prove that the shape
of an object causes its inability to be fixtured but be unable to prove that its shape
causes it to succeed in being fixtured. The feature ‘‘shape’’, in this case, should not be
dropped from the hypotheses for learning about what can be fixtured, since it is
relevant.

The Prolog implementation of EBG that is used in PREDICTOR is a variation of
Hirsh’s program described in Kedar-Cabelli and McCarty (1987). Modifications are
as mentioned above. PREDICTOR proves that an instance can be distinguished with
respect to target concept membership. A list of relevant, operational features are
extracted by the EBG process. Also extracted is the appropriate height within the
generalization tree of descriptive terms. For example, suppose the system is learning
the concept ‘‘fixturable’’. The initial, operational features provided are ‘‘size’’,
‘‘color’’, ‘‘material’’, and ‘‘shape’’ of objects and all features are operational. Suppose
the first instance, block1, is a large, blue, steel sphere. If the system can derive
(deductively) from the domain theory that an object’s shape is related to its ability to
be fixtured, and that curved-solids are not fixturable (and does not relate color or
material to whether or not an object is fixturable), then the results of PREDICTOR’s
version of EBG might be ‘‘[val(size,block1,large), val(shape,block1, curved-solid)]’’,
where ‘‘curved-solid’’ is the parent of ‘‘sphere’’ in the generalization tree of terms.
Generalization (variabilizing the name of the instance) may either be done by EBG or
by the empirical learning. Since this step has already been incorporated within our
empirical learning, we omit the generalization step of EBG. If the feedback states that
block1 is negative, the INHIBIT hypothesis would now be initialized to
INHIBIT: { x | (val(size,x,large) & val(shape,x,curved-solid)) }.

The induction techniques described in this paper can then be used to modify the
hypotheses based on empirical evidence. Unless the results of EBG are subsequently
blamed for an error, future SELECT and INHIBIT hypotheses continue to use the
EBG information about the irrelevance of all features except ‘‘size’’ and ‘‘shape’’ as
well as the generalization to the term ‘‘curved-solid’’. Independence information will
be obtained from the domain theory as a side effect of using our EBG version because
if all features are independent, then a single feature suffices for describing the target
concept. Therefore, the resulting EBG list (if the domain theory is trustworthy) will
contain a single feature. Although most implementations use EBG on one instance
only, PREDICTOR may use it on multiple instances. The reason for this is that multi-
ple instances may be required in order to get cohesion information for all feature
values. PREDICTOR uses the domain theory to get cohesion information for every
instance for which this information has not already been learned. For example, sup-
pose in the above example that the second instance is a small, blue, copper brick that
is positive. Then a second invocation of EBG might result in

SELECT: { x | (val(size,x,small) & val(shape,x,prism)) }.

Realistically, most domain theories are not perfect. Imperfect theories can cause
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prediction errors. Currently, PREDICTOR leaves the decision to the user whether to
blame the domain theory and reject the EBG results if an incorrect prediction occurs.
Future versions of the system should include more sophisticated solutions.

4.3. Error resolution

When PREDICTOR makes a prediction error, one of two problems is the cause
of this error. Either the instances are inconsistent, i.e., instances with identical attri-
butes are classified differently (one positive, one negative), or one or both of the
hypotheses is overly general. When an error occurs, PREDICTOR first checks if the
error is due to instance inconsistency. If not, it is assumed that the error is caused by
overgeneralization of the hypothesis which matches the newest instance, for which an
erroneous prediction was made. We discuss PREDICTOR’s methods for handling
inconsistent instances first, then its methods for handling overgeneralization.

Inconsistent classification of instances can be caused by noise or language
insufficiency. PREDICTOR asks the user whether noise is the cause of the incon-
sistency. If not, a request from the user for new object attributes is PREDICTOR’s
remedy for language insufficiency. Note that this is an example of shifting the bias by
augmenting the hypothesis language. If the user states that noise has caused the

PROCEDURE learn;
IF more unprocessed instances THEN

accept a new instance i;
IF i matches SELECT or INHIBIT [will not match both] THEN

IF correct_prediction THEN learn
ELSE [wrong_prediction]

IF inconsistent instances THEN
IF due to noise THEN remove noisy instances
ELSE [not noise] add a new feature ENDIF
learn

ELSE [overgeneralization of SELECT or INHIBIT]
backtrack until consistency achieved;
[fail this call to ‘‘learn’’ and select a
different generalization heuristic
on a previous recursive call]
learn ENDIF

ENDIF
ELSE [No match]

IF i is positive
THEN fire a generalization heuristic to generalize SELECT

ELSE [i negative]
fire a generalization heuristic to generalize INHIBIT ENDIF

learn
ENDIF

ENDIF
END

FIG. 2. SELECT-INHIBIT algorithm for concept learning.
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inconsistency, then PREDICTOR discards both the newly-introduced instance and the
previous one which it contradicts (for which backtracking may be required). This
solution is inadequate for more than a minimal amount of noise. For quite noisy data,
we plan to eventually add statistical versions of the generalization heuristics.

