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Abstract. The increased prevalence of agents raises numerous practi-
cal considerations. This paper addresses three of these — adaptability to
unforeseen conditions, behavioral assurance, and timeliness of agent re-
sponses. Although these requirements appear contradictory, this paper
introduces a paradigm in which all three are simultaneously satisfied.
Agent strategies are initially verified. Then they are adapted by learn-
ing and formally reverified for behavioral assurance. This paper focuses
on improving the time efficiency of reverification after learning. A priori
proofs are presented that certain learning operators are guaranteed to
preserve important classes of properties. In this case, efficiency is max-
imal because no reverification is needed. For those learning operators
with negative a priori results, we present incremental algorithms that
can substantially improve the efficiency of reverification.

1 Introduction

Agents (e.g., robots or softbots) are becoming an increasingly prevalent paradigm.
Many systems of the future will be multiagent. The agents paradigm offers nu-
merous advantages, such as flexibility and fault-tolerance. However it also intro-
duces new challenges.

Consider an example. The forthcoming field of nanomedicine holds great
promise for microsurgery. Medical nanorobots (also called “nanobot” agents),
with tiny sensors and medical devices, will be capable of performing delicate, fine-
grained operations within the human body. This would revolutionalize the field
of medicine. It requires precise navigation through the body, and sophisticated
multiagent positioning. For example, multiple nanobots could form a flexible
surface comprised of independently controllable agents that translate or rotate
their positions relative to each other [8]. Because each human body is unique,
these nanobots need to adapt their surgical strategy to the individual.

Unfortunately, by providing agents the capability to adapt, we risk introduc-
ing undesirable behavioral side-effects — particularly in situations where global
system behavior may be significantly affected by a minor local change. How can



we guarantee that agents will achieve desirable global coordination? For exam-
ple, we want assurance that the actions of nanobots performing tissue repair will
not conflict with the actions of nanobots performing cancer cell removal.

Formal verification can be applied to ensure proper global multiagent coor-
dination. Unfortunately, though, verification can be quite slow. This raises the
issue of timeliness. Using the medical nanobots example, agents performing tis-
sue repair could provide formal guarantees that their actions will not conflict
with those of other nanobots; yet if the process of verification takes too long,
the patient might suffer harm.

In response to problems such as these, we have developed APT agents, i.e.,
agents that are simultaneously adaptive, predictable and timely. Adaptation is
achieved with machine learning/evolutionary algorithms, predictability with for-
mal verification, and timeliness by exploiting the knowledge that learning has
occurred to streamline the formal verification. To achieve APT agents, we have
developed efficient methods for determining whether the behavior of adaptive
agents remains within the bounds of pre-specified constraints (called “proper-
ties”) after learning. This includes verifying that properties are preserved for
single adaptive agents as well as verifying that global properties are preserved
for multiagent systems in which one or more agents may adapt.

There has been a growing body of research on learning/adaptive agents
(e.g., [14]), as well as evolving agent strategies (e.g., [7]). However, that research
does not address formally verifying agents’ behavior following adaptation. Our
approach includes both adaptation and formal verification — the latter using
model checking. Model checkers can determine whether an agent plan (strategy)
S satisfies a property P, i.e., S |= P. Although highly effective, model checking
has a time complexity problem. Suppose that in a multiagent system, each agent
has its own plan. To verify a global property P, the (synchronous) product has
to be taken of the individual agent plans to form a multiagent plan .S, which
is then verified. Model checking global properties of a multiagent plan has time
complexity that is exponential in the number of agents. With a large number of
agents, this is seriously problematic. In fact, even model checking a single agent
plan with a huge number of states can be computationally prohibitive. A great
deal of research in the verification community is currently focused on develop-
ing reduction techniques for handling very large state spaces [5]. Nevertheless,
none of these techniques are tailored specifically for efficient re-verification af-
ter learning has altered the system (which is the focus of this paper). There
are a few methods in the literature that are designed for software that changes.
One that emphasizes efficiency, as ours does, is [16]. However none of them (in-
cluding [16]) are applicable to multiagent systems in which a single agent could
adapt, thereby altering the global behavior of the overall system. In contrast,
our approach addresses the timeliness of adaptive multiagent systems.

