331

Informatica 17

A MULTISTRATEGY LEARNING SCHEME FOR AGENT

KNOWLEDGE ACQUISITION

Diana Gordon
Naval Research Laboratory, Code 5514
Washington D.C. 20375

gordon@aic.nrl.navy.mil

Devika Subramanian
Department of Computer Science
Cornell University

Ithaca, NY 14853

devika®@cs.cornell.edu

Keywords: multistrategy learning, advice taking, compilation, operationalization, genetic algorithms

Edited by: Gheorghe Tecuci
Received: May 26, 1993

Revised: October 8, 1993

Accepted: October 15, 1993

The problem of designing and refining task-level strategies in an embedded multiagent setting
is an important unsolved question. To address this problem, we have developed a multistrategy
system that combines two learning methods: operationalization of high-level advice provided by
a human and incremental refinement by a genetic algorithm. The first method generates seed
rules for finer-grained refinements by the genetic algorithm. Our multistrategy learning system is
evaluated on two complex simulated domains as well as with a Nomad 200 robot.

1 Introduction

The problem of designing and refining task-level
strategies in an embedded multi-agent setting is an
important unsolved question. To address this prob-
lem, we have developed a multistrategy learning sys-
tem that combines two learning methods: operational-
ization of high-level advice provided by a human, and
incremental refinement by a genetic algorithm (GA).
We define advice as a recommendation to achieve a
goal under certain conditions. Advice is considered to
be operationalized when it is translated into stimulus-
response rules directly usable by the agent. Opera-
tionalization generates seed rules for finer-grained re-
finements by a GA.

The long term goal of the work proposed here is to
develop task-directed agents capable of acting, plan-
ning, and learning in worlds about which they do not
possess complete information. These agents refine fac-
tual knowledge of the world they inhabit, as well as
strategic knowledge for achieving their tasks, by inter-
acting with the environment. Agent knowledge acqui-
sttion is desirable for the same reasons that knowledge
acquisition for expert systems is. It is easier for a user
to provide high-level knowledge about the world and
the task than to provide knowledge at a lower level
of detail. The latter is well-known to be a costly, te-
dious, and error-prone process. Although agent knowl-
edge acquisition is desirable, it is very difficult (for the

agent), as is knowledge acquisition for expert systems.
The additional challenge for agent knowledge acquisi-
tion comes from the fact that the knowledge must be
dynamically updated by the agent through its interac-
tions with the environment.

There are two basic approaches to constructing
agents for dynamic environments. The first decom-
poses the design into stages: a parametric design fol-
lowed by refinement of the parameter values using
feedback from the world in the context of the task.
Several refinement strategies have been studied in the
literature: GAs [21], neural-net learning [3], statistical
learning [13], and reinforcement learning [14]. The sec-
ond, more ambitious, approach [7, 30] is to acquire the
agent knowledge directly from example interactions
with the environment. The success of this approach
is tied to the efficacy of the credit assignment proce-
dures, and whether or not it is possible to obtain good
training runs with a knowledge-impoverished agent.

We have adopted the first approach. The direction
we pursue is to compile an initial parametric agent us-
ing high-level strategic knowledge (e.g., advice) input
by the user, as well as a body of general (not domain-
specific) spatial knowledge in the form of a Spatial
Knowledge Base (SKB). The SKB contains qualita-
tive rules about movement in space. Example rules in
our SKB are If something is on my side, and I
turn to the other side, I will not be facing
it and If I move toward something it will get
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closer. This SKB is portable because it is applica-
ble to a variety of domains where qualitative spatial
knowledge is important. A similar qualitative knowl-
edge base was constructed by [18] for the task of push-
ing objects in a plane. Since the knowledge provided
to our agent is imperfect (incomplete and incorrect),
our agent refines the knowledge using a GA by directly
interacting with the world.

First we describe our deductive advice operational-
ization process and the nature of the parameterization
adopted for our agent. Then we describe the inductive
(GA) refinement stage and compare our multistrategy
approach with one that is purely inductive. Before
we present the details of the method, we character-
ize the class of environments and tasks for which we
have found this decomposition of an agent design into
an initial parametric stage and subsequent refinement
stage to be effective.

— Environment characteristics: Complete models of
the dynamics of the environment in the form of
differential equations or difference equations, or
discrete models like STRIPS operators, are un-
available. An analytical design that maps the
percepts of an agent to its actions (e.g., using dif-
ferential game theory or control theory) in these
domains is thus not possible. Even if a model were
available, standard analytical methods for deriv-
ing agents are extensional and involve exploration
of the entire state space. They are inapplicable
here because the domains we consider have of the
order of a hundred million states.

— Task characteristics: Tasks are sequential deci-
sion problems: payoff is obtained at the end of a
sequence of actions and not after individual ac-
tions. Examples are pursuit-evasion in a single or
multi-pursuer setting and navigating in a world
with moving obstacles. The tasks are typically
multi-objective in nature: for instance for pursuit-
evasion, the agent needs to minimize energy con-
sumption while maximizing the time till capture
by the pursuers.

— Agent characteristics: The agent has imperfect
sensors.  Imperfections occur in the form of
noise, as well as incompleteness (all aspects of
the state of the world cannot be sensed by our
agent, a problem called perceptual aliasing in
[32]). Stochastic differential game theory has
methods for deriving agents with noisy sensors,
but it requires detailed models of the noise as well
as a detailed model of the environment and agent
dynamics.

The action set of the agents and the values taken
on by sensors are discrete and can be grouped into
equivalence classes. This is the basis for the design
of the parametric agent. A similar intuition underlies
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the design of fuzzy controllers that divide the space of
sensor values into a small set of classes described by
linguistic variables.