If PREDICTOR decides that overgeneralization has caused the current predic-
tion error, then an error resolution method called ‘‘directed backtracking’’ is
employed. Directed backtracking consists of two steps: locating the error and back-
tracking through the space of hypotheses. During the error locating phase, each of the
currently-held biasing assumptions is retested. The full conditions for cohesion (with
irrelevance as a special case) and independence are retested, given the new set of
instances. This testing procedure is focused, however. Only those generalization
heuristics that fired, and are applicable to the current, contradictory instance, are
retested. The error detection strategy for cohesion perturbs each of the feature values
of the new instance in its instance description. (See Porter and Kibler (1986) for a dis-
cussion of perturbation.) If the value of feature f for the new instance is altered and an
instance of the opposite class is described, then cohesion was incorrectly assumed to
hold for f. This test may require calls to an oracle (e.g., the user) to request the class
of system-formulated examples if the instances seen so far are insufficient to implicate
an assumption.10 The error detecting strategy for independence also focuses on the
feature values of the new instance as well as the feature values of previous instances.
It rechecks independence given the new feature values.

Shapiro has also developed an algorithm, called contradiction backtracing, for
isolating a faulty hypothesis (Shapiro 1981). (PREDICTOR’s biasing assumptions
can be considered meta-level hypotheses.) Shapiro’s algorithm uses resolution, fol-
lowed by a trace of the resolution steps with substitutions performed, in or order to
locate an erroneous hypothesis. An oracle is queried to learn the truth of ground sen-
tences. Although both techniques query an oracle and locate faulty hypotheses, they
also differ. Contradiction backtracing uses resolution with several hypotheses to iso-
late a single, bad hypothesis. PREDICTOR’s method of error resolution, on the other
hand, reevaluates each relevant hypothesis separately with the new data to determine
if the hypothesis still holds. Furthermore, contradiction backtracing assumes the user
will make the appropriate edit to eliminate the error. PREDICTOR automatically
remedies its errors by backtracking to the time at which the first of its erroneous
assumptions was invoked.

The seconds stage for PREDICTOR’s error resolution is to backtrack through
the space of hypotheses. If an assumption is proved wrong, the assumption is
retracted, the corresponding generalization heuristic is suppressed, and the system
backtracks to the time when this heuristic fired and reprocesses the instances from that
point. (Recall that at each time step, a new instance is accepted and a generalization
heuristic may fire.) When instances are reprocessed, a different sequence of generali-
zation heuristics can fire than the original sequence. The sequence variation begins
when an alternative heuristic to the suppressed heuristic is fired.

PREDICTOR uses the same error resolution methods as described above to rees-
tablish hypothesis disjointedness. However, unlike the case of a wrong prediction,
restoring hypothesis consistency may require testing more than one instance.

____________________________________

10 We are currently modifying the directed backtracking for situations where an oracle is unavailable.
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Figure 2 summarizes the manner in which PREDICTOR’s error resolution
methods fit into its learning algorithm. The next section presents a partial trace of the
learning algorithm in action.

5. Partial program trace

To better explain the operation of PREDICTOR, we present a partial trace of the
program in execution. User input, in the form of routine calls and responses to system
queries, are in italics. Comments are in braces. It is assumed that input is from a file
of randomly-generated examples and that the generalization tree of Figure 1 is used.11

initialize(fixturable). {‘‘fixturable’’ is the target concept}
What are all object features? [size,material,shape]
What is the penalty level for prediction errors? 5 {The range of possibilities is 1 to 10.}
The following is the order in which heuristics will be tried: [cohesion-

heuristic(material),cohesion-heuristic(size),cohesion-heuristic(shape),independence-heuristic]
{Generalization heuristics are initially ordered by the system according to error penalty and
cost of application. The order in this example, though, was chosen in order to best illustrate
the heuristics.}

Do you wish to change this order? n
learn(file, no-ebg, fixturable).