In our APT agents framework (see Figure 1), there are one or more agents
with “anytime” plans, i.e., plans that are continually executed in response to
internal and external environmental conditions. Each agent’s plan is assumed to
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Fig. 1. APT agents framework.

be in the form of a finite-state automaton (FSA). FSAs have been shown to be
effective representations of reactive agent plans/strategies (e.g., [4], [7], [11]).

Let us begin with step (1) in Figure 1. There are at least a couple of ways that
the FSA plans could be formed initially. For one, a human plan designer could
engineer the initial plans. This may require considerable effort and knowledge.
An appealing alternative is to evolve (i.e., learn using evolutionary algorithms)
the initial plans in a simulated environment [7].

Human plan engineers or evolutionary algorithms can develop plans that sat-
isfy agents’ goals to a high degree, but to provide strict behavioral (especially
global) guarantees, formal verification is also required. Therefore, we assume
that prior to fielding the agents, the (multi)agent plan has been verified offline
to determine whether it satisfies critical properties (steps (2) and (3)). These
properties can either be expressed in linear temporal logic, or in the form of au-
tomata if automata-theoretic (AT) model checking [6] is done. If a property fails
to be satisfied, the plan is repaired (step (4)). Steps (2) through (4) require some
clarification. If there is a single agent, then it has one FSA plan and that is all
that is verified and repaired, if needed. We call this SIT}4gent- If there are multi-
ple agents that cooperate, we consider two possibilities. In ST pjqr, every agent
uses the same multiagent plan that is the product of the individual agent plans.
This multiagent plan is formed and verified to see if it satisfies global multiagent
coordination properties. The multiagent plan is repaired if verification produces
any errors, i.e., failure of the plan to satisfy a property. In SITyitpians, €ach
agent independently uses its own individual plan. To verify global properties,
one of the agents takes the product of these individual plans to form a multi-
agent plan. This multiagent plan is what is verified. For SITp,yitpians, One or
more individual plans is repaired if the property is not satisfied.

After the initial plan(s) have been verified and repaired, the agents are fielded.
While fielded (online), the agents apply learning to their plan(s) as needed (step
(5)). Learning (e.g., with evolutionary operators) may be required to adapt the
plan to handle unexpected situations or to fine-tune the plan. If SIT}4gent oOF



SIT pian, the single (multi)agent plan is adapted. If SITuitpians, €ach agent
adapts its own FSA, after which the product is formed. For all situations, one
agent then rapidly re-verifies the new (multi)agent plan to ensure it still satisfies
the required properties (steps (6) and (7)). Whenever (re)verification fails, it
produces a counterexample that is used to guide the choice of an alternative
learning operator or other plan repair as needed (step (8)). This process of
executing, adapting, and reverifying plans cycles indefinitely as needed. The
main focus of this paper is steps (6) and (7). The novelty of the approach outlined
in our framework is not in machine learning or verification per se, but rather the
combination of the two.

Rapid reverification after learning is a key to achieving timely agent re-
sponses. Our results include proofs that certain useful learning operators are
a priori guaranteed to be “safe” with respect to important classes of properties,
i.e., if the property holds for the plan prior to learning, then it is guaranteed
to still hold after learning. If an agent uses these “safe” learning operators, it
will be guaranteed to preserve the properties with no re-verification required,
i.e., steps (6) through (8) in Figure 1 need not be executed. This is the best one
could hope for in an online situation where rapid response time is critical. For
other learning operators and property classes our a priori results are negative.
However, for these cases we have novel incremental reverification algorithms
that can save time over total reverification from scratch.

2 Agent Plans
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Fig. 2. A finite-state automaton plan for agent A.

Figure 2 shows a finite-state automaton (FSA) plan for an agent that is,
perhaps, a nanobot’s protocol for exchanging tissue with another nanobot. The
agent may be in a finite number of states, and actions enable it to transition
from state to state. Action begins in an initial (i.e., marked by an incoming
arrow from nowhere) state (PAUSING in Figure 2). The transition conditions
(i-e., the Boolean algebra expressions labeling the edges) in an FSA plan suc-
cinctly describe the set of actions that enable a state-to-state transition to occur.
The operator A means “AND,” V means “OR,” and - means “NOT.” We use
V(S), I(S), E(S), and M(v;,v;) to denote the sets of vertices (states), initial



states, edges, and the transition condition from state v; to state v; for FSA S,
respectively. £(S) denotes the language of .9, i.e., the set of all action sequences
that begin in an initial state and satisfy S’s transition conditions. These are the
action sequences (called strings) allowed by the plan.