In domains with characteristics such as those just
described, human designers typically derive an initial
solution by hand and use numerical methods (usu-
ally very dependent on the initial solution) to refine
their solution. Our ultimate objective is to automate
the derivation of good initial solutions by using gen-
eral knowledge about the environment, task, and agent
characteristics and thus provide a better starting point
for the refinement process. We begin with the SKB
and advice.

2 Compiling Advice

Our operationalization method compiles high-level
domain-specific knowledge (e.g., advice) and spatial
knowledge (SKB) into low-level reactive rules directly
usable by the agent. The compilation performs de-
ductive concretion [16] because it deductively converts
abstract goals and other knowledge into concrete ac-
tions. An important question is why we adopt a de-
ductive procedure for the operationalization of advice.
At this time, we are able to generate good parametric
designs with deductive inference alone. We expect that
as we expand our experimental studies to cover more
domains, the incompleteness of the SKB will force us
to adopt more powerful operationalization methods.

The advice compilation problem can be stated as
follows:

Given:

— Strategic advice of the form: Set of States —
achieve(Goal), which recommends that Goal be
achieved (be made to hold in the world) when-
ever the agent finds itself in a state that matches
the antecedent of the advice. Note that there is
no requirement that the set of states in the an-
tecedent be directly perceivable. The agent may
have to plan to acquire the information needed to
determine whether or not it is in the specified set
of states.

— Qualitative factual knowledge about the domain
in the form of a description of a Set of States.

— A qualitative theory with information of the fol-
lowing types:

(1) Domain-specific rules. a. A set of domain-
specific terminological mappings that define terms
needed for interpreting the advice: these map-
pings are of the form Set of states — Set of states
and are vocabulary conversion rules. b. A set of
state transition rules that represent the dynamics
of the world: these mappings are of the form Set
of states x A — Set of states, where A is the set
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of actions. c. A set of rules for predicting other
agent’s actions: these mappings are of the form
Set of States x A — A. These rules are special
to multi-agent domains.

(2) A general qualitative theory of movement
(SKB). This is a common subpart of the domains
that we consider here. Therefore it need not be
reintroduced by the user for each new domain.
The SKB is of the form Set of states x Ay —
Set of states, where Ay is the subset of actions A
that involve movement.

— The operational sensors P and actions A of the
agent. A detailed agent design involves finding a
mapping from the sense history P* of the agent
to A. This is usually simplified to be of the form
2P . A so that only current percepts determine
the next action. The map need not be determin-
istic. Indeed, in the GA architecture, which is
our target architecture, the agent map is non-
deterministic.

Find: An operational mapping 2 — A from the
sensors to the effectors of the agent such that the map
implements the provided strategic advice. By this we
mean that the map tests the conditions under which
the recommended goal is to be achieved, and the action
sequence 1t generates in the world places the agent in
a state in which the goal is achieved.

In summary, advice tells the agent to achieve a
goal under specified conditions. Facts, domain-specific
rules, a general theory of movement, and a list of what
is operational are all required for interpreting this ad-
vice and compiling it into an operational form.

As an example, consider the problem of an agent
that tries to evade a pursuing adversary. (For a more
detailed description of this problem, see Section 4.3.)
We assume the adversary is initially faster than the
agent, though it is less maneuverable. Both the ad-
versary and the agent lose speed as they turn, and the
adversary’s speed loss is permanent. The agent and
the adversary can sense each other’s instantaneous po-
sition and velocity to within some specified accuracy.
Although these are facts of the problem, they are ini-
tially unknown to the agent.

The strategic advice offered by a human expert for
this problem is the following: if the adversary’s speed
is high, then try to slow down the adversary; if the
adversary’s speed is low, then avoid the adversary. In
this example the preconditions of the advice involve
predicates that the agent can sense; however it needs
to pin down the semantics of high and low. The goals
to be achieved are: slow down the adversary in the one
case, and avoid the adversary in the other. These are
not directly implementable using a single action from
A. We need to devise a plan to realize these goals
using knowledge about the domain, including knowl-
edge about movements. These plans form the initial
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parametric design with kigh and low being two of the
parameters whose ranges need to be learned by inter-
action with the environment. An example SKB rule
that is used to compile our advice is:

IF bearing(agent,adversary) = right AND
turn(agent) = left
THEN heading(adversary,agent) # headon.

Heading(X ,Y) refers to the direction of motion of Y’
relative to X, and bearing(X,Y) refers to the direc-
tion of Y relative to X. This SKB rule states that an
agent no longer faces an adversary when it turns away
from it. Turn is an operational action.

To compile the advice, we also need terminological
mappings that define terms such as avotd. An example
definition needed to compile our advice is:

IF range(X,Y) # close AND
heading(Y ,X) # headon
THEN avoids(X, Y).

Avoids(X, V) means X avoids Y. Factual knowledge
is also required for compilation, e.g.,

Moving(agent).
Moving(adversary).

From our advice, the set of operational sensors and
effectors, and our qualitative theory, compilation re-
sults in a set of operational sensor-effector mappings.
The set of all these operational sensor-effector map-
pings is what we consider to be a reactive plan (agent
map). A portion of the reactive plan that implements
our advice, and is the product of our compilation pro-
cedure, is shown below.

