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Abstract
One of the major goals of most early concept
learners was to find hypotheses that were
perfectly consistent with the training data. It
was believed that this goal would indirectly
achieve a high degree of predictive accuracy on
a set of test data. Later research has partially
disproved this belief. However, the issue of
consistency has not yet been resolved
completely.

We examine the issue of consistency from a
new perspective. To avoid overfitting the
training data, a considerable number of current
systems have sacrificed the goal of learning
hypotheses that are perfectly consistent with
the training instances by setting a new goal of
hypothesis simplicity (Occam’s razor). Instead
of using simplicity as a goal, we have
developed a novel approach that addresses
consistency directly. In other words, our
concept learner has the explicit goal of
selecting the most appropriate degree of
consistency with the training data.

We begin this paper by exploring concept
learning with less than perfect consistency.
Next, we describe a system that can adapt its
degree of consistency in response to feedback
about predictive accuracy on test data. Finally,
we present the results of initial experiments
that begin to address the question of how
tightly hypotheses should fit the training data
for different problems.

1 INTRODUCTION
Early studies in supervised concept learning made the
implicit assumption that the best method for obtaining

high predictive accuracy on a test set is to find
hypotheses that are perfectly consistent with respect to all
examples in a training set (e.g., Michalski 1983). A posi-
tive hypothesis (i.e., a hypothesis intended to cover the
positive examples) is 100% consistent with respect to a
set of examples if it covers all positive examples and no
negative examples in the set.

Perfect consistency was a goal for many years - until
researchers began to examine more realistic databases
that contained noisy, sparse data and unknown but possi-
bly complex target concepts. To perform well on these
databases, some systems sacrificed perfect consistency in
favor of simplicity or other biases (Quinlan 1987;
Michalski 1990). This achieved excellent results. Today,
the issue of the ideal degree of consistency to use in a
given situation (e.g., target concept and learning algo-
rithm) is still unsettled. Some researchers, such as
Angluin & Laird (1988) and Schaffer (1991), discuss the
virtues of striving for 100% consistency. Shaffer (1991),
for example, considers 100% consistency to be an
appropriate bias for an ‘‘overwhelming majority’’ of
situations. Other researchers, such as Quinlan (1987) and
Michalski (1990), discuss the virtues of using a simplicity
bias that sacrifices perfect consistency.

This paper examines the consistency issue from a new
perspective. The simplicity bias is becoming prevalent in
the concept learning literature. A simplicity bias typi-
cally satisfies two goals of the person who implements it:
improved human understandability of the hypotheses, and
improved predictive accuracy by avoiding overfitting the
training data. For the sake of clarity and experimental
precision, in this paper we adopt a novel approach that
focuses only on the latter goal - we abandon the simpli-
city bias in favor of a bias that selects a consistency level.
Each consistency level corresponds to a degree of fit to
the training data, where 100% consistency implies the
hypothesis fits the training data perfectly. Here, we
present experiments that vary the consistency level, as



well as some initial answers to the question of when
100% consistency on the training data is best for achiev-
ing high predictive accuracy on the test data.

This paper also describes an adaptive approach to con-
cept learning that views the consistency level as a bias
that can be adjusted dynamically during learning.
Because the goal of our learner is to improve its predic-
tive accuracy, we decided to make that goal explicit by
feeding predictive accuracy information back into our
learner. Using this performance feedback, our learner
selects the most appropriate consistency level to improve
its predictive accuracy. This approach expresses a philo-
sophy of a closed-loop feedback concept learner that has
access to feedback about its ultimate goal. Surprisingly,
such an approach is not frequently found in the literature.
Exceptions include Breiman et al. (1984) and Michalski
(1990).

In this paper, we examine one learning algorithm and
consider the effects of varying the consistency level. Sec-
tion 2 describes our concept learner, called the Genetic
Algorithm Batch-Incremental Learner (GABIL), that we
use in all experiments (De Jong et al. 1992). Section 3
describes a modified version of GABIL that can learn con-
cepts with different levels of consistency. This section
also presents experimental results that compare predic-
tive accuracy with different consistency levels on both
clean and noisy data and a variety of target concepts.
Section 4 describes the closed-loop adaptive version of
GABIL (AGABIL) that dynamically adjusts its consistency
level to improve its predictions. Section 4 presents exper-
imental results on the same data as Section 3, but this
time using AGABIL. Section 5 relates this work to other
research, and Section 6 states our conclusions and ideas
for future research.