Note that the transition conditions of one agent can refer to the actions
of one or more other agents. This allows each agent to be reactive to what
it has observed other agents doing. Nevertheless, the agents do not have to
synchronize on their choice of actions. The only synchronization is the following.
At each time step, all of the agents independently choose an action to take. Then
they observe the actions of other agents that are referenced in their plan (e.g.,
agent A’s transition conditions mention agent B’s actions; therefore A needs to
observe what its neighbor, B, did). Based on its own action and those of the other
referenced agent(s), the agent knows the next state to which it will transition.
The FSAs are assumed to be deterministic and complete, i.e., for every allowable
action there is a unique next state.

In SITipian of SITmuitpians, there are multiple agents. Prior to initial verifi-
cation (and in SIT ,yepians this is also needed prior to subsequent verification),
the synchronous multiagent product FSA is formed. This is done in the stan-
dard manner, by taking the Cartesian product of the states and the intersection
of the transition conditions. Model checking then consists of verifying that all
sequences of multiagent actions allowed by the product plan satisfy the property.

Each multiagent action is an atom of the Boolean algebra used in the product
FSA transition conditions. To help in understanding the discussions below, we
briefly define a Boolean algebra atom. In a Boolean algebra K, there is a partial
order among the elements, <, which is defined as z < y if and only if Ay = z. (It
may help to think of < as analogous to C for sets.) The distinguished elements
0 and 1 are defined as Vz € K, 0 < 2 and Vz € K, x < 1. The atoms (analogous
to single-element sets) of X, I'(K), are the nonzero elements of X minimal with
respect to <. For example, (B-receive A A-pause) is an atom, or multiagent
action, when there are two agents (A and B). If the agents take multiagent
action z, then each agent will transition from its state v; to state vo whenever
z =X M(v,v9).

Now we can formalize £(S). A string (action sequence) x is an infinite-
dimensional vector, (g, ...) € I'(K)“. A run v of string x is a sequence (vo, -..)
of vertices such that Vi, ; < M (v;,vit1). In other words, a run of a string is the
sequence of vertices visited in an FSA when the string satisfies the transition
conditions along the edges. Then £(S) = {x € I'(K)“|xhasarunv = (v, ...)
in S with vo € I(S) }. Such a run is called an accepting run, and S is said to
accept string x.

3 Adaptive Agents: The Learning Operators

First, let us define the type of machine learning performed by the agents. A
machine learning operator o : S — S’ changes a (product or individual) FSA
S to post-learning FSA S’. For a complete taxonomy of our learning operators,



see [9]. Here we do not address learning that adds/deletes/changes states, nor
do we address learning that alters the Boolean algebra used in the transition
conditions, e.g., via abstraction. Results on abstraction may be found in [10].
Instead, we focus here on edge operators.

Let us begin with our most general learning operator, which we call ochange-
It is defined as follows. Suppose z < M (v1,v2), z # 0, for (v1,v2) € E(S) and
z A M(vi,v3) for (v1,v3) € E(S). Then ochange(M(vi,v2)) = M(vi,v2) A =2
(step 1) and/or ochange(M (vi,v3)) = M(vi,v3) V 2z (step 2). In other words,
Ochange May consist of two steps — the first to remove condition z from edge
(v1,v2) and the second to add condition z to edge (v1,v3). Alternatively, Ochange
may consists of only one of these two steps. Sometimes (e.g., in Subsection 5.3),
for simplicity we assume that z is a single atom, in which case ocpange Simply
changes the next state after taking action z from vy to v3. A particular instance
of this (or any) operator is the result of choosing v1, v2, v3 and z.

Four one-step operators that are special cases of 0change are: 0qqq and ogejete
to add and delete FSA edges (if a transition condition becomes 0, the edge is
considered to be deleted), and 0gen, and ogpee to generalize and specialize the
transition conditions along an edge. Generalization adds actions to a transition
condition (with V), whereas specialization removes actions from a transition
condition (with A). An example of generalization is the change of the transi-
tion condition (B-deliver A A-receive) to ((B-deliver A A-receive) V (B-receive
A A-receive)). An example of specialization would be changing the transition
condition (B-deliver) to (B-deliver A A-receive).

