In the Proceedings of the 15th International Conference on Machine Learning (ICML-98)

Well-Behaved Borgs, Bolos, and Berserkers

Diana F. Gordon
Naval Research Laboratory, Code 5510
4555 Overlook Avenue, SW.
Washington, DC 20375

gordon@aic.nrl.navy.mil

Abstract

How can we guarantee that our software and
robotic agents will behave as we require, even
after learning? Formal verification should
play a key role but can be computationally
expensive, particularly if re-verification fol-
lows each instance of learning. This is espe-
cially a problem if the agents need to make
rapid decisions and learn quickly while on-
line. Therefore, this paper presents novel
methods for reducing the time complexity of
re-verification subsequent to learning. The
goal is agents that are predictable and can
respond quickly to new situations.

1 INTRODUCTION

Software and robotic agents are becoming increasingly
prevalent. Agent designers can furnish such agents
with plans to perform desired tasks. Nevertheless,
a designer cannot possibly foresee all circumstances
that will be encountered by the agent. Therefore, in
addition to supplying an agent with plans, it is es-
sential to also enable the agent to learn and mod-
ify its plans to adapt to unforeseen circumstances.
The introduction of learning, on the other hand, of-
ten makes the agent’s behavior significantly harder to
predict. Our objective is to develop methods that pro-
vide verifiable guarantees that the behavior of learning
agents always remains within the bounds of specified
constraints (called “properties”), even after learning.
An example of a property is Asimov’s First Law of
Robotics (Asimov, 1942). This law, which has recently
been studied by Weld and Etzioni (1994), states that
a robot may not harm a human or allow a human to
come to harm. Weld and Etzioni advocate a “ ‘call

to arms:” before we release autonomous agents into
real-world environments, we need some credible and
computationally tractable means of making them obey
Asimov’s First Law...how do we stop our artifacts from
causing us harm in the process of obeying our orders?”
Asimov’s law can be operationalized into specific prop-
erties testable on a system, e.g., “Never delete another
user’s file.” This paper addresses Weld and Etzioni’s
“call to arms” in the context of adaptive agents. It is
a very important topic for real-world agents and is a
dominant theme in science fiction, which is sometimes
prescient. Examples include the Borgs (Star Trek, The
New Generation), Bolos (Laumer, 1976), and Berserk-
ers (Saberhagen, 1967) — fictional agents that demon-
strate the dangerous behavior that can result from in-
sufficient constraints.

We assume that an agent’s plan has been initially veri-
fied offline. Then, the agent is fielded and has to adapt
online. After adaptation via learning, the agent must
rapidly re-verify its new plan to ensure this plan still
satisfies required properties.! Re-verification must be
as computationally efficient as possible because it is
performed online, perhaps in a highly time-critical sit-
uation. There are numerous applications of this sce-
nario, including software agents that can safely ac-
cess information in confidential or proprietary environ-
ments while responding to rapidly changing access re-
quirements, planetary rovers that quickly adapt to un-
foreseen planetary conditions but behave within criti-
cal mission constraints, and JAVA applets that can get
smarter but not become destructive to our computing
environments.

Typically, properties desired by a user are orthogonal
to the agent’s planning goals and to its learning goals.

!Current output is success/failure. Future work will
consider using re-verification counterexamples to choose a
better learning method when re-verification fails.

For example, the agent may generate a plan with the
objective of maximizing the agent’s profit. Learning
might have the goal of achieving the agent’s plan more
efficiently or modifying the plan to adapt to unforeseen
events. The designer also may have a constraint that
the agent does not cheat in its dealings with other
agents. Why doesn’t the planner incorporate all prop-
erties into the plan? There are a number of possible
reasons, e.g., not all properties may be known at the
time the plan is developed, or security reasons.

Re-verification can be (from least to most time re-
quired): none, incremental, or complete. It is pos-
sible to avoid re-verification entirely if we restrict the
agent to using only those learning methods determined
a priori to be “safe” with respect to certain classes of
properties in which we are interested. In other words,
if a plan satisfies a property prior to learning, we want
an a priori guarantee that the property will still be
satisfied subsequent to learning. Note that this incurs
no run-time cost. It is called “moving a tester into the
generator” or “compiling constraints.”

Unfortunately, the safety of some learning methods
may be very difficult or maybe impossible to deter-
mine a priori. When a priori determination is too dif-
ficult, it is helpful to use incremental re-verification.
Incremental methods save computational costs over
re-verification from scratch by localizing re-verification
and /or by reusing knowledge from the original verifica-
tion. Furthermore, incremental methods may identify
positive results that cannot be determined a priori.
When an agent needs to learn, we suggest that the
agent should consult the a priori results first. If no
positive results exist, then incremental re-verification
proceeds. The least desirable of the three alternatives
is to do complete re-verification from scratch.