IF speed(adversary) = high AND
range(agent,adversary) = close

THEN turn(agent) = hard

IF speed(adversary) = high AND
range(agent,adversary) # close AND
bearing(agent,adversary) = left

THEN turn(agent) = left

IF speed(adversary) = high AND
range(agent,adversary) # close AND
bearing(agent,adversary) = right

THEN turn(agent) = right

IF speed(adversary) = low AND
bearing(agent,adversary) = right

THEN turn(agent) = left

IF speed(adversary) = low AND
bearing(agent,adversary) = left

THEN turn(agent) = right

This is a fairly complex plan. It implements the
strategic advice in the following manner: when the ad-
versary’s speed is high, the agent moves toward the ad-
versary and makes a hard turn when it is close enough.
Since the adversary is chasing the agent, this plan will
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cause the adversary to turn hard, which then causes
the adversary to permanently lose speed. If the ad-
versary is moving slowly, the agent simply stays out of
its way. In this section we present an algorithm that
generates plans of this form starting from high level
advice and a qualitative domain theory.

Our compilation algorithm is tailored for situations
in which the execution of plans, but not the learning
of plans, is highly time-critical. We assume the ad-
vice provided is operationalized immediately, though
it need not be applied immediately. We precompile all
high-level knowledge into an operational form because
the agent will apply it in a time-critical situation. In
our approach, advice and SKB rules have nonopera-
tional elements, and the compilation process results in
rules that are fully operational.

The compilation algorithm, shown in Figure 1, uses
two stacks: a GoalStack and an (operational condi-
tion) OpCondStack. Four types of knowledge are ini-
tially given to the compiler: advice, facts, nonopera-
tional rules (abbreviated nonop rules), which include
domain-specific rules and the SKB, and the set of op-
erational sensors and actions. The output from compi-
lation is a set of op rules directly usable by the agent,
i.e., operational. Advice has the form:

<IF cond AND ... AND cond THEN> ACHIEVE goal.

Facts have the form:
Predicate(X;, ..., X,)

Nonop rules have the form:

IF cond AND .
THEN goal.

.. AND cond <AND action>

The set of operational sensors and actions are pre-
sented to the agent as a list.

Anything in angle brackets is optional. The por-
tion preceding the THEN is the rule antecedent, and
the portion following the THEN is the rule consequent.
A nonop rule consequent is a single goal. The syn-
tax for a goal is function(X;,...,X,;) =/# value
or predicate(X;,...,X,). Each X; is an object
(e.g., an agent). The syntax for a cond (condition)
or action in the rule antecedent is the same as for
goals.

Although advice has a similar syntax to nonop rules,
its interpretation differs. Advice recommends achiev-
ing the given goal under the given conds. A nonop
rule, which is needed to compile this advice, states
that the given goal will be achieved if the given conds
(and action) occur. Compilation results in stimulus-
response op rules of the form:

IF cond AND ... AND cond THEN action.
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Push advice on GoalStack: goal followed by conditions.
Initialize OpCondStack to be empty and invoke
Compile(GoalStack,OpCondStack).
Procedure Compile (GoalStack, OpCondStack)
if GoalStack is not empty then
g — pop(GoalStack);
case g:
1. g is an operational condition:
Push(g, OpCondStack);
Compile(GoalStack, OpCondStack);
2. g matches a fact:
Compile(GoalStack,OpCondStack);
3. g is nonoperational:
foreach nonop rule R; whose
consequent matches g do
Push(antecedent(R;), GoalStack);
Compile(GoalStack,OpCondStack);
4. g is an operational action
Form a new op rule from the contents of
OpCondStack and g;
Clear OpCondStack;
else Clear OpCondStack;

Figure 1: Algorithm for operationalizing advice

The conditions of an op rule are sensor values de-
tectable by the agent. The action can be performed
by the agent.

Our compilation algorithm in Figure 1 takes advice
and backchains through the SKB and user-provided
nonop rules until an operational action is found. Once
an operational action is found, it pops back up the lev-
els of recursion, attaching operational conditions along
the way, to form a new reactive agent op rule. To pre-
vent cycles, the last nonop rule used in step 3 is marked
as “used” so that it will not be used again.

Let us examine a simple example of how this algo-
rithm operates, as shown in Figures 2 and 3. Con-
sider the advice which advocates avoiding the adver-
sary when the adversary’s speed is low.

IF speed(adversary) = low THEN
ACHIEVE heading(adversary,agent) # headon

Figure 2 shows how SKB nonop rules match this ad-
vice for backchaining, thereby creating an “and” tree.
Anything preceded by a “*” is operational.

Figure 3 shows this algorithm in operation. Note
that stacks grow downward. The algorithm begins by
pushing the advice goal, followed by the advice condi-
tion, on the GoalStack. It then calls procedure Com-
pile, which moves the advice condition to the OpCond-
Stack because it is operational. The advice goal is not
operational. In our example, the advice goal can be
unified with the goal of SKB RULE1, which states

IF bearing(agent,adversary) = right AND
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ADVICE
COND GOAL
*speed(V) hd(V,A)
= low #headon
SKB RULE 1 SKB RULE 2
COND, ACT GOAL COND, ACT GOAL
¥ A
*br(A,V)| |*turn(A) hd(V,A) *br(A,V)| |*turn(A)| |hd(V,A)
= right = left #headon = left = right #headon

Figure 2: Graph of example. A is short for agent, V for adversary, br for bearing and hd for heading.

turn(agent) = left
THEN heading(adversary,agent) # headon.

The condition and action of RULEL are pushed on the
GoalStack. Because the condition of RULEL is opera-
tional, it is moved to the OpCondStack. Note that if
this condition had not been operational, our compila-
tion algorithm would have searched for all nonop rules
whose consequents unify with this nonoperational con-
dition. Further backchaining would have continued
until operational conditions were found.