2 BACKGROUND: THE GABIL SYSTEM
GABIL is a supervised concept learning program based on
the principles of Darwinian evolution and genetics (i.e., a
genetic algorithm). In GABIL, Disjunctive Normal Form
(DNF) hypotheses compete for survival, and reproduce
according to their fitness with respect to a set of classified
training instances (examples). Those hypotheses that are
most fit survive and mate, producing new hypotheses via
the application of genetic operators.

In GABIL, the concept of fitness is tied to that of con-
sistency as follows:

fitness(hyp) = training_accuracy (hyp)

Accuracy refers to how well a hypothesis predicts the
classification of a set of training examples. If a
hypothesis predicts all the examples correctly, it is 100%

accurate. Similarly, if a hypothesis predicts one half of
the examples correctly, it is 50% accurate. Training accu-
racy is equivalent to consistency. If a hypothesis is N%
accurate, then it is N% consistent. For the sake of under-
standability, we write the fitness function:

fitness(hyp) = consistency (hyp )

to remind us that we reward those hypotheses that are
more consistent. Note that simplicity plays no role in this
fitness function.

A flowchart of GABIL is presented in Figure 1 (in all
figures, ‘‘C’’ refers to consistency). GABIL is presented
with two inputs: a set of training examples and a desired
consistency level of 100% (N = 100 in Figure 1). GABIL
returns as output a perfectly consistent hypothesis. This
hypothesis is used to predict the classification of a new,
previously unseen, example.

3 VARYING THE CONSISTENCY LEVEL
In this section, we examine the relationship between con-
sistency level and predictive accuracy. To do this, we
first modify GABIL so that the system can deliberately
select hypotheses with less than 100% consistency. We
then test the effects of varying the consistency level.

3.1 MODIFICATIONS TO GABIL

The initial version of GABIL always rewards those
hypotheses that are most consistent. Suppose, however,
that we wish to consider the effects of lower consistency

N%

Prediction

N% C Hypoth

N%
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GABIL

Instances

New

Figure 1: The flowchart for GABIL



levels. In other words, suppose we desire a consistency
level of 90%. Then we wish to reward most highly those
hypotheses that are closest to 90% in accuracy, and to
reward less those hypotheses that are both more or less
accurate. To do this, we modify the fitness function to:

fitness(hyp) = 1 − | consistency (hyp ) − N |

in which N is the desired consistency level (see Figure 1).
This function is maximized when the accuracy (con-
sistency level) of the hypothesis matches N. The fitness
is lower for those hypotheses that are both higher and
lower than N in accuracy.

3.2 EXPERIMENTAL METHODOLOGY

We can now use GABIL to compare the effects of con-
sistency level on predictive accuracy. Our experiments
use a domain of artificial target concepts, which we call
the nDmC domain. In this domain, we have a four feature
world, with four nominal values per feature (i.e., there are
256 instances in this domain). There are eight target con-
cepts, that vary in complexity by increasing both the
number of disjuncts and the number of relevant features
(conjuncts) per disjunct. The number of disjuncts range
from one to four, while the number of conjuncts is either
one or three. Each target concept is labeled as nDmC,
where n is the number of disjuncts and m is the number of
conjuncts (see the Appendix for the definition of these
target concepts). GABIL learns one target concept at a
time.

Although GABIL is illustrated in Figure 1 as performing
in batch mode, it is also capable of performing in a
batch-incremental mode (i.e., batch mode is repeated for
every new example). This allows us to generate incre-
mental learning curves for the 256 instances in the nDmC
domain. Figures 3 - 6 depict a few representative learn-
ing curves. All learning curves are averaged over 10
independent runs for each target concept. For the sake of
brevity, in our tables we present the global average of the
predictive accuracy over each curve.

