DESIGN OF ADAPTIVE SUPERVISORS FOR DISCRETE EVENT SYSTEMS VIA LEARNING

Diana Gordon
Naval Research Laboratory, Code 5515
Washington, D.C. 20375-5337

Email: gordon@aic.nrl.navy.mil

ABSTRACT

In many practical applications, modeling using
event-driven dynamics leads to interconnected discrete
event systems. Often, these tend to be large-scale
event-varying structures, which need to possess certain
event-invariant properties. Although supervisory con-
trol theory offers some methods for the synthesis of
such discrete event systems, adaptive supervision is, by
and large, an open problem. This paper proposes an
approach to the design of adaptive supervisors based
on a systematic revision of the desirable language, via
a learning mechanism, so that the system’s properties

are safe.

INTRODUCTION

Interconnected Discrete Event Systems (IDES) pro-
vide for the modeling of practical systems in the fields
of communications, flexible manufacturing, and traffic
management. In applications such as these, it is often
the case that the IDES must satisfy important behav-
ioral constraints. Given the complexity of many IDES;,
assuring such constraints is a significant challenge. An
appealing solution is the method of supervisory control
of discrete event systems, the building blocks of IDES.

Supervisory control addresses the problem of coordi-

Kiriakos Kiriakidis

Department of Weapons and Systems Engineering

United States Naval Academy
Mail Stop 14a
Annapolis, MD 21402

Email: kiriakid@novell.nadn.navy.mil

nating IDES, albeit on the assumption that the system
is fixed and known [1-5]. A particularly thorny issue
that arises in practical IDES, however, is subjection to
change. For example, at the highest level, an existing
subsystem may fail or a new subsystem may be con-
nected. At a lower level, the structure of a subsystem
may change as well. In turn, such structural changes
hamper the application of supervisory control theory
to the class of IDES. At present, the literature offers
but a few works on adaptive or robust supervisory con-
trol to tackle the problem of uncertainty in the IDES
model [6-8].

The objective of this paper is the development of a de-
sign method for adaptive IDES control that can han-
dle a particular kind of uncertainty, namely, subsystem
failure. We propose the following approach. As a first
step, a desired language in the form of a Finite State
Automaton (FSA) is specified. This desired language,
which specifies IDES coordination behavior, is required
to satisfy behavioral constraints, called “properties.”
An example of a property might be that two subsys-
tems should never execute conflicting events (actions).
In order to guarantee that the desired language satisfies
the properties, it is advisable to check this using for-

mal verification. FSA repair is done if the outcome of

verification is that properties are not satisfied. Next, a
supervisor is automatically generated from the desired
language. The supervisor enables and disables events
in the IDES to ensure coordination as specified by the

desired language.

Because the properties are important, they must be
maintained regardless of structural changes. Suppose
a subsystem fails. Then a learning mechanism deletes
from the desired language events that pertain exclu-
sively to the failed subsystem. It then patches the
desired language FSA in accordance with an automa-
ton repair algorithm. A new supervisor is then synthe-
sized from the new desired language FSA to close loop

around the IDES.

The organization of this paper is as follows. First, we
formulate the problem and describe the proposed solu-
tion. Second, we present a repair algorithm. Third, we
illustrate the advocated approach through a simulated

example.

PROBLEM FORMULATION

Let us denote as G an IDES that comprises a fi-
nite number of subsystems, namely, G1, ..., G,. To
consider the uncertainty of the internal structure of G,
we define the event-valued variable £ such that & = &;
implies that the i-th subsystem is off-line. The event
that all subsystems are on-line is ;. With this in mind,
we write G = G(x), where x is a sequence of events &;.
Hereafter, we assume there is a core of subsystems that

are never off-line and hence remain part of the IDES

after all events & have occurred.

Suppose that a supervisor S(x) exists so that the closed

loop with the IDES, G(x)/S(x), executes a desired lan-

guage, K(x); see Figure 1. By dictating certain se-

Figure 1: The supervised IDES

quences of events, one embeds in the desired language
important properties that are required to hold for the
overall operation of the IDES. Because the properties
need to hold in spite of structural changes that may
occur to the IDES, it is necessary that the core of sub-
systems generates the prescribed sequences of events.
For example, on the assumption that the second and
fifth subsystems are part of the core, one considers the

following property

P: If the fifth subsystem executes “pause”, the sec-

ond will eventually execute “take action”

Suppose an event £ occurs and, because of the struc-
tural changes this implies, the closed loop of the result-
ing IDES, G(x¢), with the existing supervisor, S(x), no
longer executes K(x). In turn, the closed loop loses one
or more of the aforementioned properties. Herein, we
propose an adaptive scheme to obtain a new supervisor,

S(x€), by taking into account the structural changes in

the system. By design, the new supervisor results in
a closed loop, G(x€)/S(x€), that possesses the desired
properties. In particular, upon occurrence of the event
&, a learning algorithm modifies the desired language
by removing from it the events that pertain to the failed
subsystem. Then, one synthesizes the new supervisor

based on the resulting desired language.