{This calls the learning program. Parameter ‘‘file’’ specifies the input mode,‘‘no-ebg’’ selects
the option of not using EBG}

Do you want to pause? n
{System inputs from file the block ‘‘sbc’’, which is a small, bronze cube. Note that the block
name and feature information could alternatively be entered directly rather than from a file if
that were the specified input mode.}

No prediction for sbc.
Is sbc a negative or positive example of fixturable? positive
Prediction-feedback comparison yields: guess.
Added a new instance description to the positive hypothesis:

select(X, fixturable) ←
val(size,X,small),
val(material,X,bronze),
val(shape,X,cube)

{The target concept is made a parameter of SELECT in the implementation so that the system
can eventually be extended to learn multiple concepts.}

Condition for cohesion-heuristic(material) unsatisfied.
Condition for cohesion-heuristic(size) unsatisfied.
Condition for cohesion-heuristic(shape) unsatisfied.
Condition for independence-heuristic(select) unsatisfied. {This heuristic is implemented to

check and convert each hypothesis separately.}
A good set of examples to try is the following: {Two examples are suggested by PREDIC-

TOR.}
[[val(size,X,small),val(material,X,brass),val(shape,X,cube)],
[val(size,X,small),val(material,X,steel),val(shape,X,cube)] ].

{If some of the recommended examples do not exist, but the rest are positive, the user can
input the nonexistent examples as though they were positive.}

Do you wish the examples to be input automatically? y
{The system now finds the first examples in the file input which match these descriptions and
inputs them immediately. They are positive.}
____________________________________

11 Minor changes have been made for the purpose of readability. Furthermore, for the sake of brevity, the
directed backtracking mechanism is not shown here.
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.

.

.
Successfully applied cohesion-heuristic(material).
New hypothesis is:

select(X, fixturable) ←
val(size,X,small),
val(material,X,alloy),
val(shape,X,cube)

Do you want to pause? n
A good set of examples to try is the following:

[[val(size,X,small),val(material,X,element),val(shape,X,cube)] ].
Do you wish the examples to be input automatically? y

{The system now inputs a small, copper cube since it is the first instance in the randomly-
generated data set that fits the above description. It is positive. A small, aluminum cube is then
suggested and, since it is input and is positive, the generalization to element is made.}

.

.

.
Successfully applied cohesion-heuristic(material). {Since the parent of ‘‘alloy’’ and ‘‘ele-

ment’’ is ‘‘anymaterial’’, the feature ‘‘material’’ is dropped}
New hypothesis is:

select(X,fixturable) ←
val(size,X,small),
val(shape,X,cube)

Do you want to pause? n
A good set of examples to try is the following:

[[val(size,X,large),val(shape,X,cube)] ].
Do you wish the examples to be input automatically? y

{A large, brass cube is now input since it is the first instance to satisfy the description. It is
positive.}

.

.

.
Successfully applied cohesion-heuristic(size).
New hypothesis is:

select(X,fixturable) ←
val(shape,X,cube)

{The system now recommends inputting a brick in order to generalize ‘‘shape’’. The user
rejects this suggestion. Instead, the user lets the system input the next instance in the
randomly-generated sequence. This instance happens to be ‘‘lsc’’, a large, steel cube. Block
‘‘lsc’’ is input now.}

Predicts lsc is positive.
Is lsc a negative or positive example of fixturable? positive
Prediction-feedback comparison yields: correct-prediction

.

.

.

The above scenario demonstrates the cycle in which an instance is input, a pred-
iction is made, feedback is accepted from the user, then the two are compared. The
comparison result could be ‘‘guess’’, ‘‘correct-prediction’’ or ‘‘wrong-prediction’’.
Hypotheses are updated accordingly. Although in the above example, we only update
the SELECT hypothesis, the INHIBIT hypothesis is updated in an identical manner.
Furthermore, when the generalization tree is climbed for SELECT, it is simultaneously



19

climbed for INHIBIT.

6. Results

We have run empirical tests of PREDICTOR’s performance in order to gain
deeper insight into the effectiveness of its approach to bias. The testing has been done
to satisfy three different goals. The first goal is to compare the effectiveness of the
individual heuristics and modes. The second goal is to determine the effectiveness of
the directed backtracking. Our third goal is to compare explicit and implicit bias. For
all tests, we have assumed no noise, no new features are introduced, and the
explanation-based learning capability is not used.

Ten randomly-generated data sets of 50 instances each are used for all experi-
ments. The feature hierarchies are shown in Figure 1. The concepts that are learned
are descriptions of raw, manufacturing parts that are fixturable in a particular milling
machine. Three concepts are learned. For concept A, prisms are fixturable and
curved-solids are not. Concept A is the easiest to learn because independence of
features with respect to target concept membership holds, as well as cohesion for all
features. Prisms and cylinders are fixturable objects for concept B. Parts of any other
shape will not hold in the fixture. For concept C, small bricks and large cubes can be
fixtured, but objects with any other combination of features fail because the fixture has
a limited range of adjustability. Concept C is the most difficult to learn because it con-
tains a dependency with respect to target concept membership and cohesion fails to
hold for values of two of the features. ‘‘Material’’ is irrelevant to determining fixtura-
bility for all three concepts.