Two-step operators that are special cases of 0change are: Ogeiete+gen » Ospectgen s
Odelete+add, AN Ospectqedd- These operators move an edge or part of a transition
condition from one outgoing edge of vertex v, to another outgoing edge of ver-
tex v1. An example, using Figure 2, might be to delete the edge (RECEIVING,
RECEIVING) and add its transition condition via generalization to (RECEIV-
ING, DELIVERING). Then the latter edge transition condition would become 1.
The two-step operators preserve FSA determinism and completeness. One-step
operators must be paired with another operator to preserve these constraints.

When our operators are used in the context of evolving FSAs, each operator
application is considered to be a “mutation.” For applicability of the incremental
reverification algorithms in Subsection 5.2, we assume that learning is incremen-
tal, i.e., at most one operator is applied to one agent per time step (or per
generation if using evolutionary algorithms — this is a reasonable mutation rate
for these algorithms [1]). Gordon [9] defines how each of the learning opera-
tors translates from a single agent FSA to a multiagent product FSA. The only
translation we need to be concerned with here is that a single agent oge,, may
translate to a multiagent 0,44- We will see the implications of this in Subsec-
tions 5.2 and 5.3.

To understand some of the results in Subsection 5.1, it is necessary to first
understand the effect that learning operators can have on accessibility. We begin
with two basic definitions of accessibility:



Definition 1. Vertex v, is accessible from vertex vo if and only if 3 a path (i.e.,
a sequence of edges) from vg to vy,.

Definition 2. Atom (action) an,—1 € I'(K) is accessible from vertex vo if and
only if A a path from vy to v, and an—1 X M(vy_1,0y).

Accessibility from initial states is central to model checking, and therefore
changes in accessibility introduced by learning should be considered. There
are two fundamental ways that our learning operators may affect accessibility:
locally (abbreviated “L”), i.e., by directly altering the accessibility of atoms or
states; globally (abbreviated “G”), i.e., by altering the accessibility of any states
or atoms that are not part of the learning operator definition. For example, any
change in accessibility of vy, ve, v3, or atoms in M (vy,vs) or M(v1,v3) in the
definition of 0cpange is considered local; other changes are global.

The symbol 1 denotes “can increase” accessibility, and ¥ denotes “cannot
increase” accessibility. We use these symbols with G and L, e.g., T G means that
a learning operator can (but does not necessarily) increase global accessibility.
The following results are useful for Section 5:

— Odeletes Ospecy Odelete+gens Ospect+gen* /P/G ,P,L
— 0gaa: T G T L

— Ogen: Y G 1 L

— Odelete+add, Ospec+add, Ochange* T G

Finally, consider a different characterization (partition) of the learning opera-
tors, which is necessary for understanding some of the results in Subsection 5.1.
For this partition, we distinguish those operators that can introduce at least
one new string (action sequence) with an infinitely repeating substring (e.g.,
(a,b,c,d,e,d,e,d,e,...) where the ellipsis represents infinite repetition of d followed
by e) into the FSA language versus those that cannot. The only operators be-
longing to the second (“cannot”) class are Ogejete and Ogpec-

4 Predictable Agents: Formal Verification

Recall that in STTipien Or SITmuitpians, there are multiple agents, and prior to
initial verification the product FSA is formed (step (2) of Figure 1). In all three
situations, to perform automata-theoretic (AT) model checking, the product
must be taken with the FSA of —P for property P (see below). We call the
algorithm for forming the product FSA Total,,oq-

Our general verification algorithm (not tailored to learning) is AT model
checking. In AT model checking, the negation of the property is expressed as an
FSA. Asking whether S |= P is equivalent to asking whether £(S) C L(P) for
property P. This is equivalent to £(S)NL(P) = 0, which is algorithmically tested
by first taking the product (®) of the plan FSA S and the FSA corresponding
to =P, i.e., S ® =P. The FSA corresponding to =P accepts L(P). The product




implements language intersection. The algorithm then determines whether £(S®
—P) # (0, which implies £(S) N L(P) # ® (S [~ P). This determination is
implemented as a check for undesirable cycles in the product FSA S ® =P that
are accessible from some initial state.

The particular AT verification algorithm we have chosen is a simple, elegant
one from Courcoubetis et al. [6]. This algorithm, which we call Totalar, is
designed to do a depth-first search through the FSA starting at initial states
and visiting all states reachable from the initial states — in order to look for all
verification errors, i.e., failures to satisfy the property. The algorithm assumes
properties are represented as Biichi FSAs [3]. !