Since the issue of appropriate levels of consistency is
intimately tied to that of noise, we examine both noise-
free data and data with classification noise. This paper
does not examine attribute noise, so we will refer to
classification noise as simply ‘‘noise’’. We present
results for noise-free data and data with 20% noise. We
define n% noise such that each instance has a n% proba-
bility of receiving a random classification. Thus, 100%
noise refers to the situation where the target concept is
totally obscured. It is important to note that, because
every instance is unique, an increase in noise is
equivalent to increasing the target concept complexity,

and a perfectly consistent hypothesis is always possible.
In this paper, we assume the source is noise. However,
we also consider what our experimental results would
imply if the source were instead increased target concept
complexity.

3.3 RESULTS

As mentioned earlier, our motivation in this section is to
examine the effects of consistency level on predictive
accuracy. We ran GABIL with consistency levels of
100%, 90%, and 80% on the nDmC target concepts.
Tables 1 - 2 present the global averages of predictive
accuracy for each target concept with 0% and 20% noise.
We use N% to denote GABIL’s consistency level in the
tables. A ‘‘*’’ highlights the winner (i.e., highest predic-
tive accuracy) for each target concept. ‘‘∆’’ is the
difference in predictive accuracy between GABIL with
100% and 90% consistency. ‘‘Sig’’ is a two-tailed

Table 1: Effect of consistency level

___________________________________________
0% Noise______________________________________________________________________________________

TC 100% 90% 80% ∆ Sig______________________________________________________________________________________
1D1C 95.4* 85.3 76.5 +10.1 95%___________________________________________
1D3C 96.5* 88.1 79.0 +8.4 95%___________________________________________
2D1C 92.6* 81.1 71.7 +11.5 95%___________________________________________
2D3C 94.1* 88.5 81.5 +5.6 95%___________________________________________
3D1C 90.2* 77.0 69.2 +13.2 95%___________________________________________
3D3C 91.0* 87.8 79.5 +3.2 95%___________________________________________
4D1C 88.8* 75.2 65.8 +13.6 95%___________________________________________
4D3C 88.4* 86.6 79.3 +1.8 90%___________________________________________
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Table 2: Effect of consistency level

____________________________________________
20% Noise________________________________________________________________________________________

TC 100% 90% 80% ∆ Sig________________________________________________________________________________________
1D1C 78.3 81.5* 74.8 -3.2 95%____________________________________________
1D3C 76.5 83.9* 78.7 -7.4 95%____________________________________________
2D1C 77.2 77.8* 69.9 -0.6 <80%____________________________________________
2D3C 75.8 82.8* 78.4 -7.0 95%____________________________________________
3D1C 77.6* 74.5 67.5 +3.1 90%____________________________________________
3D3C 75.1 80.3* 77.4 -5.2 95%____________________________________________
4D1C 77.2* 74.3 63.0 +2.9 95%____________________________________________
4D3C 73.8 78.9* 77.2 -5.1 90%____________________________________________
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statistical test of significance for that difference.1

Table 1 illustrates a virtue of 100% consistency. With 0%
noise, GABIL with 100% consistency performs better than
90% and 80% consistency levels, on all target concepts.
With 20% noise, however, the results are reversed.
GABIL with 90% consistency outperforms 100% con-
sistency on six of eight target concepts. Clearly, 100%
consistency is a disadvantage in this situation.

In summary, it is certainly not the case that a particular
consistency level is most appropriate for all target con-
cepts and amounts of noise. Perfect consistency appears
to be appropriate for some situations, and less than per-
fect consistency is appropriate for others. Therefore, it is
natural to ask whether an adaptive mechanism can suc-
cessfully determine an appropriate level of consistency.
We address this issue in the following section.