The graphs of PREDICTOR’s performance are in Figures 3 through 7. Percen-
tages are based on instances seen so far. When no prediction is made, this is not con-
sidered correct but is included in the total number of opportunities to predict when
calculating percentages. In order to present a more detailed view of PREDICTOR’s
errors and their resolution, instead of showing a graph of percent wrong predictions,
we specify the average number of predictions. If no errors occur, the system makes 50
predictions corresponding to the 50 instances. Any additional predictions are associ-
ated with backtracking.

Results are averaged over the number of runs shown in each graph. We shall
now explain why the graphs differ in the number of runs even though there are 10
unique data sets. The number of runs exceeds 10 on some graphs of PREDICTOR’s
performance because rather than using metaheuristics for ordering the application of
generalization heuristics, we average over two different orders. The reason some
curves are associated with fewer than the expected number of runs (e.g., Figure 6) is
that we put a computational time limit on the learning (which is 500 predictions). Any
run exceeding this limit is aborted and not included in the curves. A small number of
runs indicates difficulty learning the concept, i.e., an excessive amount of backtrack-
ing has occurred.

We first describe our comparison of the heuristics and their modes. Figures 3, 4,
and 5 show the performance of the first and most cautious mode of the cohesion (with
irrelevance as special case) and independence heuristics. Figure 6 shows the perfor-
mance of the third and least cautious mode of the cohesion heuristic, which we call
the ‘‘two-disjunct’’ heuristic. For this portion of the testing (Figures 3 through 6),
chronological backtracking is used rather than directed backtracking. In Figure 2, it is
shown that backtracking is implemented by unwinding the recursive calls (where each
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call is associated with a new instance). Directed backtracking proceeds backwards to
a specific time and instance. Instances are reprocessed from that point and a different
sequence of generalization heuristics is tried. The chronological backtracking, on the
other hand, proceeds one level at a time and is similar to the depth-first search back-
tracking described in Nilsson (1980). In addition to using chronological backtracking,
no hypothesis consistency checks are made for the runs shown in Figures 3 through 6.
(None are needed for the cautious modes.) The reason for using chronological back-
tracking and omitting consistency checks is that we would like to first compare the
heuristics by themselves, using primitive error resolution methods, then we wish to
study the effect of adding more sophisticated error resolution techniques. Active
learning is used with every run of PREDICTOR. Prior testing has shown that cautious
heuristics rarely fire without active learning.

The best overall performance of Figures 3 through 6 seems to be associated with
the full cohesion heuristic. In fact, the cohesion heuristic alone outperforms its com-
bination with independence. One problem with the independence heuristic occurs
when it is combined with cohesion. If early instances are deceptive, and the indepen-
dence heuristic fires, the cohesion heuristic is easily satisfied and incorrect generaliza-
tions proceed rapidly. If the independence heuristic is used by itself, it does not gen-
eralize sufficiently. We are currently investigating improvements to the independence
heuristic as discussed in Section 3.

The reason the cautious mode of the cohesion heuristic far outperforms the
uncautious mode (Figures 3, 6) on concepts B and C is that the test for cohesion in the
latter is insufficiently rigorous. In Figure 7, the rigorous directed backtracking
mechanism as well as hypothesis consistency checks are combined with the least cau-
tious (two-disjunct) heuristic mode. We do not show the graph for the full cohesion
heuristic with directed backtracking because it is quite similar to Figure 3. The major
difference for the cohesion heuristic when the directed backtracking replaces chrono-
logical backtracking is that the average number of predictions is reduced from 86 to
55. With directed backtracking added, the difference between the errors of the full
cohesion and two-disjunct heuristics is reduced. The average number of errors for full
cohesion on concept C is one and for two-disjunct on concept C is three (not shown in
graphs). Nonetheless, although the difference in number of errors between two-
disjunct and full cohesion is not large, for some applications this difference may be
critical. According to our testing so far, the two-disjunct heuristic combined with
directed backtracking seems to produce the highest and most consistent success rate
of any combination. The small magnitude of the difference between the three curves
in Figure 7 is attributable to PREDICTOR’s ability to successfully handle different
data characteristics using flexible, explicit bias.