Gordon (1997a) begins to explore the extent to which
we can prove a priori results that certain machine
learning operators are, or are not, safe for certain
classes of properties. The paper has positive a priori
results for plan efficiency improvements via deletion
of plan elements, as well as for plan refinement meth-
ods. Unfortunately, we have not yet obtained positive
a priori results for popular machine learning operators
such as abstraction (unless one is willing to accept an
abstracted property) or generalization. Abstraction
is a more global operator than generalization. Ab-
straction alters the language of a plan (e.g., by feature
selection), whereas generalization alters the condition
for a state-to-state transition within a plan. Both are
extremely common operators in concept learning, but
are also very appropriate for plan modification.

This paper has two contributions beyond (Gordon,
1997a). First, the previous paper models agent plans
using automata on infinite strings. This paper reaches
a wider audience by using the more familiar automata
on finite strings. Second, this paper addresses two,
new questions: Are there situations in which an ab-
stracted property is acceptable? If yes, we have pos-
itive a priori results for abstraction. Also, can we
get positive results by using incremental re-verification
rather than a priori? Initial, positive answers to these
questions are presented here.

The remainder of this paper is organized as follows.
Section 2 presents an illustrative example that is used
throughout the paper. 2 Section 3 contains back-
ground material and definitions on automaton plans,
temporal logic properties, and “safe” learning. The
formal definitions provide a precise foundation for un-
derstanding the incremental re-verification methods
presented later. Section 4 lists situations in which
property abstraction is acceptable. Sections 4 and 5
present novel (and as far as we are aware, the only)
methods for incremental re-verification of abstraction
and generalization, respectively, on automata. Finally,
time complexity comparisons between incremental and
complete re-verification are provided.

2 ILLUSTRATIVE EXAMPLE

This section provides an example to illustrate some
of the main ideas of the paper. Although the plan
in this example is very small, it is important to point
out that existing automata-based verification methods
currently handle huge, industrial-sized problems (e.g.,
see Kurshan, 1994). Our goal is to improve the time
complexity of verification over current methods when
learning occurs.

In our example, hundreds of tiny, micro air vehicles
(MAVs) are required to perform a task within a region.
The MAVs are divided into two groups called “swarm
A” and “swarm B.” One constraint, or property, is that
only one MAV may enter the region at a time — because
multiple MAVs entering simultaneously would increase
the risk of detection. Each swarm has a separate FIFO
queue of MAVs. MAVs enter the queue when they
return from their last task. A second constraint is that
some (at least one) MAVs from each swarm eventually
enter the region. One distinguished MAV, C| acts as a

2Examples in this paper have been implemented us-
ing Kurshan’s COSPAN verification system. COSPAN is
an AT&T verification tool, which is described in Kurshan
(1994).

(Amo-MAVs) +
((A:MAVs-wait) * = (C:go-A))

= WAIT)

(Amo-MAVs) +
((A:MAVs-go) *
~(Cigo-A))

(A:MAVs-wait) *
(C:go-A)

GO
O (A:MAVs-go) * (C:go-A)
Figure 1: Plan A

task coordinator. C selects which swarm, A or B, may
send in an MAV next.3

Plans for swarm A and task controller C are shown in
Figures 1 and 2. The plan for swarm B is not shown
in the figure, but it is identical to the plan for A ex-
cept all instances of “A” are replaced by “B.” Each
of these plans is a finite-state automaton, i.e., a graph
with states (the vertices) and allowable state-to-state
transitions (the directed edges between vertices). The
transition conditions (i.e., the logical expressions label-
ing the edges) describe the set of actions that enable a
state transition to occur. The possible actions A can
take from a state are (Amo-MAVs), (A:MAVs-wait),
or (A:MAVs-go). The first action means the queue is
empty, the second that the queue is not empty but
the MAVs in the queue must wait, and the third that
the first MAV in the queue enters the region. Likewise
for B. The possible actions C can take from a state
are (C:go-A) or (C:go-B). The first action means con-
troller C allows swarm A to send one MAYV into the
region, the second means C allows B to send one MAV
into the region.

Swarms A and B are single agents, i.e., although indi-
vidual MAVs may each have their own plan, such as
queuing within a swarm, for simplicity we ignore that
level of detail. We can form a multiagent plan by tak-
ing a “product” (see Section 3.1) of the plans for A, B,
and C. This product synchronizes the behavior of A,
B, and C in a coordinated fashion. At every discrete
time step, every agent (A, B, C) is at one state in its
plan, and it selects its next action. The action of one
agent (e.g., A) becomes an input to the other agents’
plans (e.g., B and C). If the joint actions chosen by all
three agents satisfy the transition conditions of a plan
from the current state to some next state, then that
transition may be made. For example, if the agents

®This example is a variant of the traffic controller in
Kurshan (1994).