We focus mainly on Invariance and Response properties — because these are
considered to be particularly relevant for multiagent systems. Invariance prop-
erties (O-p, i.e., “always not p”) can be used to prohibit deleterious multiagent
interactions. For example O- (B-deliver A A-deliver) states that agent B cannot
take action B-deliver at the same time that agent A is taking action A-deliver.
Response properties (O(p — <q) i.e., “always if trigger p occurs then eventually
response ¢ will occur”) can ensure multiagent coordination by specifying that
one agent’s actions follow those of another in a particular sequence. For example
O (C-deliver — < A-receive) states that whenever agent C delivers something
A must eventually receive it. Although C is not mentioned in A’s plan, this
property can be verified for the three-agent (A, B, C) product FSA.

5 APT Agents: Time-Efficient Reverification

Total reverification is time-consuming. For the sake of timely agents, we first
tried to find as many positive a priori results as possible for our operators.
Recall that a positive a priori result implies no reverification is required.

5.1 A Priori Results

Our objective is to lower the time complexity of reverification. The ideal solution
is to identify “safe” machine learning operators (SMLOs), i.e., machine learning
operators that are a priori guaranteed to preserve properties and require no run-
time cost. For a plan S and property P, suppose verification has succeeded prior
to learning, i.e., S = P. Then a machine learning operator o(S) is an SMLO if
and only if verification is guaranteed to succeed after learning, i.e., if S’ = o(S5),
then S |= P implies S’ |= P.

We next present theoretical results. Proofs for all theorems may be found in
[9].2 Our two initial theorems, Theorems 1 and 2, which are designed to address
the one-step operators, may not be immediately intuitive. For example, it seems
reasonable to suspect that if an edge is deleted somewhere along the path from
a trigger to a response, then this could cause failure of a Response property to

! Because a true Response property cannot be expressed as a Biichi FSA, we use a
First-Response property approximation. This suffices for our experiments [9].
2 Properties are assumed to be expressed in linear temporal logic or as FSAs.



hold — because the response is no longer accessible. In fact, this is not true. What
actually happens is that deletions reduce the number of strings in the language. If
the original language satisfies the property then so does is the smaller language.
Theorem 1 formalizes this.

Theorem 1. Let S and S’ be FSAs, where S’ is identical to S, but with addi-
tional edges. We defineo: S — S' as 0: E(S) — E(S'), where E(S) C E(5").
Then L(S) C L(S").

Corollary 1. ogejete 15 an SMLO with respect to any property P.

Corollary 2. 0444 is not necessarily an SMLO for any property, including In-
variance and Response properties.

Theorem 2. For FSAs S and S' let 0 : S — S' be defined as o : M(S) —
M(S") where 3z € K (the Boolean algebra), z # 0, (vi,v2) € E(S), such that
o(M(v1,v2)) = M(vy,v2) V 2. Then L(S) C L(S").

Corollary 3. ogpec s an SMLO for any property.

Corollary 4. ogen s not necessarily an SMLO for any property, including In-
variance and Response properties.

The above theorems and corollaries cover the one-step operators. We next
consider theorems that are needed to address the two-step operators. Although
we found results for the one-step operators that were general enough to address
any property, we were unable to do likewise for the two-step operators. Our
results for the two-step operators determine whether these operators are neces-
sarily SMLOs for Invariance or Response properties in particular. These results
are quite intuitive. The first theorem distinguishes those learning operators that
will satisfy Invariance properties from those that will not:

Theorem 3. A machine learning operator is guaranteed to be an SMLO with
respect to any Invariance property P if and only if ¥ G and Y L are both true.

Corollary 5. Operators 0geicte+gen ANA Ospectgen 0T€ guaranteed to be SMLOs
with respect to any Invariance property.

Corollary 6. Operators Ogeiete+add; Ospec+adds Ochange 0T€ Mot necessarily SM-
LOs with respect to Invariance properties.

The next theorem characterizes those learning operators that cannot be guar-
anteed to be SMLOs with respect to Response properties.

Theorem 4. Any machine learning operator that can introduce a new string
with an infinitely repeating substring into the FSA language cannot be guaranteed
to be an SMLO for Response properties.

Corollary 7. None of the two-step learning operators is guaranteed to be an
SMLO with respect to Response properties.

For those operators that do not have positive a priori results, we can still
save time over total reverification by using incremental algorithms, which are
described in the next section.