Our final goal is to contrast PREDICTOR’s explicit bias with the implicit bias-
ing method of another system. The system chosen to depict implicit bias is CEA1,
which implements the well-known Candidate Elimination Algorithm (CEA) using the
algorithms of Mitchell (1978). CEA1 implements the two-disjunct heuristic and the
Version Spaces representation for concepts as described in Mitchell (1978). The gen-
eralization tree of Figure 1 is used. The Version Spaces representation takes advan-
tage of the partial ordering of hypotheses and compactly denotes all hypotheses con-
sistent with the instances (and expressible in the language) by the set of maximally
general hypotheses (G boundary) and the set of maximally specific hypotheses (S
boundary). CEA1 conducts a pair of breadth-first searches through the space of
hypotheses by refining the S and G boundaries based on new instances. When a
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FIG. 3. Cohesion heuristic.
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FIG. 5. Cohesion and independence.
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FIG. 7. Two-disjunct, directed backtracking.
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FIG. 4. Independence heuristic.
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FIG. 6. Two-disjunct heuristic.
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FIG. 8. CEA1.
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positive instance is seen, the S boundary is generalized to the most specific generali-
zation consistent with the new instance. Likewise, if a negative instance is encoun-
tered then the G boundary is specialized by the least amount possible. Instead of
choosing between heuristics, the single, most specific generalization is always used.
With CEA1, the two-disjunct heuristic is implemented implicitly for the S boundary
because the most specific generalization CEA1 can make when a positive instance
and one of the S boundary elements have different values for a feature is to climb the
generalization tree to the immediate parent of the differing values. When the S and G
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boundaries coincide, the concept has been completely learned. CEA1 is a deductive
algorithm. No backtracking is used and so instances need not be saved. An error
occurs if the S and G boundaries overlap.

The results of using CEA1 to learn concepts A, B, and C are shown in Figure 8.
During initial learning, CEA1’s performance differs from that of PREDICTOR
because CEA1 predicts on every instance and always begins with a positive
instance.12 Although CEA1 performs very well learning concept A, it is unable to
learn either B or C. The curves do not appear because the S and G boundaries over-
lapped on every trial. The problem is that cohesion does not hold but the generaliza-
tion operator employed by CEA1 assumes cohesion does hold. Since this assumption
is fixed and implicit, CEA1 cannot extricate itself from this problem. There are two
possible changes to CEA1 that would resolve the problem.

One solution to CEA1’s problem is to alter the hypothesis language. STABB, a
program by Utgoff that is an extension of CEA, could augment the hypothesis
language by adding new terms (Utgoff 1986). Although this is one important method
for systems to shift their bias, if learning new terminology is the only method for bias
alteration, then the system will soon become cluttered with many useless terms. For
example, concept B maintains that spheres and cones are negative but cylinders are
positive. (See Figure 1.) If it is discovered while learning concept B that cohesion
does not hold for curved-solids, it may be more desirable to recall (as PREDICTOR
does through backtracking) that spheres and cones are negative but cylinders are not
than to invent a new term for spheres and cones.

A second way to solve CEA1’s problem would be to alter its method of generali-
zation. Either its most specific generalization operator could be changed or it might
use a generalization heuristic. Suppose that instead of climbing the generalization
hierarchy, the operator used by CEA1 takes the disjunction of instance descriptions
with feature values not generalized. Then CEA1 would never generalize. Suppose
instead that it generalized by forming the internal disjunction of feature values. Then
a concept like concept C, which contains a feature dependency, could never be
learned. A reasonable alternative would be to embed a rigorous version of the cohe-
sion heuristic in the system in order to thoroughly check for cohesion prior to general-
izing. Although this would solve the problem, flexibility would still be missing.
When the number of feature values is large, this can be a costly heuristic to apply. We
feel it is preferable to allow the system the option of selecting between a cautious
heuristic and a less costly heuristic that is coupled with a rigorous and effective back-
tracking strategy. This can only be done with a flexible system using an explicit
representation of the bias.

7. Related work on bias

As mentioned in the introduction, there are three major methods for biasing
induction from examples: restricting the language, testing, and screening. PREDIC-
TOR concentrates on the third technique. The systems of Winston (1975), Schlimmer
and Granger (1986), and Porter and Kibler (1986) also use the third method. None of
these other systems, though, use the definitions of biasing assumptions to test whether
they hold. None of the systems varies the level of cautiousness of bias testing.
____________________________________

12 The small peak is due to the excess of negative instances and the likelihood that the partial match algorithm
predicts negative on the second instance.
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Finally, the first two systems are passive learners, and analytical learning is not used
by any of them. PREDICTOR is unique because it gathers information by both active
learning and by traversing a domain theory for the purpose of gaining information to
bias empirical induction.

Although PREDICTOR’s biasing method offers advantages, more work needs to
be done as described in the next section.

8. Future work

Four major directions are planned for future research. The first two are exten-
sions to the current implementation. First, unlike programs such as STAGGER
(Schlimmer and Granger 1986), PREDICTOR has only a primitive ability to handle
noise. Rather than addressing noise as is currently done, we would like to develop
statistical versions of the generalization heuristics and keep both the statistical and
nonstatistical versions in the system. A metaheuristic could be implemented that
would detect noise and decide which version of the heuristics is appropriate based on
the current data. Furthermore, the issue of noise and a weak domain theory should be
addressed.