At this point, the action of RULEL is at the top of
the GoalStack, and it is operational, so we can create
an op rule. The conditions from the OpCondStack are
added to the action. This creates an op rule that states

IF speed(adversary) = low AND
bearing(agent,adversary) = right
THEN turn(agent) = left

Both stacks are cleared. The algorithm (see Figure 2)
continues similarly to generate a second op rule from
SKB RULE2 that states

IF speed(adversary) = low AND
bearing(agent, adversary) = left
THEN turn(agent) = right

Next, we apply a conversion from qualitative to
quantitative op rules. The rules are given default
quantitative ranges. For example, if speed has two
values, slow and fast, we bisect the range of all pos-
sible values into two subranges. Then, we allow the
system to improve this initial choice of quantitative
ranges by using a GA to refine the initial ranges while
interacting with the environment.

3 Executing and Refining
Advice

The system we use to refine and apply the op rules
derived from our compiled advice is the SAMUEL
reactive planner [7]. We have chosen SAMUEL be-
cause this system has already proven to be highly ef-
fective for refining rules on complex domains [7, 25].
SAMUEL adopts the role of an agent in a multiagent
environment in which it senses and acts. This system
has two major components: a performance module and
a learning module. Section 4.2 explains how perfor-
mance interleaves with learning in our experiments.
The performance module, called the Competitive
Production System (CPS), interacts with a simulated
or real world by reading sensors, setting effector val-
ues, and receiving payoff from a critic. CPS performs
matching and conflict resolution on the set of op rules.
This performance module follows the match/conflict-
resolution/act cycle of traditional production systems.
Time is divided into episodes: the choice of what con-
stitutes an episode is domain-specific. Episodes begin
with random initialization and end when a critic pro-
vides payoff. At each time step within an episode, CPS
selects an action using a probabilistic voting scheme
based on rule strengths. All rules that match (or par-
tially match - see [7]) the current state bid to have their
actions fire. The actions of rules with higher strengths
are more likely to fire. If the world is being simulated,
then after an action fires, the world model is advanced
one simulation step and sensor readings are updated.
CPS assigns credit to individual rules based on feed-
back from the critic. At the end of each episode, all
rules that suggested actions taken during this episode
have their strengths incrementally adjusted to reflect
the current payoff. Over time, rule strengths reflect
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GoalStack OpCondStack

hd(V,A)#headon

*speed(V)=low

1
A
GoalStack OpCondStack
hd(V,A)#headon
*speed(V)=low
2 4
GoalStack OpCondStack GoalStack OpCondStack
*turn(]\\/):left *speed(V)=low *turn(A)=right *speed(V)=low|
*br(A,V)=right *br(A,V)=left
3 )
y A
GoalStack OpCondStack GoalStack OpCondStack
*turn(A)=left *speed(V)=low| *turn(A)=right *speed(V)=low
*br(A,V)=righ *br(A,V)=left

Figure 3: Example of compilation algorithm

the degree of usefulness of the rules.

SAMUEL’s learning module is a genetic algorithm.
GAs are motivated by simplified models of heredity
and evolution in the field of population genetics [8].
GAs evolve a population of individuals over a sequence
of generations. Each individual acts as an alternative
solution to the problem at hand, and its fitness (i.e.,
potential worth as a solution) is regularly evaluated.
During a generation, individuals create offspring (new
individuals). The fitness of an individual probabilisti-
cally determines how many offspring it can have. Ge-
netic operators, such as crossover and mutation, are
applied to produce offspring. Crossover combines ele-
ments of two individuals to form two new individuals;
mutation randomly alters elements of a single individ-
ual. In SAMUEL, an individual is a set of op rules,
i.e., a reactive plan. In addition to genetic operators,
this system also applies non-genetic knowledge refine-
ment operators, such as generalize and specialize, to
op rules within a rule set.

The interface between our compilation algorithm
and the SAMUEL system is straightforward. The out-
put of our compilation algorithm is a set of op rules for
the SAMUEL agent. Because the op rules may be in-
complete, a random rule is added to this rule set. The
random rule recommends performing a random action
under any conditions. The final rule set, along with
CPS and the GA learning component for improving
the rules, is our initial agent.

4 Evaluation

We have not yet analyzed the cost of our compilation
algorithm. The worst case cost appears to be expo-
nential in the sizes of the inputs to the algorithm be-
cause the STRIPS planning problem can be reduced
to it. In the future, we plan to investigate methods
to reduce this cost for complex realistic problems. Po-
tential methods include: (1) attaching a likelihood of
occurrence onto advice, which enables the agent to pri-
oritize which advice to compile first if time is limited,
(2) tailoring the levels of generality and abstraction
of the advice to suit the time available for compilation
(e.g., less abstract advice is closer to being operational
and therefore requires less compilation time), and (3)
generating a parallel version of the algorithm.

We have evaluated our multistrategy approach em-
pirically. We focus on answering the following ques-
tions:

1. Will our advice compilation method be effective
for a reactive agent on complex domains?

2. Will the coordination of multiple learning tech-
niques lead to improved performance over using
any one learning method? In particular, we want
the GA to increase the success rate of the com-
piled advice, and the advice to reduce the con-
vergence ttme of the GA. Success and failure have
domain-specific definitions (see Sections 4.3 and
4.4). The convergence time is defined as the time
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taken to ascend to a given success rate. A reduced
convergence time is useful when learning time is
limited.

3. Can we construct a portable SKB?

4.1 Domain characteristics

To address our questions, we have run experiments
on two complex problems: Evasion and Navigation.
Our choice of domains is motivated by the results of
Schultz and Grefenstette, who have obtained large per-
formance improvements by initializing the GA compo-
nent of SAMUEL with hand-coded op rules in these
domains [25]. Their success has inspired this work: our
objective is to automate their tedious manual task, and
the work described here is one step toward the goal.
Both problems are two-dimensional simulations of
realistic tactical problems. However, our simulations
include several features that make these two problems
sufficiently complex to cause difficulties for more tradi-
tional control-theoretic or game-theoretic approaches

[7]:

— A weak domain model: The learner has no initial
model of other agents or objects in the domain.
Most control-theoretic and game-theoretic models
make worst case assumptions about adversaries.
This yields poor designs in the worlds we consider
because we have statistical rather than worst case
adversaries.