(C:go-A) =*
—(B:MAVs-wait)

~

(C:go-B) *
(A:MAVs-wait)

~(coB)
() (Cigo-B) * ~(AMAVs-wait)

Figure 2: Plan C

(C:go-A) =*
(B:MAVs-wait)

jointly take the actions (A:MAVs-wait) and (B:MAVs-
wait) and (C:go-A), then the multiagent plan can tran-
sition from the global, joint state (WAIT, WAIT, GO-
A) to the joint state (GO, WAIT, GO-B) represented
by triples of states in the automata for agents A, B,
and C.

Given the full, multiagent plan, verification now con-
sists of asking the question: Does this plan satisfy the
two required properties, 1.e., some MAVs from each
swarm enter the region, but only one MAV enters the
region at a time? Assuming our initial plan in Figures
1 and 2 satisfies these properties, we next ask whether
the properties are still satisfied subsequent to learning.
The latter question is the topic of this paper.

An example of learning is the following. Suppose co-
ordinator C discovers that the B swarm has left the
region. One way agent C can adapt to incorporate
this new knowledge is by deleting the action (C:go-B)
from its action repertoire. This is a form of abstrac-
tion. There are alternative modifications agent C can
do, but the selection between these alternatives is a
learning issue, which we do not address here. What
we do address here are the implications of this choice,
in particular, which learning methods are safe, i.e.,
preserve the properties.

3 PLANS, PROPERTIES, AND
“SAFE” LEARNING

3.1 AUTOMATON PLANS

This subsection, which is based on Kurshan (1994),
briefly summarizes the basics of the automata used
to model plans. Figures 1 and 2 illustrate the defini-
tions. Essentially, an automaton is a graph with ver-
tices corresponding to states and directed edges corre-
sponding to state-to-state transitions. The terms “ver-
tex” and “state” are used interchangeably throughout

the paper. For an automaton representing an agent’s
plan, vertices represent the internal state of the agent
and/or the state of its external environment. State-to-
state transitions have associated transition conditions,
which are the conditions under which the transition
may be made. An agent action that satisfies a transi-
tion condition enables that transition to be made. We
assume finite-state automata, i.e., the set of states is
finite, and that the transition conditions are elements
of a Boolean algebra. Therefore, we briefly digress to
summarize the basics of Boolean algebras.

A Boolean algebra K is a set with distinguished ele-
ments 0 and 1, closed under the Boolean operations *
(logical “and”), + (logical “or”), and — (logical nega-
tion), and satisfying the standard properties (Kurshan,
1994).

The Boolean algebras are assumed to be finite. There
is a partial order among the elements, <, which is
defined as x < y if and only if z xy = x. The elements
0 and 1 are defined as Ve € K, 0 <z and Vz € K, z <
1. The atoms of K, T'(K), are the nonzero elements
of K minimal with respect to <. For two different
atoms z and y within the same Boolean algebra, z xy
= 0. For Figures 1 and 2, agents A, B, and C each
have their own Boolean algebra with its atoms. The
atoms of A’s Boolean algebra are the actions (A:no-
MAVs), (A:MAVs-wait), and (A:MAVs-go); the atoms
of B’s algebra are (B:no-MAVs), (B:MAVs-wait), and
(B:MAVs-go); the atoms of C’s algebra are (C:go-A)
and (C:go-B).

A Boolean algebra K’ is a subalgebra of K if K’ is a
non-empty subset of K that is closed under the op-
erations *, +, and —, and also has the distinguished
elements 0, 1. Let K = [[K;, i.e., K is the product
algebra of the K;. In this case the K; are subalgebras
of K. An atom of the product algebra is the product of
the atoms of the subalgebras. For example, if ay, ..., a,
are atoms of subalgebras Ky, ..., K, , respectively, then
ay * ... x a, 1s an atom of K.

In Figure 1, the Boolean algebra 4 used by agent A
is the smallest one containing the atoms of A’s alge-
bra. It contains all Boolean elements formed from A’s
atoms using the Boolean operators *, +, and —, includ-
ing 0 and 1. These same definitions hold for B and C’s
algebras B and C. One atom of the product algebra
ABC is (A:no-MAVs) * (B:no-MAVs) * (C:go-A). This
is the form of actions taken by the three agents in the
multiagent plan. Algebras A, B, and C are subalge-
bras of the product algebra ABC. Finally, ABC is the

Boolean algebra for the transition conditions in the

multiagent plan.

Let us return now to automata. This paper focuses on
automata that model agents with finite lifetimes (rep-
resented as a finite string, or sequence of actions). An
example is an agent that is created specially to exe-
cute a plan and is destroyed immediately afterwards.
In particular, we focus on processes. Processes are
automata, but they are the dual of our usual notion of
an automaton, which accepts any string beginning in
an initial state and ending in a final state (Hopcroft &
Ullman, 1979). Instead, processes accept any string
beginning in an initial state and ending in a non-
final state.* A string is a sequence of actions (atoms).
Therefore, by specifying the set of final states, we can
infer the set of action sequences not permitted by the
plan. It consists of those strings ending in a final state.
All other action sequences that begin in an initial state
are permitted by the plan. Processes are used here to
be consistent with the automata theoretic verification
literature.