4 ADAPTIVE CONSISTENCY LEVEL
Recall from Section 3 that GABIL can search for a
hypothesis with a desired degree of consistency. In our
previous section, this was manually controlled to exam-
ine the effect of consistency level on predictive accuracy.
Suppose, however, that we could automatically determine
an optimal level, while GABIL is learning a particular tar-
get concept. The advantages of such a mechanism are
two-fold. First, we can analyze the adaptive mechanism
to see what level of consistency it chooses for a particular
target concept and level of noise. Second, this approach
follows the valuable control theory philosophy for
closed-loop feedback systems, i.e., if you wish to optim-
ize predictive accuracy, this information should be avail-
able to the system. Practically speaking, the resulting
system can be more robust because it can monitor its own
performance.

4.1 MODIFICATIONS TO GABIL

We modified GABIL to create an adaptive system (AGA-
BIL). AGABIL makes two passes over the training data

before predicting the class of each new instance.2 On the
first pass, the training data is split into two sets, which we
denote as A and B. Set A contains 3/4 of the data, while
B contains the remaining 1/4. On the first pass, AGABIL
searches for a perfectly consistent hypothesis with
respect to set A. AGABIL also stores a small number of
____________________________________

1 The significance test assumes nearly equal variances. We
increased the rigor of the significance test whenever the sample
variances differed according to the F-statistic.

2 Our two-pass method is similar to the cross-validation method
described in Breiman et al. (1984). CPU time prohibited the use of
more than two passes in AGABIL.
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Figure 2: The first pass of AGABIL

less consistent hypotheses as it searches for a 100% con-
sistent hypothesis. In our experiments, AGABIL stores
one hypothesis in each of the four ranges: 70-79%, 80-
89%, 90-99%, and 100%. AGABIL then compares the
predictive accuracy of these stored hypotheses on set B.
The consistency level of the best predicting hypothesis is
chosen and recorded. The first pass is illustrated in Fig-
ure 2.

Next, a second pass over the complete training data is
made to find a hypothesis that achieves the chosen con-
sistency level over this data. The hypothesis resulting
from the second pass (with the chosen consistency level)
is then used to predict the class of a new (test) instance.3

Figure 1 illustrates the second pass. Note that in this
adaptive system the consistency level is no longer set by
the user, but is instead determined by a preliminary pass
over the training data.

4.2 RESULTS

AGABIL was run on the nDmC domain, again with 0%
and 20% noise. Tables 3 - 4 illustrate the results. In these
tables, ∆ is the difference in predictive accuracy between
AGABIL and GABIL with 100% consistency (see Tables 1
- 2). Figures 3 - 6 show representative learning curves
from which the predictive accuracy (denoted "PA" in our
figures) averages are derived. In these figures, the solid
____________________________________

3 Experiments in which the resulting first pass hypothesis was
used to predict the class of the new (test) instance were not as
successful.



curve is the predictive performance of AGABIL, while the
dotted curve is the predictive performance of 100% con-
sistent GABIL.

When there is no noise, AGABIL performs well, nearly
matching the performance of the best consistency level
(100%) on the simpler concepts, and outperforming that
consistency level on two of the more difficult concepts.
When there is 20% noise, the results indicate quite
strongly that the adaptive system can outperform GABIL
with 100% consistency. In general, according to Tables 3
- 4, AGABIL performs slightly better in relation to 100%
consistent GABIL as the number of conjuncts increases
for a fixed number of disjuncts in the target concept.
Tables 3 - 4 also show that when the adaptive system
wins, the results tend to have a higher level of statistical
significance than when it loses. Furthermore, AGABIL
performs competitively with the best consistency level
(see Tables 1 - 2).

Table 3: Performance of adaptive consistency level

_______________________________
0% Noise______________________________________________________________

TC AGABIL ∆ Sig______________________________________________________________
1D1C 94.4 -1.0 90%_______________________________
1D3C 96.3 -0.2 <80%_______________________________
2D1C 92.1 -0.5 <80%_______________________________
2D3C 93.9 -0.2 <80%_______________________________
3D1C 89.4 -0.8 <80%_______________________________
3D3C 92.7 +1.7 90%_______________________________
4D1C 88.1 -0.7 <80%_______________________________
4D3C 90.5 +2.1 95%_______________________________
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Table 4: Performance of adaptive consistency level