— Incomplete state information: The sensors are
discrete, which causes perceptual aliasing: a
many-to-one mapping from actual states to per-

celved states.

— A large state space: The discretization of the state
space makes the learning problem combinatorial.
In the Evasion domain, for instance, over 25 mil-
lion distinct feature vectors are observed.

— Delayed payoff: The critic only provides payoff at
the end of an episode. Therefore a credit assign-
ment scheme is required.

— Noisy sensors: Gaussian noise is added to all sen-
sor readings. Noise consists of a random draw
from a normal distribution with mean 0.0 and
standard deviation equal to 5% of the legal range
for the corresponding sensor. The value that re-
sults is discretized according to the defined gran-
ularity of the sensor. A 5% noise level is sufficient
to slightly degrade SAMUEL’s performance.

4.2 Experimental design

Two sets of experiments are performed on each of the
two domains. Perception is noise-free for the first set,
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but noisy for the second. The primary purpose of the
first set is to address our question about the effective-
ness of our advice compilation method alone, with-
out GA refinement. Facts, nonop rules, advice, and
the set of operational sensors and actions are given
to the compiler and the output is a set of op rules.
The random rule is added to the op rules and this rule
set is given to SAMUEL’s CPS module to be applied
within the simulated world model. The baseline per-
formance with which these rules are compared is the
random rule alone. These experiments measure how
the success rate of the compiled rules compares with
that of the baseline as problem complexity increases,
where the success rate is an average over 1000 episodes.
Statistical significance of the differences between the
curves with and without advice are presented. Signif-
icance is measured using the large-sample test for the
differences between two means.

The primary purpose of the second set of experi-
ments is to address our question about the effective-
ness of the multistrategy approach (compilation fol-
lowed by GA refinement). We used the same set of
op rules (i.e., the output of the compiler) for this sec-
ond set of experiments as was used for the first set of
experiments. This rule set, plus the random rule, be-
comes every individual in SAMUEL’s initial GA pop-
ulation, i.e., it seeds the GA with initial knowledge.
The baseline performance with which these rules are
compared is SAMUEL initialized with every individ-
ual equal to just the random rule. In either case, GA
learning evolves this initial population. In other words,
we compare the performance of advice seeding the GA
with GA learning alone (i.e., random seeding). Ran-
dom seeding produces an initially unbiased GA search;
advice initially biases the GA search - hopefully into
favorable regions of the search space.

In this second set of experiments, performance of
the agent in the environment interleaves with GA re-
finement. SAMUEL runs for 100 generations using a
population size of 100 rule sets. Every 5 generations,
the best (in terms of success rate) 10% of the current
population are evaluated over 100 episodes to choose
a single plan to represent the population. This plan is
evaluated on 1000 randomly chosen episodes and the
success rate is calculated. This entire process is re-
peated 10 times and the final success rate, averaged
over all 10 trials, is found. The curves in our graphs
plot these averages. For this set of experiments, sta-
tistical significance is measured using the two-sample
t-test, with adjustments as required whenever the F
statistic indicates unequal variances.

We add sensor noise, as defined in Section 4.1, for
this second set of experiments because GAs can learn
robustly in the presence of noise [7]. Two performance
measures are used: the success rate and the conver-
gence time. The convergence time is defined as the
number of GA generations required to achieve and
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maintain an n% success rate, where n is different for
each of the two domains. The value of n is set empir-
ically.

4.3 Evaluation on the Evasion
problem

Our simulation of the Evasion problem is partially in-
spired by [4]. This problem was introduced in Section
2. The problem consists of an agent that moves in a
two-dimensional world with a single adversary pursu-
ing the agent. The agent is controlled by SAMUEL,
and the adversary is controlled by a simple set of rules.
The agent’s objective is to avoid contact with the ad-
versary for a bounded length of time. Contact implies
the agent is captured by the adversary. The prob-
lem is divided into episodes that begin with the ad-
versary approaching the agent from a random direc-
tion. The adversary initially travels faster than the
agent, but is less maneuverable (i.e., it has a greater
turning radius). Both the agent and the adversary
gradually lose speed when maneuvering, but only the
adversary’s loss 1s permanent. An episode ends when
either the adversary captures the agent (failure) or the
the agent evades the adversary (success). At the end
of each episode, a critic provides full payoff for success-
ful evasion and partial payoff otherwise, proportional
to the amount of time before the agent is captured.
The strengths of op rules that fired are updated in
proportion to the payoff.

The agent has the following operational sensors:
time, last agent turning rate, adversary speed, adver-
sary range, adversary bearing, and adversary heading.
The agent has one operational action: it can control
its own turning rate. For further detail, see [7].

In our experiments, we provide the following
domain-specific knowledge to the agent:

FACTS:
Chased-by(agent,adversary).
Moving(agent) .
Moving(adversary).

DOMATIN-SPECIFIC NONOP RULES:

IF chased-by(X,Y) AND
range(X,Y) = close AND
turn(X)=27

THEN turn(Y) = Z.

IF range(X,Y) # close AND
heading(Y ,X) # headon

THEN avoids(X,Y).

IF turn(adversary) = hard

THEN decelerates(adversary).

ADVICE:

IF speed(adversary) = high THEN
ACHIEVE decelerates(adversary).
IF speed(adversary) = low THEN
ACHIEVE avoids(agent,adversary).