5.2 Incremental Reverification Algorithms

We just learned that operators ogpec and ogeiete are “safe” learning operators
(SMLOs), whereas 0gep, and 0gq4q are not. It is also the case that ogen, and 0444 can
cause problems (e.g., for Response properties) when they are part of a two-step
operator. Therefore, we have developed incremental reverification algorithms for
these two operators.

Recall that there are two ways that operators can alter accessibility: glob-
ally (G) or locally (L). Furthermore, recall that o,q4q can increase accessibility
either way (1 G 1 L), whereas og4e,, can only increase accessibility locally (¥ G 1
L). We say that oge,, has only a “localized” effect on accessibility, whereas the
effects of 0,44 may ripple through many parts of the FSA. The implication is
that we can have very efficient incremental methods for reverification tailored for
0gen, Whereas we cannot do likewise for 0444 This is also true for both two-step
operators that have oge,, as their second step, i.e., 04eietetgen aNd Ospectgen - Be-
cause no advantage is gained by considering 0,44 per se, we develop incremental
reverification algorithms for the most general operator ochange- These algorithms
apply to all of our operators.

Here we present three incremental algorithms — the first two are for execution
after any instance of 0¢pange (OF its special cases), and the third is only for execu-
tion after instances of Ogen, (O Ogelete+gen OT Ospectgen)- These algorithms make
the assumption that S |= P prior to learning, i.e., any errors found from previ-
ous verification have already been fixed. Then learning occurs, i.e., o(S) = 5,
followed by product re-formation, then incremental reverification (see Figure 1).

The first algorithm is an incremental version of Total,,.q, called Incprod,
which is tailored for re-forming the product FSA (step (6) of Figure 1) after
Ochange has been applied. Recall that in SIT,,uitpians learning is applied to
an individual agent FSA, then the product is re-formed. In all situations, the
product must be re-formed with the negated property FSA after learning if the
type of reverification to be used is AT. Algorithm Incproq assumes the product
was formed originally using T'otalproq. Incproa capitalizes on the knowledge of
which single (or multi)agent state, vy, and action, a, have their next state altered
by operator ocpange. (For simplicity, assume a is a multiagent action.) Since the
previously generated product is stored, the only product FSA states whose next
state needs to be modified are those states that include v; and transition on a.

After ochange has been applied, followed by Incproq, incremental model check-
ing is performed. Our incremental model checking algorithm, I'ncar, changes
the set of initial states (for the purpose of model checking only) in the product
FSA to be the set of all product states formed from state v; (whose next state
was affected by Ochange ). Reverification begins at these new initial states, rather
than the actual initial FSA states. This algorithm also includes another form of
streamlining. The only transition taken by the model checker from the new initial
states is on action a. This is the transition that was modified by ochange. There-
after, Incar proceeds exactly like Total g47. Assuming S = P prior to learning,
Incar and Total o7 will agree on whether S’ |= P after learning, whenever P is
an Invariance or Response property [9].



We next present an incremental reverification algorithm that is extremely
time-efficient. It gains efficiency by being tailored for specific situations (i.e.,
only in SITiggent or SITipian when there is one FSA to reverify), a specific
learning operator (o4er, ), and a specific class of properties (Response). A similar
algorithm for Invariance properties may be found in [10].

The algorithm, called Incgen—r, is in Figure 3. This algorithm is applicable
for operator oger,. However note that it is also applicable for ogesetetgen and
Ospec+gen, Decause according to the a priori results of Subsection 5.1 the first
step in these operators is either o0gejete OF Ogpec Which are known to be SMLOs.

Assume the Response property is P = O(p — <q) where p is the trigger and
q is the response. Suppose property P holds for plan S prior to learning, i.e.,
S = P. Now we generalize M (v, v3) =y to form S’ via 0gen, (M (v1,v3)) =yVz,
where y A z = 0 and y, z # 0. We need to verify that S’ = P.

procedure check-response-property
if y = ¢ then
if (z = q and 2 |= —p) then output “S’ | P”
else output “Avoid this instance of 0ger” fi
else
if (z |E —p) then output “S’ | P”
else output “Avoid this instance of 0ger” fi
fi
end

Fig. 3. Incgen—r reverification algorithm.