Formally, a process is a three-tuple S =
(Mx(S),I(S), F(S)) where K is the Boolean algebra
corresponding to S. Mx(S) : V(S) x V(S) — K is the
matrix of transition conditions, which are elements of
K, V(S) is the set of vertices of S, I(S) C V(S) are
the initial states, and F(S) C V(S) are the final states.
Also, E(S) = {e € V(S) x V(S) | Mk(e) # 0} is the
set of directed edges connecting pairs of vertices of S,
and My (e) is the transition condition of M (S) corre-
sponding to edge e. Note that we omit edges labeled
“0.” By our definition, an edge whose transition con-
dition is 0 does not exist. We can alternatively denote
My (e) as M (v;,v;41) for the transition condition cor-
responding to the edge going from vertex v; to vertex
vit+1. For example, in Figure 1, Mx (WAIT, GO) is
(A: MAVs-wait) x (C: go-A).

Figures 1 and 2 illustrate the process definitions.
There are process plans for two agents: swarm A and
task coordinator C. Recall that agent B is identical
to A but with “A” replaced by “B.” An incoming ar-
row to a state, not from any other state, signifies that
this is an initial state. Recall that the output actions
of process A are its atoms, and likewise for processes
B and C. The transition conditions are the labels on
the edges. We assume for process X = A, B, or C,
F(X) = 0, ie., there are no final states. Therefore
every finite string of actions that starts in an initial
state and satisfies the transition conditions is accept-

*For the case of deterministic and complete transition
conditions, reversing the acceptance condition will comple-
ment the language.

able behavior for the plan.

A multiagent plan is formed from single agent plans by
taking the tensor product of the processes correspond-
ing to the individual plans. Essentially, this is done
by taking the Cartesian product of the vertices and
the intersection of the transition conditions. For de-
tails see Kurshan (1994). The product process models
a set of synchronous processes. The Boolean algebra
corresponding to the product process is the product
algebra. For Figures 1 and 2, to formulate the process
S modeling the entire multiagent plan, we take the ten-
sor product S = A ® B @ C of the three processes. For
this tensor product, I(S) = { (WAIT, WAIT, GO-A),
(WAIT, WAIT, GO-B) }, and F(S) = (. The tensor
product process is not shown in a figure because it’s
quite large.

Formally, a string x is a finite-dimensional vector,
(zg,...,xn) € I‘(IC)+, i.e., a string is a sequence of
one or more actions. A run v of string x is a se-
quence (vg, ..., Up41) of vertices such that Vi, 0 < i < n,
z; * M (vi,vi41) # 0, 1e., ; < Mx(v;,vi41) because
the z; are atoms.

The language of S'is £(S) = {x € T(K)t | x has a
run in Mx(S) from I(S) to V(S)\ F(S)}. Such a run
is accepting. The language of a plan is the set of all
action sequences (i.e, strings) allowed by the plan.

An example string in the language of process S,
the multiagent process that is the product of A,
B, and C, is (((A:MAVs-wait) * (B:MAVs-wait) *
(C:go-A)), ((A:MAVs-go) * (B:MAVs-wait) * (C:go-
B)), ((A:MAVs-wait) * (B:MAVs-go) * (C:go-B)),
((A:MAVs-wait) * (B:MAVs-go) * (C:go-A))). This is
a sequence of atoms of S. An accepting run of this
string is ((WAIT, WAIT, GO-A), (GO, WAIT, GO-
B), (WAIT, GO, GO-B), (WAIT, GO, GO-A), (GO,
WAIT, GO-A)). Because F(S) = 0, all runs beginning
in an initial state are accepting runs and they form the
elements of the language of S.

3.2 TEMPORAL LOGIC PROPERTIES

We assume properties are expressed in temporal logic.
For formal versions of the definitions here, see Manna
and Pnueli (1991). Linear time is assumed here. In
other words, time proceeds linearly and we do not
consider simultaneous possible futures. The type of
verification used in this paper is “model checking.” In
other words, verification tests whether S | P for plan
S and property P, i.e., whether plan S “models,” or
satisfies, property P.

For consistency with the temporal logic literature, we
define a computational state (c-state) as the action
chosen from each process state. Then a computation is
a finite sequence of temporally ordered computational
states, i.e., a string. To distinguish the two types of
states, we will refer to a process state as a p-state.

P is a property true (false) for a process S, ie., S |= P
(S [£ P), if and only if it is true for every string in the
language £(S) (false for some string in £(S)). The
notation x |= P (x [£ P) means string x satisfies (does
not satisfy) property P, i.e., the property holds (does
not hold) for x. Before defining what it means for
properties to be true (i.e., hold) for a string, we first
define what it means for a formula that is Boolean
expression to be true at a c-state. A c-state formula
p is true (false) at c-state z;, ie, z; = p (2; & p)
if and only if z; < p (z; £ p), i-e., z;*p # 0 (= 0)
because p is a Boolean expression with no variables on
the same Boolean algebra used by process S, and z;
is an atom of that algebra. For example, (A:MAVs-
wait) = ((A:MAVs-wait) + (Amo-MAVs)) for c-state
(A:MAVs-wait) and c-state formula ((A:MAVs-wait)
+ (A:no-MAVs)).

