Agents That Are Adaptive, Predictable and Timely

DIANA FE. GORDON gordon@aic.nrl.navy.mil
Nawval Research Laboratory, Code 551

4555 Owverlook Avenue, S.W.

Washington, D.C. 20375-5337

Telephone: (202) 767-2686

Abstract in the Proceedings of the First Goddard Workshop on Formal Approaches to Agent-Based
Systems (FAABS’00).

1. Introduction

Designers can furnish agents with plans to perform desired tasks. Nevertheless, a designer cannot possibly
foresee all circumstances that will be encountered by the agent. Therefore, in addition to supplying an
agent with plans, it is essential to also enable the agent to learn and modify its plans to adapt to unforeseen
circumstances. The introduction of learning, however, often makes the agent’s behavior significantly harder
to predict. This research is about verifying the behavior of adaptive agents. In particular, our objective
is to develop efficient methods for determining whether the behavior of learning agents remains within
the bounds of pre-specified constraints (called “properties”) after learning. This includes verifying that
properties are preserved for single adaptive agents as well as verifying that global properties are preserved
for multiagent systems in which one or more agents may adapt.

An example of a property is Asimov’s First Law (Asimov 1942). This law, which has also been studied by
Weld and Etzioni (1994), states that an agent may not harm a human or allow a human to come to harm.
The main contribution of Weld and Etzioni is a “ ‘call to arms:” before we release autonomous agents
into real-world environments, we need some credible and computationally tractable means of making them
obey Asimov’s First Law...how do we stop our artifacts from causing us harm in the process of obeying our
orders?” Of course, this law is too general for direct implementation and needs to be operationalized into
specific properties testable on a system, such as “Never delete a user’s file.” This paper addresses Weld
and Etzioni’s “call to arms” in the context of adaptive agents. To respond to the “call to arms,” we are
working toward “Asimovian” adaptive agents, which we define to be adaptive agents that can verify, in a
reasonably efficient manner, whether their adaptation methods will preserve user-defined properties about
their behavior. Such agents will either constrain their adaptation methods, or revise themselves in such a
way as to preserve these properties.

The verification method assumed here is model checking, i.e., determining whether S |= P for plan S
and property P. In a multiagent system, each agent has its own plan. To verify a global property P, the
(synchronous) product is taken of the individual agent plans to form a multiagent plan S, which is then
verified. Model checking global properties of a multiagent plan has time complexity that is exponential in
the number of agents. With a large number of agents, this is seriously problematic. In fact, even model
checking a single agent plan with a huge number of states can be computationally prohibitive. A great
deal of research in the verification community is currently focused on reduction techniques for handling
very large state spaces (Clarke and Wing 1997). Nevertheless, none of these techniques is tailored for
re-verification after learning has altered the system. If we want timely agents, we need something more
efficient than having agents re-verify from scratch every time they learn. The topic of this paper is the
efficiency of re-verification after learning.

Consider how re-verification fits into our overall framework. In this framework (see Figure 1), there are
one or more agents with “anytime” plans, i.e., plans that are continually executed in response to internal
and external environmental conditions. Each agent’s plan is assumed to be in the form of a finite-state
automaton (FSA). FSAs have been shown to be effective representations of reactive agent plans/strategies
(e.g., Burkhard 1993, Kabanza 1995, Fogel 1996).

Let us begin with step (1) in Figure 1. There are at least a couple of ways that the FSA plans could
be formed initially. For one, a human plan designer could engineer the initial plans. This may require

OFFLINE:
(plan —o (1) Develop initial agent plan(s)
— (2) If SITipian or SITmultplans, form multiagent plan
(3) Verify (multi)agent plan
ONLINE: (4) Repair plan(s), if properties not satis fied

agent’s plan

|(5) Learning modifies (multi)agent plan |

EG% IfSIT uitpians, re—(form)multiagent plan

7) Rapidly re-verify (multi)agent plan

(new plan) (8) Choose another learning operator or repair
plan(s), if properties not satisfied

Figure 1. Verifiable adaptive agents.

considerable effort and knowledge. An appealing alternative is to evolve (i.e., learn using evolutionary
algorithms) the initial plans in a simulated environment (Fogel 1996).