The second proposed extension is to increase PREDICTOR’s ability to alter its
biases. The system currently has a couple of metaheuristics, such as the one which
selects between the different modes of the heuristics. More metaheuristics are being
added. It would eventually be desirable to have these metaheuristics open to
modification by the system. Performance feedback could be used to generate positive
and negative examples for learning at this level, as is done in the system VBMS,
described in Rendell et  al. (1987). Although VBMS selects between full induction
algorithms rather than generalization operators, this idea could also be applied to our
heuristics for selecting generalization operators.

Another direction for future research is to continue to prove theoretical results
like the consistency property described in this paper. Much of the literature on the
theory of induction addresses issues such as completeness, convergence rate, and

computational efficiency of the induction algorithms in addition to their consistency.13

(See Gold (1967), Shapiro (1981), and Valiant (1984).) Furthermore, Haussler has
done important work in the area of quantifying inductive bias (Haussler 1988). We
would like to analyze PREDICTOR’s learning algorithms along similar dimensions to
those addressed in the literature.

The fourth research direction will consist of further comparisons of the three
biasing methods. It is important that we determine the type of data and concepts for
which each of these methods is most appropriate.

9. Summary

Empirical induction may be biased by restricting the hypothesis language, by
testing, or by screening. PREDICTOR concentrates on the third technique. PREDIC-
TOR unifies generalization, active learning, and error resolution, using the common
theme of explicit assumptions and corresponding tests of these assumptions. Further-
more, explicit bias enables PREDICTOR to test its assumptions while varying the
degree of rigor of its tests. Although we have only begun to explore the implications
____________________________________

13 If all possible combinations of all feature values appear in the instances then the concept is guaranteed to be
learned. However, this would be true for any consistent learner.
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of explicit bias, initial results are encouraging.
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Appendix A. Consistency requirement and definition of consistency-preserving

For appendices A, B and C, we assume that for all t, there is no instance kept in
I+(t) whose description is identical to that of an element of I−(t).

SELECT-INHIBIT Consistency Requirement, or SIC(t):
( SEL (t) ∩ INH (t) ) = ∅.

Definition of consistency-preserving:
A heuristic, G, is said to be consistency-preserving if for each t such that SIC(t) and
CONDG hold, SIC(t+1) also holds, where SEL(t+1) and INH(t+1) are the results of
applying OPG to SEL(t), INH(t), and i(t).
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Appendix B. Irrelevance heuristic

This appendix contains a formal definition of the irrelevance heuristic and a
proof that this heuristic is consistency-preserving. In order to simplify (shorten) the
expressions, we replace val(r,x,v) with r(x,v) in appendices B and C.

B1. Irrelevance heuristic condition

Let L(t)=(SEL(t) ∪ {i (t)}) or L(t)=(INH(t) ∩ {i (t)}
_____

) if i is positive. Let

L(t)=(INH(t) ∪ {i (t)}) or L(t)=(SEL(t) ∩ {i (t)}
_____

) if i is negative. Furthermore, we
define {r 1,...,rn} to be the set of features considered relevant as of time (t - 1). Let 1 ≤
i ≤ n, where i is the subscript used in the following.
Then, CONDIRR (ri,C,t) →←

((∀v 1,...,vn)(((∃x ∈ L (t))(r1(x,v 1) &...& rn(x,vn))) →
((∀wi)(∀y)((r 1(y,v 1) &...& ri(y,wi) &...& rn(y,vn)) → (y ∈ L (t)))))).

The full condition is tested if every wi in the codomain of feature ri is checked.

B2. Irrelevance generalization operator

Assume SEL (t) = { x |  α1(x) } and INH (t) = { x |  α2(x) }. Let βr(i) | i
x be the

description of a new instance i(t) in which relation name r is omitted and in which
variable x is substituted for i everywhere in the description. Furthermore, let αk

r(x) be
identical to αk(x) except that relation name r is omitted (and k is 1 or 2). Then the
generalization operator, OPIRR (r,C,t), will result in two of the following (based on the
class of i(t)):

SEL (t +1) = { x | ( α1
r(x) v βr(i) | i

x ) } if i positive

INH (t +1) = { x | ( α2
r(x) & not(βr(i)) | i

x ) } if i positive

SEL (t +1) = { x | ( α1
r(x) & not(βr(i)) | i

x ) } if i negative

INH (t +1) = { x | ( α2
r(x) v βr(i) | i

x ) } if i negative

Note that for all future instances i(t+2),...,i(t+n), introduced at time (t+2),...,time
(t+n), their description will not include feature r either.