A c-state formula p is true/false in particular c-states
of a string. Property P is defined in terms of p, and
is true/false of an entire string, i.e., x = P or x [£ P
for string x. We now define two property classes that
are among those most frequently encountered in the
verification literature for finite strings. Assume x =
(2o, ..., &n) is a string of process S. For c-state formula
p and plan S, define Sometimes property P = & p
(“Sometimes p”) as a property that is true for string x
if only if p is true in at least one c-state x; of x, where
0 < ¢ < n. An Invariance property P = Ep (“Invariant
p”) is a property true for string x if and only if p is
true in every c-state z; of x.

Continuing with the MAVs example, a desirable In-
variance property Py states that “only one MAV enters
the region at a time.” This can be expressed in tempo-
ral logic as Py = B(— ((A:MAVs-go) * (B:MAVs-go))).
A desirable Sometimes property Pg states that “Some-
times MAVs from swarm A enter the region.” In logic
this property is expressed as Pg = & (A:MAVs-go).
Pr, but not Pg, holds for the multiagent plan S.

3.3 “SAFE” LEARNING

This paper is concerned with “safe” machine learning
methods (SMLs), i.e., machine learning operators that
preserve properties, also called “correctness preserv-
ing mappings.” For plan S and property P, suppose

verification has succeeded prior to learning, i.e., Vx,
x € L(S) implies x = P (i.e., S |= P). Then according
to Gordon (1997a), a machine learning operator ml(\S)
is an SML if and only if verification succeeds after
learning, i.e., Vx, x € L£(ml(S)) implies x |= ml(P).
Note that a machine learning operator may also affect
the property P, which could be undesirable. There-
fore, being an SML is not always sufficient. Additional
requirements on learning — in particular, abstraction,
are discussed next.

4 BOOLEAN ALGEBRA
ABSTRACTION

Kurshan (1994) presents methods for improving the
efficiency of automata-based verification, but does not
consider the possibility of automata, such as agents,
that can learn. By applying some of the results of
Kurshan (1994) in a novel way, Gordon (1997a; 1997b)
shows that when agents learn using certain abstrac-
tions, the abstractions are a priori guaranteed to be
SMLs for all property classes — but only if abstraction
is performed to both the plan and property. ® There-
fore, this section identifies situations in which it is ac-
ceptable to apply an SML abstraction to a property.

The SML abstractions include very useful ones, such as
partitioning the Boolean algebra atoms e.g., using con-
structive induction, and projection, which is a form of
feature selection (or, more properly, action deletion).
Although the methods described in this section apply
to any of these abstractions, for illustration we focus
only on projection, which is a mapping from a Boolean
algebra to a subalgebra. For a formal definition of pro-
jection, see Kurshan (1994). Here, we continue with
the MAVs example.

Suppose all the MAVs in the B swarm leave the re-
gion. To incorporate this knowledge, Boolean algebra
projection, a type of abstraction, projects the product
algebra ABC onto subalgebra AC. Projection proj 4 :
ABC — AC is defined as proj c(a*b*xc) = ax*c
for atoms @ € T'(A), b € T'(B) and ¢ € T(C), and
is extended linearly to the full algebra. For example,
projac ((A: MAVs-wait) * (B: MAVs-wait) x (C: go-
A)) = (A: MAVs-wait) * (C: go-A). In addition to re-
moving entire subalgebras, it is also possible to remove
atoms from within a subalgebra.

Projection proj 4o removes references to swarm B from
the multiagent plan S. It therefore eliminates the need

5This result applies to agents with finite or infinite
lifetimes.

for multiagent coordination with swarm B. We assume
that when the agent applies a projection to the plan,
it has justification to do so — because the purpose of
abstraction is to modify the plan. Modification of the
property, on the other hand, may be a side effect re-
quired for an a priori guarantee that the abstraction
is an SML. Applying proj 4o to the Invariance prop-
erty Py, which states that “only one MAV may en-
ter the region at a time,” results in a property which
accepts any multiagent plan of agents A, B, and C.
When applied to both plan and property, proj4¢ is
an SML. Nevertheless, if the B swarm returns to the
region and is restored into the multiagent plan, then
this new property which allows the agents to do any-
thing could have disastrous, unintended (by the user)
consequences.

This example illustrates our dilemma: If we abstract
the property along with the plan, the abstraction will
be guaranteed a priori to be an SML. However, by ab-
stracting the property, we risk violating the user’s orig-
inal intentions. When s it ok to abstract a property?
There are at least three cases when it is permissible:

(1) When the abstraction is property invariant.