Human plan engineers or evolutionary algorithms can develop plans that satisfy agents’ goals to a high
degree, but to provide strict behavioral guarantees formal verification is also required. Therefore, we assume
that prior to fielding the agents, the (multi)agent plan has been verified offline to determine whether it
satisfies critical properties (steps (2) and (3)). These properties can either be expressed in linear temporal
logic, or in the form of automata if automata-theoretic (AT) model checking is done. If a property fails to
be satisfied, the plan is repaired (step (4)). Steps (2) through (4) require some clarification. If there is a
single agent, then it has one FSA plan and that is all that is verified and repaired, if needed. We call this
SITi4gens- If there are multiple agents that cooperate, we consider two possibilities. In SIT,14,, every
agent uses the same multiagent plan that is the product of the individual agent plans. This multiagent plan
is formed and verified to see if it satisfies global multiagent coordination properties. The multiagent plan
is repaired if verification produces any errors, i.e., failure of the plan to satisfy a property. In SIT ,uitpians,
each agent independently uses its own individual plan. To verify global properties, one of the agents takes
the product of these individual plans to form a multiagent plan. This multiagent plan is what is verified.
For SITuitpians, one or more individual plans is repaired if the property is not satisfied.

After the initial plan(s) have been verified and repaired, the agents are fielded. While fielded (online),
the agents apply learning to their plan(s) as needed (step (5)). Learning (e.g., with evolutionary operators)
may be required to adapt the plan to handle unexpected situations or to fine-tune the plan. If STT144ens
or SIT pian, the single (multi)agent plan is adapted. If ST T ,uitpians, €ach agent adapts its own FSA, after
which the product is formed. For all situations, one agent then rapidly re-verifies the new (multi)agent
plan to ensure it still satisfies the required properties (steps (6) and (7)). Whenever (re-)verification fails, it
produces a counterexample that is used to guide the choice of an alternative learning operator or other plan
repair as needed (step (8)). This process of executing, adapting, and re-verifying plans cycles indefinitely
as needed. The main focus of this paper is steps (6) and (7). The novelty of the approach outlined in our
framework is not in machine learning or verification per se, but rather the combination of the two.

Rapid re-verification after learning is a key to achieving timely agent responses. Our long-term goal is
to examine all learning methods and important property classes to determine the quickest re-verification
method for each combination of learning method and property class. Our results include proofs that
certain useful learning operators are a prior: guaranteed to be “safe” with respect to important classes of
properties, i.e., if the property holds for the plan prior to learning, then it is guaranteed to still hold after
learning. If an agent uses these “safe” learning operators, it will be guaranteed to preserve the properties
with no re-verification required, i.e., steps (6) through (8) in Figure 1 need not be executed. This is the
best one could hope for in an online situation where rapid response time is critical. For other learning
operators and property classes our a priori results are negative. However, for these cases we have novel
tncremental re-verification algorithms that save time over total re-verification from scratch.

2. Results

First, let us define the type of machine learning performed by the agents. A machine learning operator
0:S — S’ changes a (product or individual) FSA S to post-learning FSA S’. At the highest level, we
can subdivide the learning operators according to the portion of the FSA that they alter: vertices, edges,
or the transition function 6(v;, a) = v;, which means that for state v; taking action a leads to next state
vj. We have learning operators that delete or add edges or vertices, and some that modify the transition
function — they change the output of this function, i.e., o(S) = S’, where for some state v; of S such that
6(vi,a) = vj, 6(v;,a) = v, in S'. For evolving FSAs (e.g., see Fogel 1996), application of one of these
operators is considered a “mutation.” For a complete taxonomy of learning operators, see Gordon (in
review).

Recall that our objective is to lower the time complexity of re-verification. The ideal solution is to identify
“safe” machine learning methods (SMLs), i.e., machine learning operators that are a priori guaranteed to
preserve properties and require no run-time cost. For a plan S and property P, suppose verification has
succeeded prior to learning, i.e., S |= P. Then a machine learning operator o(S) is an SML if and only if
verification is guaranteed to succeed after learning, i.e., if S” = o(S), then S = P implies S’ = P.