D. Gordon and D. Subramanian

We also include knowledge of the agent’s operational
sensors and actions as facts. Ten SKB nonop rules are
used (they are instantiations of the two rules described
in English in the introduction of this paper). Although
room does not permit listing them all, some examples
are:

IF bearing(X,Y) = right AND
turn(X) = left

THEN heading(Y ,X) # headon.

IF bearing(X,Y) = left AND
moving (X)) AND
turn(X) = left

THEN range(X,Y) = close.

From our input and our SKB rules, the compilation
method of Section 2 generates op rules. The sensor val-
ues of these rules are translated from qualitative values
to default quantitative ranges. For example, bearing
= left is translated into bearing = [6..12], where
the numbers correspond to a clock, e.g., 6 means 6
o’clock. Every new rule is given an initial strength
of 1.0 (the maximum). The final op rule set includes
rules such as’

IF speed(adversary) = [700..1000] AND
range(agent,adversary) = [0..750]
THEN turn(agent) = hard-left.

The total number of op rules generated from our advice
is 16.

We begin our experiments by addressing the first
question, which concerns the effectiveness of our
advice-taking method. We do not use the GA. Prob-
lem difficulty is varied by adjusting a safety envelope
around the agent. The safety envelope is the distance
at which the adversary can be from the agent before
the agent is considered captured by the adversary.

Figure 4 shows how the performance (averaged over
1000 episodes) of these op rules compares with that of
just the random rule. All of the differences between
the means are statistically significant (using signifi-
cance level @ = 0.05). From Figure 4 we see that from
difficulty levels 80 to 120, the agent is approximately
twice as successful with advice than without it. This
is a 100% performance advantage. Furthermore, for
levels 130 to 160, the agent is about four times more
effective with advice. For levels 160 to 200, the agent
is an order of magnitude more effective with advice.
We conclude that as the difficulty of this problem in-
creases, the advice becomes more helpful relative to
the baseline. These results answer our first question:
our advice compilation method is effective on this do-
main.

We address the second question about multistrategy
effectiveness by combining the compiled advice with

1To generate a few of these rules, we used a variant of our
compilation algorithm. We omitted a description of this varia-
tion for the sake of clarity. See [6] for details.
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Figure 4: Results on the Evasion domain without GA
refinement. Y axis denotes success rate.

GA refinement. Figure 5 shows the results of com-
paring the performance of the GA with and without
advice. The safety envelope is fixed at 100 (chosen ar-
bitrarily) and noise is added to the sensors. For this
domain, the convergence time is the number of GA
generations required to maintain a 60% success rate.

Figure 5 shows that in a small amount of time (ap-
proximately 10 generations), the GA doubles the suc-
cess rate of the advice rules. Furthermore, the addition
of advice produces a 3.5-fold reduction in the conver-
gence time over using a GA with random initialization.
The differences between the means are statistically sig-
nificant for the first 65 generations, but not afterwards
(e = 0.05).2 Apparently, the advice initially biases the
GA into a favorable region of the search space, which
improves the convergence time over random initializa-
tion. The convergence value, however, does not appear
to be higher with advice than without it because even-
tually the performance of the randomly initialized GA
is roughly equivalent to that of the GA seeded with
advice.

4.4 Evaluation on the Navigation
problem

In the Navigation domain, our agent is again con-
trolled by SAMUEL in a two-dimensional simulated
world. The agent’s objective is to avoid obstacles and
navigate to a stationary target with which it must ren-
dezvous before exhausting its fuel (implemented as a
bounded length of time for motion). Each episode be-

?These results differ from the results presented in [6]. This
discrepancy results from an improvement in the initial rule
strengths. Future work will focus on studies analyzing system
sensitivity to parameter variations. Our initial studies indicate
that performance is more robust with respect to changes in
some parameters, e.g., variations in the qualitative to quanti-
tative mappings, than to changes in others, e.g., the initial rule
strengths.
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Figure 5: Results on the Evasion domain with the GA.
Y axis denotes success rate.

gins with the agent centered in front of a randomly
generated field of obstacles with a specified density.
An episode ends with either a rendezvous at the tar-
get location (success) or the exhaustion of the agent’s
fuel or a collision with an obstacle (failure). At the
end of an episode, a critic provides full payoff if the
agent reaches the target, and partial payoff otherwise,
depending on the agent’s distance to the goal.

The agent has the following operational sensors:
time, the bearing of the target, the bearing and range
of an obstacle, and the range of the target. The agent
has two operational actions: it can control its own
turning rate and its speed. For further detail, see [24].

We provide the following domain-specific knowledge
(in addition to a list of operational sensors and ac-
tions):

FACTS:
Moving(agent) .

DOMAIN-SPECIFIC NONOP RULES:
IF range(X,Y) # close AND

heading (Y ,X) # headon
THEN avoids(X,Y).

ADVICE:

IF range(agent,obstacle) # close THEN
ACHIEVE range(agent,target) = close.
IF range(agent,obstacle) = close THEN
ACHIEVE avoids(agent,obstacle).
ACHIEVE speed(agent) = high.