Applying the projection proj e to the Sometimes
property Pg, which states that “Sometimes MAVs
from swarm A enter the region,” leaves Pg invariant,
i.e., proj40(Ps) = Ps. Therefore the abstraction is
property invariant. The intuition is that the behavior
of agent B is irrelevant when testing this property.

In general, to determine whether property invariance
holds, an agent must apply abstraction to each prop-
erty P and then check whether P remains unaltered by
abstraction. This simple syntactic check is a form of
incremental re-verification because it is localized to a
test on the property alone. The check has a worst case
time complexity of O(|P|) for any property P. This
is lower than the worst case time complexity of com-
plete re-verification from scratch (following abstrac-
tion), which is O(|T'(K)|*|P|) for Invariance and Some-
times properties, where |T'(K)| is the number of atoms
in the plan (Lichtenstein & Pnueli, 1984). Further-
more, if the agent will only accept property invariant
abstractions, then the cost of plan abstraction can be
avoided when this incremental check fails.

(2) When the abstraction is property irrelevant.

An example is when the agents discover, or are told
about, a permanent change that henceforth renders
one or more items (e.g., an agent or action) irrelevant.
The term “permanent” in this context means a change

whose effects are sustained at least until the last agent
has terminated. Because the change is permanent, we
can be assured that no problems are caused by apply-
ing an SML abstraction to the properties.

Consider an example in which a swarm agent be-
comes irrelevant. Suppose the lives of all MAVs in
the B swarm have terminated, e.g., they become per-
manently inoperative, but we wish to continue with
the multiagent plan because the other agents survived.
Then the application of proj 4 to the property Pr has
no significant effect — because Pr is no longer needed.

(3) When the abstraction is property reversible.

Suppose the agents determine that one or more items
are not relevant to the objectives of their multiagent
plan, but this is a temporary change in condition, i.e.,
the items may become relevant again. For example,
agents may disappear to attend to other tasks then
possibly return, and actions may become temporarily
disabled due to mechanical failures. Items irrelevant to
the multiagent objectives could be removed from the
multiagent plan and also from the properties. In these
circumstances, we want the abstraction to be property
reversible. An abstraction is property reversible if the
pre-abstraction property can be restored, e.g., by sav-
ing it. This way we can retest the original property
after undoing the effects of abstraction.

We only want our agents to perform property irrel-
evant and property reversible abstractions when ab-
straction is restricted to removing irrelevant items. If
agents are not told relevance, they may need to per-
form relevance determination, perhaps using methods
such as those of Subramanian (1988). Other research
related to the ideas in this section includes feature se-
lection (see http://ai.iit.nrc.ca/bibliographies/feature-
selection.html), and plan abstraction (Knoblock,

1990).

5 GENERALIZATION

Although we have been unable to obtain positive a
priori results for generalization, this section presents
a novel method for incremental re-verification after
generalization. Efficiency is gained by tailoring in-
cremental re-verification methods to specific prop-
erty classes. Because there are only about a dozen
property classes commonly used in practice (Kurshan,
1994), this seems reasonable to do. The re-verification
method presented in this section is specific to Invari-
ance properties. A method for Sometimes properties

may be found in Gordon (1997b). Methods for other

property classes are currently being investigated.

Generalization differs from abstraction in that you are
not changing the entire Boolean algebra (e.g., taking
a subalgebra) but instead you are increasing the gen-
erality of a transition condition labeling one or more
edges (for simplicity, here we consider one). Gener-
alization is done when the agent discovers that the
transition can/should be taken under a larger set of
circumstances. It is only done to the plan. In the
context of a process, generalization raises the level of
a particular p-state-to-p-state transition condition in
the partial order <, whereas specialization lowers it,
e.g., as in Mitchell’s Version Spaces (Mitchell, 1978).

Formally, we define generalization of the condition
along edge (v, w) as follows. Generalization operator
Mlgen : S — S’ where both S and S’ use Boolean alge-
bra K, is defined as mil,.,, : Mx(S) — Mx(S"), where
mlgen(Mx(v,w)) = Mx(v,w) + z, for some z € K.

An example of generalization is the following. The
transition condition associated with the edge ((WAIT,
WAIT, GO-A), (GO, WAIT, GO-B)) in the multi-
agent plan S is (A:MAVs-wait) * (B:MAVs-wait) *
(C:go-A). This could be generalized to ((A:MAVs-
wait) * (B:MAVs-wait) x (C:go-A)) + ((A:MAVs-wait)
* 7(B:MAVs-wait) * (C:go-A)), i.e., (A:MAVs-wait) *
(C:go-A) for new plan S’.

To illustrate our incremental approach, recall S satis-
fies the Invariance property Pr which states that “only
one MAV enters the region at a time,” ie., O3 (&
((A:MAVs-go) * (B:MAVs-go))). We could check this
property against the entire, new plan S’, but a prefer-
able alternative is to simply check it against the new
addition to the transition condition, namely, is Py sat-
isfied by (A:MAVs-wait) * = (B: MAVs-wait) * (C:go-
A)? In fact it is, because (A:MAVs-go) is not true, and
that is all we need to know to be sure that the ml,.,
just applied is an SML. We can now formalize this.