We have several theorems about the a priori safety of machine learning operators. Some very useful
operators are SMLs (e.g., deleting FSA edges); others are not (e.g., adding FSA edges). Nevertheless,
for those operators with negative a priori results, we have developed novel incremental re-verification
algorithms. The algorithms are accompanied by worst-case time complexity analyses, which show their
potential benefit, as well as cpu time comparisons of incremental versus total re-verification under practical
conditions. All of the algorithms show a speedup over total re-verification from scratch after learning, and
in some cases they show a dramatic speedup. As a brief overview, the algorithms are of the following types:

e Algorithms that streamline the formation of the product FSA, for SIT,uitpians. These algorithms
assume that the previously generated product is stored, and they only revise those portions of the
product FSA formed from individual FSA components modified by learning.

e Algorithms tailored for learning and automata-theoretic (AT) verification, and algorithms tailored for
learning and an Invariance-property-specific verification algorithm. Model checking of FSAs typically
begins at “initial states” of the FSA. These algorithms gain efficiency by re-initializing the initial states
to be those states that were modified by learning. With the exception of starting at new initial states,
these algorithms are the same as re-verification from scratch.

e Two incremental algorithms tailored for a specific, but highly useful machine learning operator (Gordon
1998). One is for Response properties and the other is for Invariance properties. Due to their specific
tailoring, these algorithms gain enormous efficiency. For example, the algorithm for Response properties
demonstrated a %—billion—fold speedup over total re-verification from scratch!

3. Applications

For a proof-of-concept of how our overall framework fits together, we have implemented a simple example of
cooperating planetary rovers that have to coordinate their plans. They are modeled as co-evolving agents
assuming STT ,uitpians. By using the a priori results and incremental re-verification algorithms, we have
seen significant speedups.

We are also developing another implementation that uses re-verification during evolution. Two agents
compete in a game, and one of the agents evolves its strategy to improve it. The key lesson that has been
learned from this implementation is that although the types of FSAs and learning operators are slightly
different from those studied previously, and the property is quite different (it’s a check for a certain type
of cyclic behavior), initial experiences show that the methodology and basic results here could potentially
be easily extended to a variety of multiagent applications.

4. Related and Future Work

There is very little in the literature about efficient model checking for systems that change. A notable
exception is the research of Sokolsky and Smolka (1994). However, their research is about re-verification
of software after user edits rather than adaptive agents.

There is a growing precedent for addressing multiagent coordination by expressing plans as automata and
verifying them with model checking (e.g., Lee and Durfee (1997), Burkhard (1993) and Kabanza (1995)).
Our work builds on this precedent, and also extends it — because none of this previous research addresses
efficient re-verification for agents that learn.

Finally, there are alternative methods for constraining the behavior of agents, which are complementary
to re-verification and self-repair. For example, Shoham and Tennenholtz (1994) design agents that obey
social laws, e.g., safety conventions, by restricting the agents’ actions; Spears and Gordon (1999) design
agents that obey physics laws. Nevertheless, the plan designer may not be able to anticipate and engineer
all laws into the agents beforehand, especially if the agents have to adapt. Therefore, initial engineering of
laws should be coupled with efficient re-verification after learning.

Future work will focus primarily on extending the a priori results to other learning operators/methods
and property classes and other plan representations (such as stochastic FSAs), developing more incremental
re-verification algorithms, and exploring plan repair to recover from re-verification failures.

A cknowledgments

This research is supported by ONR N0001497WX20576. I am grateful to Bill Spears for useful suggestions.

References

Asimov, I. (1942). Runaround. Astounding Science Fiction.

Burkhard, H. (1993). Liveness and fairness properties in multi-agent systems. Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, pages 325-330.

Clarke, E. & Wing, J. (1997). Formal methods: State of the art and future directions. Computing
Surveys.

Fogel, D. (1996). On the relationship between duration of an encounter and the evolution of cooperation
in the iterated Prisoner’s Dilemma. Evolutionary Computation, 3(3): 349-363.

Gordon, D. (2000). Efficient re-verification. NCARAT Technical report.

Gordon, D. (1998). Well-behaved Borgs, Bolos, and Berserkers. Proceedings of the Fifteenth International
Conference on Machine Learning, pages 224-232.

Kabanza, F. (1995). Synchronizing multiagent plans using temporal logic specifications. Proceedings of
the International Conference on Multiagent Systems, pages 217-224.

Lee, J. & Durfee, E. (1997). On explicit plan languages for coordinating multiagent plan execution.
Proceedings of the Agents, Theories, Architectures, and Languages, pages 113-126.

Sokolsky, O. & Smolka, S. (1994). Incremental model checking in the modal mu-calculus. Proceedings of
Computer-Aided Verification (CAV). American Mathematical Society.

Spears, W. & Gordon, D. (1999). Using artificial physics to control agents. Proceedings of the IEEE
International Conference on Information, Intelligence, and Systems.

Weld, D. & Etzioni, O. (1994). The First Law of Robotics. Proceedings of the Twelfth National Conference
on Artificial Intelligence, pages 1042-1047. AAAT Press.