The same 10 SKB nonop rules used for Evasion are
again used for this domain and are successful in the
compilation procedure. This confirms the portability
of our SKB for these two domains, thus addressing our
third question. Also, although the definition of avoids
was intended to be domain-specific, it actually applies
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Figure 6: Results on the Navigation domain without
GA refinement. Y axis denotes success rate.

to both of our domains.
generated 3

Again, we address the first question by using
SAMUEL without the GA. We increase the problem
difficulty on this domain by increasing the number of
obstacles. The success rate is an average over 1000
episodes. Without advice, the success rate is 0% be-
cause this is a very difficult domain. Figure 6 shows
how we improve the success rate to as much as 90% by
using our advice on this domain. We increase problem
difficulty by increasing the number of obstacles. At
all but the last few points, the differences between the
means are statistically significant (o = 0.05). When
we vary the number of obstacles, performance follows
a different trend than for the Evasion domain. By far
the greatest benefit of the advice occurs when there
are few obstacles. The success rate is 90% with advice
and 0% without advice when there is only one obsta-
cle, for example. The advantage drops as the problem
complexity increases. After difficulty level 80, the par-
ticular advice we gave the agent no longer offers any
benefit. For this level of problem difficulty, different
advice is probably more appropriate.

Our experiments on both domains confirm that our
advice compiler can be effective, however, they also
indicate that the usefulness of advice may be restricted
to a particular range of situations. Another learning
task, which we are currently exploring, would be to
identify this range and add additional conditions to
the advice.

A total of 42 op rules are

We address the second question by comparing the
performance of the GA with and without advice. Noise
is added. Figure 7 shows the results. All differences
between the means are statistically significant (o =
0.05). Here, the number of obstacles is fixed at five
(chosen arbitrarily). For this domain, the convergence

3We were able to decrease the number of op rules to 9 by
making one careful qualitative to quantitative mapping choice.
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Figure 7: Results on the Navigation domain with the
GA. Y axis denotes success rate.

time is the number of GA generations required to
maintain a 95% success rate.

Figure 7 shows that the addition of advice yields
an enormous performance advantage on this domain.
Figure 7 also shows that given a moderate amount of
time (10 generations), the GA provides a 10% increase
in the success rate. Furthermore, the addition of ad-
vice produces an 18-fold improvement in the conver-
gence time over using GAs alone. Not only does advice
improve the convergence time, but it also appears to
improve the level of convergence: after 80 generations,
the GA with advice holds a 99% or above success rate
whereas after all 100 generations the GA without ad-
vice still cannot get above a 97% success rate.*

To further test our compilation method, we have
recompiled our Navigation advice into op rules for a
Nomad 200 mobile robot that is equipped with very
noisy sonar and infrared sensors and can adjust its
turning rate and speed. The sensors are so noisy that
the robot sometimes mistakes two boxes four feet apart
for a wall. The op rules that result from compilation
have not been refined by the GA to develop a tolerance
to noise; therefore, this noise poses a severe challenge.

The op rules are linked to a vendor-provided inter-
face that translates the language of the SAMUEL rules
(e.g., IF asonar4 [17..85] THEN SET turn -400)
into joint velocity and servo motor commands. From
high-level advice to avoid obstacles and rendezvous
with a goal point, our method has compiled rules that
enable the robot to succeed approximately a third of
the time in avoiding three large boxes and reaching
a goal point on the other side of a room. The same
SKB rules are used for compilation. With the random

4On both this domain and the one described in the previ-
ous section, our results are for 100 GA generations. In future
work we plan to run the GA longer to determine whether our
conclusions hold over a longer time period.
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rule alone, it is extremely unlikely to successfully com-
plete this task. Our next step will be to refine these
robot rules using GAs within a simulation of this ac-
tual domain.®

In conclusion, our multistrategy system offers two
advantages. First, it provides an initial boost from
seeding with high-level knowledge. On both simulated
domains we see a significant reduction in the conver-
gence time - an order of magnitude on the Navigation
domain. Second, the multistrategy system provides
the robustness and improvement gained from GA re-
finement. Refinement yields a 10% increase in the
success rate on Navigation and a 100% increase on
Evasion. The fact that on both domains the advice
biases the GA into a favorable region and significantly
reduces its convergence time is very important in com-
plex domains where a GA approach alone may not be
feasible or may be very inefficient. Finally, the effec-
tiveness of our advice-taking method has been con-
firmed on a robot with poor sensory capabilities.

To determine whether the presence of noise influ-
ences our conclusions, we have repeated our experi-
ments on the two simulated domains with sensor read-
ings that are not noisy. Although the success rates
differ slightly, our conclusions still hold.

5 Related Work

This work relates most strongly to the following top-
ics in machine learning: advice taking, combining pro-
jective and reactive planning, methods for compiling
high-level goals into reactive rules, learning in fuzzy
controllers, and multistrategy learning. This work also
relates to research in differential game theory. We dis-
cuss each in turn.

5.1 Machine Learning

Advice taking has been considered by McCarthy as
early as 1958 [15] and later by Mostow [19] and oth-
ers. To date, research on assimilating advice in em-
bedded agents has been limited but encouraging. Pre-
vious research has focused mainly on providing low-
level knowledge. For example, Laird et al. [11] and
Clouse and Utgoft [3] have had good success providing
agents with information about which action to take.
Chapman gives his agent high-level advice [2] . Our
advice taker differs from Chapman’s because it can
operationalize advice long before the advice is applied
and because it refines the advice with a GA. Most im-
portant of all, our advice taking method is unique be-
cause it involves a multistrategy approach that couples
a knowledge-intensive deductive precompilation phase
with an empirical inductive refinement phase.

5We wish to use SAMUEL both to handle the noise and
because we had to manually refine the qualitative to quantitative
mappings somewhat - SAMUEL could automate this.
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We assume that high-level knowledge is operational-
ized but not applied immediately. Methods for oper-
ationalizing advice that will be applied immediately
include STRIPS-like planners [20] and explanation-
based learning (EBL) planners e.g., [26]. A closely
related system is Mitchell’s [17]. This system com-
bines EBL projective planning with reactive planning.
Our method for compiling goals is similar to that of
EBL because it uses the notion of operationality. It
differs because we do not assume that the advice will
be applied immediately, and therefore our compilation
method has no current state on which to focus plan
generation. All of the above-mentioned methods cre-
ate a projective plan to achieve a goal from the cur-
rent state. We precompile advice for multiple possible
states.