Let us consider the Invariance property P = 3 p for
c-state formula p. Let y be the existing transition con-
dition for edge (v, w) in plan S, i.e., Mx(v,w) = y. We
previously defined what it means for a c-state formula
p to be true at a c-state, but it is also useful to de-
fine what it means for a c-state formula to be true of
a transition condition. Let I'(K'), = {a | a € I'(K)
and a < y}. A c-state formula p is defined to be true
of a transition condition y, i.e., y |E p, if and only if

Ya € I‘(IC)y, a = p.

Assume every string x in L£(S) satisfies Invariance

65’ differs from S only by the results of mlgen.

property P, so for each x, p is true of every atom
in x. This implies y = p.” Now we generalize the
edge (v,w) to form S’ via mlye, (Mx(v,w)) = y+ 2.
This operator mig.y, is an SML with respect to Invari-
ance property P if and only if S’ | P, which is true
if and only if z |= p. The reason for this is that we
know S satisfies P from our original verification, and
therefore p is true for all atoms in all strings in £(5).
The only new atoms in £(S’) but not in £(S) are in
['(K),. Therefore, if z |= p, then p is true for all atoms
in £(S"), which implies every string in £(.S’) satisfies
P,ie. S' | P. Therefore, re-verification need only
test whether z |= p, ie.,, Va € I'(K),, a < p. (We as-
sume transition conditions are represented extension-
ally, i.e., as the unique sum of atoms equivalent to the
Boolean expression.) If z £ p, S’ £ P8 This test
is incremental because it is localized to just checking
whether the property holds of the newly added atoms
in z, rather than all atoms in £(S").

For example, suppose a, b, ¢, d, and e are atoms, and
the transition condition y between v and w equals a.
Let (a, b, b, d) be an accepting string of S that in-
cludes v and w as the first two vertices in its accepting
run. The property is P = E - e. Assume the fact that
this string satisfies — e was proved in the original ver-
ification. Suppose mlye, generalizes Mx(v,w) from a
to (a + ¢), which adds the string (¢, b, b, d) to £(S").
Then rather than test whether the elements of { a, b,
¢, d } are < — e, all we really need to test is whether
¢ < = e — because ¢ is the only newly added atom.

By storing and reusing knowledge from previous veri-
fication(s), we can increase the efficiency of this test.
Suppose some atoms a such that a < z were tested
for a < p during previous verification(s), and the out-
comes of these tests were stored. Then lookup will
suffice, and the only atoms in I'(K), that need to be
tested against p during the current re-verification are
those not previously tested.

What cost benefit(s) does incremental re-verification
have over complete re-verification from scratch? Ver-
ification, or complete re-verification from scratch, in
the worst case has time complexity O(|T'(K)]| * |p|) for
Invariance properties, where |T'(K)| is the total number
of atoms, and |p| is the length of the c-state formula
p (Lichtenstein & Pnueli, 1984). This is because the
c-state formula may have to be tested in every unique

"This statement is based on our assumption that (v,w)
is part of an accepting run for at least one x € £(S). This
assumption motivates re-verification.

8That is, unless (v, w) is not part of any accepting run
— but then the test is unnecessary.

c-state, which is an atom. |['(K)| is exponential in
the number of single agent plans forming a multiagent
plan. In the worst case, incremental re-verification
has the same time complexity, but this would be a
very bizarre situation indeed. It would require that no
atoms were tested against the property in the original
verification (which could occur if £(S) were empty),
and all atoms are added to the transition condition
during generalization, i.e., Va € T'(K), a < z.

Let us consider a more realistic comparison. The worst
case time complexity for complete re-verification as-
sumes all c-states are reachable from some initial p-
state. This may not be true, e.g., the number of ini-
tial p-states might be very small. Re-verification is
required to determine Vx € £(S’) whether x = P. At
the very least, complete re-verification of an Invariance
property P = Ep must test whether z; = p Vz; in x,
Vx € £(5'). The complexity of this test is Ceomprete =
O(I(K) g (sl * [p]), where [I'(K) (g,| is the number

of unique atoms in all strings x € £(.5’).

A more realistic cost estimate for incremental re-
verification is Ciperem = O(|I‘(1C)s(z)| + (|F(IC)M(Z)| *
lp[)), where I'(K) .y (I'(K),,4()) contains atoms whose
results are (are not) previously stored. The first ad-
dend is the cost of lookup of results from previous ver-
ification(s), and the second addend is the cost added
by testing the atoms that were not previously tested.
Whenever generalization is reasonably conservative,
Le., |I(K),| << |T(K)g(gnl, incremental can provide
considerable savings over complete re-verification!