AUTOMATON REPAIR ALGORITHM

As stated above, adaptation occurs via a learning
mechanism that deletes from the desired language FSA
events pertaining to a subsystem has just been off-line.
A problem that arises from this deletion of events is loss
of continuity. In particular, deleting events generally
implies deleting FSA transitions, which can fracture
the FSA into isolated or unusable components or both.
An example of an unusable component is a state from
which no transition is possible. To restore continuity,

the FSA needs to be repaired.

The repair algorithm presented here is guaranteed to
preserve all properties with no re-verification required.
This is because it only deletes, and never adds, FSA
transitions. If FSA transitions are only deleted, then
all properties are guaranteed to be preserved [9]. If
the IDES must respond quickly, this algorithm saves
time compared with the alternate repair algorithm that
requires re-verification [10]. The trade-off is that it

typically results in a smaller desired language than [10].

Figure 2 shows the algorithm for repairing the desired
language FSA after learning occurs. d(s;,0) = s;
is the FSA transition function, where s; and s; are
states and o is an event. The subscripts “pre” and
“post” denote pre- and post-learning. EVENTS,,.
and EVENTSp,s: are the sets of all pre- and post-

learning events. STATES is the set of all FSA states.
SUCClhost(s) is the set of all post-learning successors

of state s. Prior to calling the algorithm of Figure 2,

procedure repair-method (s)
visited(s) = true;
for each 0 € EVENT Spre do
if ((Opre(s, o) # 0) and (visited(dpre(s, o)) == false)) then
repair-method(dpre(s, 0));
fi
od
if (SUCCpost(s) == 0) then
for each s’ € STATES do
for each 0 € EVENT Spost do
if (dpost(s’,0) == s) then
Spost(s’,0) = 0;
fi
od
od
fi

end

Figure 2: The repair algorithm.

“visited” is initialized to false for every state in the
FSA. Procedure “repair-method” is then called with
the initial FSA state as parameter s. Procedure repair-
method does a depth-first search through the set of all
pre-learning states that are accessible from the initial
state, and “visited” is set to avoid re-visitation. When
the algorithm has visited all states, it pops the recur-
sion stack to re-visit the states beginning with the last
(i-e., it then visits the states in reverse order). For
each state s visited in reverse order, the algorithm tests
whether s has any post-learning successors. If not, it
deletes all post-learning pointers to that state. Option-
ally, the agent may further simplify the FSA, e.g., by

removing unused states.

Let us consider the worst-case time complexity of

the repair algorithm. In this analysis, we exclude
the time to perform optional FSA simplifications.
The worst-case time complexity of the algorithm
is O((|STATES| % |[EVENTSy.|)+ (|[STATES|? x
|[EVENTSpost|)). This is because during the depth-
first search the algorithm could try to visit every state
with every possible pre-learning event. For each state
visited on this search that has no post-learning succes-
sors, a pair of nested loops is executed that could entail

all states and post-learning events.

A SIMULATION EXAMPLE

Let us demonstrate the advocated adaptive supervi-
sory control approach on an example scenario inspired
by the Pathfinder mission to Mars. Figure 3 depicts
a simplified model for the collection, the short-, and

long-range transmission of packages of data. The sys-

F: 2 I. 2 L: 2
Figure 3: The simplified model of the Mars mission

tem comprises the following subsystems: a far rover
(F), an intermediary rover (I), and a lander (L). The
events a, ..., ¢ are controllable. The states sx of each

automaton X are as follows

F: collecting (sp = 1), transmitting (sp = 2)
I: receiving (s; = 1), transmitting (s; = 2)

L: receiving (sr, = 1), transmitting (s, = 2)

The current desired language, K (&), is the language of
the FSA D(&) in Figure 4. Alternatively, we represent
such FSA in the form of Table 1. Clearly, the desired