Because our method precompiles plans from possi-
ble states rather than from a current state, it is very
similar to the methods of Schoppers [23] and Kaelbling
[9] for compiling high-level goals into low-level reactive
rules. Our method differs from those of Schoppers and
Kaelbling because it includes the EBL notion of oper-
ationality. Also unlike Schoppers and Kaelbling, we
use a refinement method following compilation.

Considerable prior work has focused on knowledge
refinement. Others have used GAs to refine qualita-
tive to quantitative mappings. For example, Karr uses
GAs to select fuzzy membership functions for a fuzzy
controller [10]. Lin, Mahadevan and Connell, and
Singh initialize their systems with modular agent ar-
chitectures then refine them with reinforcement learn-
ing [12], [14], and [27]. Lin trains a robot by giving
it advice in the form of a sequence of desired actions.
Mahadevan and Connell initialize their reinforcement
learner with a prespecified subsumption architecture,
and Singh guides his reinforcement learner by giving
it abstract actions to decompose.

One of the most similar approaches to ours is that of
Towell and Shavlik [31]. They also couple rule-based
input with a refinement method; however, their refine-
ment method is neural networks. This multistrategy
system converts rules into a network topology. The
content of each rule is preserved; therefore, the trans-
formation is syntactic. Our multistrategy system, on
the other hand, focuses primarily on semantic trans-
formations that use qualitative knowledge about move-
ments in space to convert abstract goals into concrete
actions. Ram and Santamaria [22] present a multi-
strategy refinement scheme for a parametric agent per-
forming a navigation task. In contrast with our genetic
algorithms based approach, their system acquires val-
ues for the defined parameters by using reinforcement
learning. Different parameter value combinations are
acquired for distinct environment subclasses. The in-
teresting feature of their system is the explicit iden-
tification of different environmental configurations us-
ing case-based reasoning. The identification of reg-
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ularities in the environment occurs implicitly in the
genetic algorithms approach. The deductive compi-
lation scheme (but not the refinement) is in common
with Mitchell et al’s derivation of a strategy for push-
ing objects in a tray using a qualitative theory of the
process [18].

5.2 Differential game theory

Differential game theory is a branch of mathematical
optimal control theory. It assumes that the behavior
of the controlled system can be modeled as a system
of ordinary differential equations (ODEs). The evasion
problem considered in this paper is a typical example
of a differential game. In particular, the problem is
two-person zero-sum differential game with a constant
terminal ttme. Both the pursuer and the evader move
in a bounded rectangle in two dimensions. The evader
has to avoid getting to within a certain distance of the
pursuer for a certain length of time. In the minimax
formulation of the problem, the optimal strategy of the
evader 1s one that achieves its objective under the least
favorable assumptions on the motion of the pursuer.

Differential games are formulated mathematically
by specifying the motion equations of the pursuer and
evader, the class of admissible controls for both sys-
tems (which identifies the way in which the pursuer
and evader can change their motions), and the tar-
get or goal functional. A classic reference for this is
[1]. The focus of work in differential game theory is
to identify conditions under which optimal strategies
for the evader can be derived. This assumes complete
knowledge of the dynamics of the evader and pursuer,
both of which are unavailable to us. The theory would
be more useful to us if it had a qualitative counterpart
which allowed us to determine the existence of solu-
tions to the evader’s problem from partial knowledge
of the evader and pursuer’s dynamics.

6 Discussion

We have presented a novel multistrategy learning
method for operationalizing and refining high-level ad-
vice into low-level rules to be used by a reactive agent.
Operationalization uses a portable SKB. An imple-
mentation of this method has been tested on two com-
plex domains and a Nomad 200 robot.

We have learned the following lessons:

1. Our advice compiler can be effective on complex
domains, and it will be important to identify the
regions of greatest effectiveness for advice,

2. A portable SKB appears feasible, and

3. Coordinating a deductive learning strategy (ad-
vice compilation) with an inductive learning strat-
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egy (GA refinement) can lead to a substantial per-
formance improvement over either method alone.

This success, however, depends on the how the advice
biases the GA search. Future work will focus on iden-
tifying those characteristics of advice that bias this
search favorably. We will also focus on further ad-
dressing our questions about performance using differ-
ent advice and alternative domains (e.g., [28]).

Many other interesting directions are suggested by
our experimental results. At present we do not con-
sider the cost of incorporating advice. For larger scale
problems and situations where advice is provided more
frequently, the agent has to reason about the costs and
benefits of compiling advice at a given point in time.
Classical issues in trading off deliberation time for ac-
tion time are relevant here.

Another issue for future study is the problem of op-
erationalization theory incompleteness. For example,
our SKB was sufficiently complete for both domains
but had it not been, we would have been faced with the
problem of supplementing this knowledge base with
additional rules. We are considering an approach like
that used in the DISCIPLE system [29] to elicit advice
and learn rules for operationalizing the advice.

We have chosen the GA method for refinement be-
cause 1t was readily available to us. A comparison of
a neural network and other approaches with our cur-
rent GA approach, on the problems studied here, will
provide valuable insights into the tradeoffs between
different refinement strategies. We believe that mul-
tistrategy learning systems of the future must have
a bank of operationalization and refinement methods
at their disposal and have fast methods for selecting
them. We have chosen a specific breakdown of effort
between the advice compilation and refinement phases.
How this coordinates with our choice of problem do-
mains and refinement schemes is another question for
future study.
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