The algorithm first checks whether a response could be required of the tran-
sition condition M (vy,v3). We define a response to be required if for at least
one string in £(S) whose run includes (v1,v3), the prefix of this string before
visiting vertex vy includes the trigger p not followed by response ¢, and the string
suffix after v does not include the response ¢ either. Such a string satisfies the
property if and only if y = ¢ (i.e., for every atom a <y, a < ¢q). Thusif y = ¢
and the property is true prior to learning (i.e., for S), then it is possible that a
response is required and thus it must be the case that for the newly added z,
z = g to ensure S’ = P. For example, suppose a, b, ¢, and d are atoms, the
transition condition y between STATE4 and STATES5 equals d, and S = P. Let
x = (a, b, b, d, ...) be an accepting string of S (€ £(S)) that includes STATE4
and STATES as the fourth and fifth vertices in its accepting run. The property
is P =0 (a — < d), and therefore y |= ¢ (because y = ¢ = d). Suppose 0gen,
generalizes M (STATE4, STATES) from d to (d V ¢), where z is ¢, which adds
the string x’ = (a, b, b, ¢, ...) to £(S"). Then z [~ q. If the string suffix after (a,
b, b, ¢) does not include d, then there is now a string which includes the trigger
but does not include the response, i.e., S’ £ P. Finally, if y = g and z = ¢, an
extra check is made to be sure z = —p because an atom could be both a response



and a trigger. New triggers are thus avoided. The second part of the algorithm
states that if y £ ¢ and no new triggers are introduced by generalization, then
the operator is “safe” to do. It is guaranteed to be safe (S’ = P) in this case
because a response is not required.

Incgen—r is a powerful algorithm in terms of its execution speed, but it is
based upon the assumption that the learning operator’s effect on accessibility is
localized, i.e., that it is 0gen, With SIT14gent Or SITpian but not SITwtpians-
(Recall that single agent o4e,, may translate to multiagent 0,44 in the product
FSA.) An important advantage of this algorithm is that it never requires forming
a product FSA, even with the property. A disadvantage is that it may find false
errors. In particular, if S = P prior to learning and if Incgen—pr concludes
that S’ | P after learning, then this conclusion will be correct. However if
Incgen—r finds an error, it may nevertheless be the case that S’ |= P [9]. Another
disadvantage of Incgen—r is that it does not allow generalizations that add
triggers. If it is desirable to add new triggers during generalization, then one
needs to modify Incgen—r to call Incar when reverification with Incgen— g fails
— instead of outputting “Avoid this instance of o04en.” This modification also
fixes the false error problem, and preserves the enormous time savings (see next
section) when reverification succeeds.

5.3 Empirical Timing Results

Theoretical worst-case time complexity comparisons, as well as the complete
set of experiments, are in [9]. Here we present a subset of the results, using
Response properties. Before describing the experimental results, let us consider
the experimental design. 3 The underlying assumption of the design was that
these algorithms would be used in the context of evolutionary learning, and
therefore the experimental conditions closely mimic those that would be used in
this context. FSAs were randomly initialized, subject to a restriction — because
the incremental algorithms assume S |= P prior to learning, we restrict the FSAs
to comply with this. Another experimental design decision was to show scaleup
in the size of the FSAs. Throughout the experiments there were assumed to be
three agents, each with the same 12 multiagent actions. Each individual agent
FSA had 25 or 45 states. A suite of five Response properties was used (see [9]).
The learning operator was Ochange OT Ogen. Every algorithm was tested with 30
runs — six independent runs for each of five Response properties. For every one of
these runs, a different random seed was used for generating the three FSAs and
for generating a new instance of the learning operator. However, it is important
to point out that on each run all algorithms being compared with each other used
the same FSAs, which were modified by the same learning operator instance.
Let us consider Tables 1 and 2 of results. Table entries give average cpu times
in seconds. Table 1 compares the performance of total reverification with the
incremental algorithms that were designed for ocpange. The situation assumed
for these experiments was SIT ,yitpians- Three FSAs were initialized, then the

3 All code was written in C and run on a Sun Ultra 10 workstation.



product was formed. Operator ocpange, Which consisted of a random choice of
next state, was then applied to one of the FSAs. Finally, the product FSA was
re-formed and reverification done.

The method for generating Table 2 was similar to that for Table 1, except that
Ogen Was the learning operator and the situation was assumed to be SITipqn.
Operator 0g4¢p, consisted of a random generalization to the product FSA.