B3. Consistency theorem for irrelevance heuristic

Theorem 1: GIRR (r,C,t) is consistency-preserving (when the full condition is tested).
Proof of Theorem 1

We shall prove that for every t, (SEL (t) ∩ INH (t)) = ∅ (SIC(t) holds) after the
irrelevance heuristic has been applied if it holds prior to heuristic application. We
proceed by induction on t.

Base Step: Since SEL (0) = INH (0) = ∅ (by axiom [A4]), SIC(0) holds.

Inductive Step: By inductive hypothesis, assume SIC(t) holds. Assume
CONDIRR (r,C,t) holds. It is necessary to prove that SIC(t+1) holds. In other words,
(SEL (t +1) ∩ INH (t +1)) = ∅.
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Let SEL (t) = { x |  α1(x) } and INH (t) = { x |  α2(x) }.
Assume i(t) is a positive instance (similar argument if negative) and that αi

r(x) is
identical to αi(x) except that relation r is omitted for i = 1, 2. It is necessary to prove

that { x  |  α1
r(x) v βr(i) | i

x ) } ∩ { x |  α2
r(x) & not (βr(i)) | i

x } = ∅.

There are 4 possible combinations for SEL(t) and INH(t):
Case 1: α1 and α2 both include r.
Case 2: α1 includes r but α2 does not.
Case 3: α1 does not include r but α2 does.
Case 4: α1 and α2 both lack r.

By inductive hypothesis, whichever case holds, (SEL (t) ∩ INH (t)) = ∅. Case 4 is
the simplest. If { x  |  α1(x) } ∩ { x |  α2(x) } = ∅, where α1 and α2 do not include r,
then it must be the case that (SEL (t +1) ∩ INH (t +1)) = ∅ since r need not be
removed and since any x satisfying βr is included in SEL and is not included in INH.
Now consider cases 1, 2, and 3. According to the definition of the irrelevance condi-
tion, if the value of r in the description of an object for which the target concept holds
is changed, then the target concept must still hold for any object with this new
description. If this is the case, and (SEL (t) ∩ INH (t)) = ∅, then r must not be neces-
sary for distinguishing whether or not the target concept holds. Instead, there must be
a set of features currently considered relevant, {s 1, s2, ..., sn}, where si  ≠ r for all 1 ≤ i
≤ n, such that the si are sufficient for distinguishing target concept membership.
Therefore, it is possible to generalize SEL(t) and INH(t) to the SEL(t) and INH(t) of
case 4 without losing any information related to goal concept membership. From here
on the proof mirrors that of case 4.

Since consistency holds at time t+1, then by the principle of mathematical
induction GIRR (r,C,t) is consistency-preserving.
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Appendix C. Independence heuristic

This appendix contains a formal definition of the independence heuristic applied
to only one of the hypotheses. This is the form of the heuristic that is implemented in
PREDICTOR. We also prove the consistency theorem for GIND (R,L,t), where L(t) is
(SEL (t) ∪ {i (t)}) if the new instance, i(t), is positive, or L(t) is (INH (t) ∪ {i (t)}) if
i(t) is negative. Although we only prove that the heuristic applied to one of the
hypotheses preserves consistency, it follows that if consistency is preserved for each
hypothesis individually then it is preserved for both. Therefore, it follows from this
section that GIND (R,C,t), the independence heuristic defined in the body of this paper
which modifies both hypotheses, is consistency-preserving.

C1. Independence condition

The independence condition is the following, where L (t) = (SEL (t) ∪ {i (t)}) if
i(t) is positive, or L (t) = (INH (t) ∪ {i (t)}) if i(t) is negative. Let R (t) = {r 1, . . . ,rn}
be the set of all features currently considered relevant. Vi(t) is the set of values of
feature ri  ∈ R (t) which appear in L(t). Subscript i has values 1 ≤ i ≤ n.

CONDIND (R,L,t) →←
((∀ri  ∈ R (t))(∀v 1,...,vn)(((∃x ∈ L (t))(r1(x,v 1) &...& rn(x,vn))) →

((∀wi  ∈ Vi(t))(∀y)((r 1(y,v 1) &...& ri(y,wi) &...& rn(y,vn)) →
(y ∈ L (t)))))).

C2. Independence generalization operator

Let H (t) = SEL(t) if i(t) is positive or INH(t) if i(t) is negative. Let the instance

description of i(t) be β(i) | i
x = (r1(x,vi 1) &...& rn(x,vin)) where n is the number of

relevant features.
If H (t) = {x  |  ((r1(x,v 11) &...& rn(x,v 1n)) v...v (r1(x,vk 1) &...& rn(x,vkn)))}
then
H (t +1) = {x  |  (((r1(x,v 11) v...v r 1(x,vk 1)) v r 1(x,vi 1)) &...