6 DISCUSSION

Here we have addressed the question of how agents can
adapt (learn) safely, i.e., by preserving critical prop-
erties, and how they can do this in a time-efficient
manner. We extended the work of Gordon (1997a) to
obtain positive results for two popular machine learn-
ing methods: abstraction and generalization. For ab-
straction to be a priori safe (property-preserving), the
property must also be abstracted. This paper enu-
merates situations in which it is permissible to ab-
stract the property. Furthermore, novel incremental
re-verification methods are presented for abstraction
and generalization. These methods have the potential
to provide large computational savings over complete
re-verification from scratch. With our methods (in-
cluding a priori), agents can use abstraction and gen-
eralization to adapt to novel situations, and can do so
with quick checks that ensure the reliability of their
behavior.

There i1s a small amount of prior research on incre-
mental re-verification. Reps and Teitelbaum (1989)
developed a verifier for users to check their code while
writing in traditional programming languages, such as
PL/I. Their verifier can incrementally re-check soft-
ware after edits using Hoare-style proofs. However,
unlike our re-verification methods, these proofs require
some interaction with the user. Sokolsky and Smolka
(1994) have an incremental method for verifying added
or deleted state transitions in an automaton-like repre-
sentation. However they do not address generalization
or abstraction. Finally, Weld and Etzioni (1994) have
a method to incrementally test an agent’s plan to de-
cide whether to add new actions to the plan. There
are certain similarities between our work and that of
Weld and Etzioni. They add actions to a plan only
when their effects do not violate dont-disturb proper-
ties, which are a type of Invariance property. Our gen-
eralization also adds actions to a plan. Furthermore,
both approaches localize verification. The main differ-
ences are that unlike Weld and Etzioni, we: (1) use
a formal foundation based on the verification litera-
ture, in particular, model-checking and automata, (2)
assume the existence of prior verification knowledge
and use this knowledge to streamline re-verification,
(3) use reactive rather than necessarily goal-oriented
plans, and (4) address abstraction.

One aspect of Weld and Etzioni (1994) that was pur-
posely not addressed here is that of how to select
which method to use in repairing a plan. This is a
rich issue for future research, and could draw on cost-
effective methods such as those of Joslin and Pollack
(1994). Rather than repair, this paper focuses on re-
verification. We are unaware of any methods besides
ours for incrementally re-verifying abstraction or gen-
eralization in automata. Much more work remains
to be done on the important topic of incremental re-
verification — especially for adaptive agents.

A cknowledgments

Thanks to Bill Spears and Sampath Kannan for useful
inputs on this paper. Bill suggested the alliterative
title. This research was sponsored by the Office of
Naval Research N001498WX20296.

References

Asimov, I. (1942). Runaround. In Astounding Science
Fiction.

Gordon, D. (1997a). Asimovian adaptive agents.
NCARAI Technical Report 97-016.

Gordon, D. (1997b). Machine learning and finite-
lifetime agents: Some preliminary results. NCARAI
Technical Report 97-017.

Hopcroft, J. & Ullman J. (1979). Introduction to Au-
tomata Theory, Languages, and Computation. Menlo

Park: Addison-Wesley.

Joslin, D. & Pollack, M. (1994). Least-cost flaw repair:
A plan refinement strategy for partial-order planning.

Proceedings of AAAI94 (pp. 1004-1009). AAAT Press.

Knoblock, C. (1990). A theory of abstraction for hier-
archical planning. In D. P. Benjamin (Ed.), Change of
Representation and Inductive Bias. Norwell: Kluwer
Academic Publishers.

Kurshan, R. (1994). Computer Aided Verification of
Coordinating Processes. Princeton, N.J.: Princeton
University Press.

Laumer, K. (1976). Bolo, The Annals of the
Dinochrome Brigade. New York, N.Y.: Berkeley Pub-
lishing Corp.

Lichtenstein, O. & Pnueli, A. (1984). Checking that
finite state concurrent programs satisfy their linear
specifications. Proceedings of the Twelfth ACM Sym-
postum on Principles of Programming Languages (pp.

271-276).

Manna, Z. & Pnueli, A. (1991). Completing the tem-
poral picture. Theoretical Computer Science, 83(1),
97-130.

Mitchell, T. (1978). Version Spaces: An Approach to
Concept Learning. Ph.D. thesis, Stanford University.

Reps, T. & Teitelbaum, T. (1989). The Synthesizer
Generator. New York: Springer-Verlag.

Saberhagen, F. (1967). Berserkers. New York: The
Berkley Publishing Group.

Sokolsky, O. & Smolka, S. (1994). Incremental model
checking in the modal mu-calculus. Proceedings of
Computer-Aided Verification.

Subramanian, D. (1988). A Theory of Justified Refor-
mulations. Ph.D. thesis. Stanford University.

Weld, D., & Etzioni, O. (1994). The First Law of
Robotics. Proceedings of AAAI94 (pp. 1042-1047).
AAATI Press.