The algorithms (rows) are in triples “p,” “v” and “b” or else as a single item
“v=b.” A “p” next to an algorithm name implies it is a product algorithm, a
“v” that it is a verification algorithm, and a “b” that it is the sum of the “p”
and “v” entries, i.e., the time for both re-forming the product and reverifying. If
no product needs to be formed, then the “b” version of the algorithm is identical
to the “v” version, in which case there is only one row labeled “v=Db.”

Table 1. Average cpu time (in seconds) over 30 runs (5 properties, 6 runs each) with
operator ochange-

25-state FSAs|45-state FSAs
Incproda P .000574 .001786
Totalprod P .097262 .587496
Incar v .009011 .090824
Totalar v .024062 .183409
Incar b .009585 .092824
TotalaT b 121324 770905

Table 2. Average cpu time (in seconds) over 30 runs (5 properties, 6 runs each) with
operator ogen .

25-state FSAs|45-state FSAs
Incproq P .000006 .000006
Totalprod P .114825 .704934
Incar v 94.660700 2423.550000
Totalar v 96.495400 2870.080000
Incar b 94.660706 2423.550006
Totalar b 96.610225 2870.784934
Incgen—r v=Db .000007 .000006

We tested the hypothesis that the incremental algorithms are faster than
the total algorithms — for both product and reverification. This hypothesis is
confirmed in all cases. All differences are statistically significant (p < .01, using
a Wilcoxon rank-sum test) except those between Incar and Total a7 in Table 2.
In fact, according to a theoretical worst-case complexity analysis [9], in the worst
case Incar will take as much time as T'otal 47. Nevertheless, in practice it usually
provides a reasonable time savings.



What about Incgen—r, which is even more specifically tailored? First, re-
call that Incgen—gr can produce false errors. For the results in Table 2, 33% of
Incgen—gr’s predictions were wrong (i.e., false errors) for the size 25 FSAs and
50% were wrong for the size 45 FSAs. On the other hand, consider the maximum
observable speedup in Tables 1 and 2. By far the best results are with Incgen—rg,
which shows a %—billion—fold speedup over Total o7 on size 45 FSA problems!
This alleviates the concern about Incgen—r’s false error rate — after all, one can
afford a 50% false error rate given the speed of trying another learning operator
instance and reverifying.

6 Applications

To test our overall framework, we have implemented a simple example of coop-
erating planetary rovers that have to coordinate their plans. They are modeled
as co-evolving agents assuming SIT yitpians- By using the a priori results and
incremental algorithms, we have seen considerable speedups.

We are also developing another implementation that uses reverification dur-
ing evolution [17]. Two agents compete in a board game, and one of the agents
evolves its strategy to improve it. The key lesson that has been learned from
this implementation is that although the types of FSAs and learning operators
are slightly different from those studied previously, and the property is quite
different (it’s a check for a certain type of cyclic behavior on the board), initial
experiences show that the methodology and basic results here could potentially
be easily extended to a variety of multiagent applications.

7 Related and Future Work

This paper has presented efficient methods for behavioral assurance following
learning. The incremental reverification algorithms presented here are similar to
the idea of local model checking [2] because they localize verification. The dif-
ference is that our methods are tailored specifically to learning operators. There
is little in the literature about efficient model checking for systems that change.
Sokolsky and Smolka [16] is a notable exception — especially since it presents a
method for incremental reverification. However, their research is about reverifi-
cation of software after user edits rather than adaptive multiagent systems.
There is a growing precedent for addressing multiagent coordination by ex-
pressing plans as automata and verifying them with model checking (e.g., [13],
[4], [11]). Our work builds on this precedent, and also extends it — because none
of this previous research addresses efficient re-verification for agents that learn.
Finally, there are alternative methods for constraining the behavior of agents,
which are complementary to reverification and self-repair. For example, Shoham
and Tennenholtz [15] design agents that obey social laws, e.g., safety conventions,
by restricting the agents’ actions; Spears and Gordon [18] design agents that
obey physics laws. Nevertheless, the plan designer may not be able to anticipate
and engineer all laws into the agents beforehand, especially if the agents have



to adapt. Therefore, initial engineering of laws should be coupled with efficient
reverification after learning.

Future work will focus on extending the a priori results to other learning

operators/methods and property classes and other plan representations (such as
stochastic/timed FSAs/properties), developing more incremental reverification
algorithms, and exploring plan repair to recover from reverification failures [12].
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