& ((rn(x,v 1n) v...v rn(x,vkn)) v rn(x,vin)))}.

If H(t) = SEL(t), then INH(t+1) = (INH(t) ∩ {β(i) | i
x}

_______

). If H(t) = INH(t), then

SEL(t+1) = (SEL(t) ∩ {β(i) | i
x}

_______

). Also, H(t+2), H(t+3),... are in internal disjunctive

form as well (unless a generalization error is later detected).

C3. Consistency theorem for independence heuristic

We first state and prove a lemma on which a proof of the theorem depends. This
lemma states that the DNF and IDF forms are equivalent if the condition holds.
Therefore, if the condition holds then the form conversion is truth-preserving for the
current hypotheses (though not for future ones).
Lemma 1

Let H1(t) = {x  |  ((r1(x,v 11)  &...& rn(x,v 1n)) v...v (r1(x,vk 1) &...& rn(x,vkn)))}.
If CONDIND (R,H1,t) holds, then for all y, y  ∈ H1(t)) if and only if y ∈ H2(t)), where
H2(t) = {x  |  ((r1(x,v 11) v...v r 1(x,vk 1)) &...& (rn(x,v 1n) v...v rn(x,vkn)))}.



31

Proof of Lemma 1

(→) This case is true in general, even if CONDIND (R,H1,t) does not hold. Let
y ∈ H1(t) and let one of the disjuncts of H1(t) describe y. Then it must be the case
that y  ∈ H2(t) since every feature value of every disjunct of H1(t) appears in the
internal disjunction for that feature in H 2(t). Therefore, y ∈ H1(t) implies y  ∈ H2(t).

(←) Let y  ∈ H2(t) and let γ(y) be a description of y. Let
VALS1(rj) = {v 1j , . . . ,vkj} be all values of feature rj found in the defining condition
for H1(t), where 1 ≤ j ≤ n. Since H 1(t) and H2(t) have the same features and values,
the description of y is composed of some combination of feature values of VALS1(rj)
for all features rj . If CONDIND (R,H1,t) holds, γ(y) implies y ∈ H1(t). This is because
CONDIND (R,H1,t) implies all permutations of feature values for r 1, . . . ,rn still describe
elements of H1(t). To show that this is true, we will take an arbitrary combination of
feature values from VALS1(rj) for all j between 1 and n and show that an object z
satisfying this description is in H1(t). Let δ(z) be a description of z with this arbitrary
combination. If we now change each of these values of features in δ(z) to various
other values from VALS1(rj) for each j, we will eventually describe some element of
H1(t) since for every j, VALS1(rj) was formed from existing feature values found in
the defining condition for H1(t). Now, according to CONDIND (R,H1,t), we can change
each of these values for rj to new values within VALS1(rj) and this newly-produced
description will still describe some element of H1(t). In particular, we can change the
values back to those of δ(z). Therefore, z ∈ H1(t). H1(t) thus has elements described
by every permutation of feature values from VALS1(rj) for all j. Returning to the
proof for y, since every feature value present in γ(y) is also in VALS1(rj), 1 ≤ j ≤ n,
y ∈ H2(t) implies y  ∈ H1(t).

Theorem 2: GIND (R,L,t) is consistency-preserving.
Proof of Theorem 2

We shall prove that (∀t)(SEL (t) ∩ INH (t)) = ∅. We proceed by induction on
t.

Base Step: SEL (0) = INH (0) = ∅ (by axiom [A4]). Therefore, SIC(0) holds.

Inductive Step: Assuming (SEL (t) ∩ INH (t)) = ∅ and CONDIND (R,L,t) holds,
we need to show (SEL (t +1) ∩ INH (t +1)) = ∅. Let the new instance, i(t), be posi-
tive. The argument is similar for i(t) negative. SEL(t) is of the form H 1(t) described
in Lemma 1. So we shall call it SEL1(t). But if SEL2(t) is of the form H2(t) described
in Lemma 1, which is the internal disjunctive form of SEL1(t), then
SEL1(t) = SEL2(t) by Lemma 1. Therefore, (SEL2(t) ∩ INH (t)) = ∅. Since

INH(t+1) = (INH(t) ∩ {β(i) | i
x}

_______

), (SEL2(t) ∩ INH (t +1)) = ∅. Now, the only

difference between SEL(t+1) and SEL2(t) is that the former includes a description of
the new instance, i(t). We assume instances that are kept are consistent. Then the
inclusion of the description of i(t) within SEL2(t) will not violate consistency. There-
fore, (SEL (t +1) ∩ INH (t +1)) = ∅.

Since consistency holds at time (t+1), therefore by the principle of mathematical
induction GIND (R,L,t) is consistency-preserving.