5 5 10
L]
i)
*— 00—
6 7 8 9

Figure 4: The desired language FSA, D(&), of the Mars

mission

Table 1: The transition table of K (&)

event

=2

o|lo|lo|>

state

o|loc|lo|o|lo(~|o|O

Clo|N|lo|luo]ls|[w]N]|

—
o

(=N N=h FoN Noi KA E=] =N N= Rl § VN He]

o|loc|o|lxw|ofo|lo|(oc|lw|o|®

(=N N=h FoN Noi Nei ol Nl o E=R E=H i
o|lo|lo|lo|lr|[o|lo|lo|o|O |

a|lo|lo|lo|lo|o|w

=
(=}
(=}

language K (&) specifies that the supervisor will enable
event ¢ once 3 has occurred. In words, the FSA of

K (&) satisfies the following property:

P: If F transmits, L will eventually transmit

Because we assume such a property is essential for the
system’s operation, the design needs to guarantee that

it continues to hold in spite of changes in the system.

Suppose the event £ now occurs, i.e., the intermedi-
ary rover, I, suddenly is off-line. During the learning

stage, the proposed adaptive scheme removes from the

desired language the events v and 4, as in Figure 5—
these events affect the I subsystem only. In turn, it
restores continuity to the desired language FSA using
the repair algorithm. The result is the new language,
K (&&1), in Figure 6. Finally, a new supervisor is auto-
matically generated from K(£oé1) to enable or disable

events in accordance with the FSA of Figure 6.

Nl a 2 8 3 4 5 10
@o——0—— ° °
€
€ a._@._€©
7 8 9

¢

Figure 5: The desired language FSA after learning

S

Figure 6: The desired language FSA after repair method

and simplification

CONCLUSION

Herein, we treat an IDES as inherently uncertain,
in the sense that some of its subsystems will eventually
be off-line. To provide supervision in the presence of
such uncertainty, we propose an approach to adapt the
supervisor by modifying the desired language of the
IDES via a learning mechanism. The algorithm that
performs the modification guarantees that the desired

language maintains certain system properties without

need for re-verification. As a building block, the net-
work of a supervisor and a group of subsystems, where
subsystems will be on-line or off-line, fits in an architec-
ture that comprises a number of such dynamic groups
of subsystems and hence more than one supervisor.
The proposed approach seems capable of handling the
design of IDES in this larger scale as well.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval
Research N0O001499WR20010, the Naval Academy Re-
search Council, and the Office of Naval Research Grant

N0001499WR20020.

REFERENCES

[1] P.J. Ramadge and W. M. Wonham, “Supervi-
sory control of a class of discrete event processes,”
SIAM J. Control and Optimization, vol. 25, no. 1,
pp. 206-230, 1987.

2] W. M. Wonham and P. J. Ramadge, “On the
supremal controllable sublanguage of a given lan-
guage,” SIAM J. Control and Optimization, vol. 25,
no. 3, pp. 637659, 1987.

[3] Y.DuandS. H. Wang, “Control of discrete-event
systems with minimal switching,” International Jour-

nal of Control, vol. 48, no. 3, pp. 981-991, 1988.

[4] W. M. Wonham and P. J. Ramadge, “Modular
supervisory control of discrete-event systems,” Mathe-
matics of Control, Signals, and Systems, vol. 1, no. 1,

pp. 13-30, 1988.

[5] J. G. Thistle, “Supervisory control of discrete
event systems,” Mathematical and Computer Mod-

elling, vol. 23, no. 11, pp. 25-53, 1996.

[6] F.Lin, “Robust and adaptive supervisory control
of discrete event systems,” IEEE Transactions on Au-

tomatic Control, vol. 38, no. 12, pp. 1842-1852, 1993.

[7] S. Young and V. K. Garg, “Model uncertainty in
discrete event systes,” SIAM J. Control and Optimiza-
tion, vol. 33, no. 1, pp. 208-226, 1995.

[8] Y.-L. Chen, S. Lafortune, and F. Lin, “How to
reuse supervisors when discrete event systems evolve,”
in Proceedings of the IEEE Conference on Decision and

Control, (San Diego, CA), pp. 1442-1448, Dec. 1997.

[9] D. Gordon, “Asimovian adaptive agents,” Jour-
nal of Artificial Intelligence Research, 1999 (in press).
Also NCARAI Technical Report 97-016.

[10] D. Gordon and K. Kiriakidis, “Adaptive supervi-
sory control of interconnected discrete event systems,”
in IEEFE Conference on Control Applications, (Anchor-
age, AK), Sept. 2000.