_______________________________
20% Noise______________________________________________________________

TC AGABIL ∆ Sig______________________________________________________________
1D1C 81.9 +3.6 95%_______________________________
1D3C 83.4 +6.9 95%_______________________________
2D1C 79.5 +2.3 90%_______________________________
2D3C 81.7 +5.9 95%_______________________________
3D1C 76.8 -0.8 <80%_______________________________
3D3C 81.0 +5.9 95%_______________________________
4D1C 76.7 -0.5 <80%_______________________________
4D3C 79.2 +5.4 95%_______________________________
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Figure 3: 1D1C - 0% noise
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Figure 4: 1D1C - 20% noise
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Figure 5: 4D3C - 0% noise
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Figure 6: 4D3C - 20% noise
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These results seem to indicate a trend. AGABIL shows
better performance when the noise increases. Recall that
we can equate an increase in noise with an increase in
target concept complexity. Therefore, we conclude that
the adaptive system performs better in relation to the
100% consistent system as noise or target complexity
increases.

4.3 A POSSIBLE CAVEAT

The results in Section 4.2 indicate that lowering the con-
sistency level below 100% is better when the target con-
cept complexity increases. However, these results are
particular to GABIL, which learns only the target concept,
and not the negation of the target concept. One could
argue that as the target concept becomes more complex,
the negation of the target concept may become simpler.
In these cases it might be reasonable to learn the negation
of the target concept and aim for a consistency level of
100%. If this line of reasoning is correct, we would be
entertaining the possibility that the important issue is not
whether to strive for less than 100% consistency, but
rather whether to learn the target concept or the negation
of the target concept.

Since the complexity of an arbitrary target concept is not
known beforehand, we need some measure to help us
determine that complexity as the system runs. One possi-
ble measure is the ratio of positive to negative instances.
As Schaffer (1991) indicates, the average target concept
is simpler for those concepts with a preponderance of
positive or negative examples. We examined this ratio
for our nDmC domain and found that only 3D1C and
4D1C have more positive than negative examples. It is
interesting to note that, according to the results in Section
4.2, 100% consistency produces better results than lower
consistency levels on both 3D1C and 4D1C, regardless of
the noise level. This result is true for these target con-
cepts only. Therefore, the following heuristic appears to
be a valid alternative to selecting the best consistency
level:

Table 5: Learning the negation

_______________________________________
0% Noise 20% Noise______________________________________________________________________________

TC 100% 90% 100% 90%______________________________________________________________________________
3D1C 90.2 77.0 77.6 74.5_______________________________________

¬3D1C 95.7* 85.0 77.6 80.8*______________________________________________________________________________
4D1C 88.8 75.2 77.2 74.3_______________________________________

¬4D1C 92.2* 84.0 78.4 81.6*_______________________________________
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IF pos > neg
THEN learn TC with 100% consistency,
ELSE learn ¬TC with 100% consistency

where pos is the number of positive examples, neg is the
number of negative examples, TC is the target concept,
and ¬TC is the negation of the target concept. An under-
lying assumption of this heuristic is that learning the tar-
get concept should produce better results than learning
the negation of the target concept when there are more
positive examples, and vice versa when there are more
negative examples. Another underlying assumption is
that 100% is the best consistency level for which a sys-
tem should strive.

Although we have not had time to implement this heuris-
tic within GABIL, we were able to compare the perfor-
mance of GABIL with consistency levels of 100% and
90%, while learning the negation of the 3D1C and 4D1C
target concepts.4

The results, which are shown in Table 5, are quite unex-
pected. First, learning the negation of the target concept
is always better than learning the target concept, despite
the preponderance of positive examples. Second, there is
still evidence that a lower (90%) consistency level is
more useful than 100% consistency as the noise increases
and the target concept becomes more complex. These
results clearly diminish the general usefulness of our
heuristic. Therefore, we continue to stress the importance
of adaptively adjusting the consistency level.

These results also suggest that it may be difficult to
decide a priori which target concept for GABIL to learn.
One possible solution is to let the system learn both the
target concept and its negation simultaneously. However,
there are a number of implementation issues that make
this solution infeasible. A more intriguing solution is to
let GABIL adaptively decide both its consistency level
and the target concept it will learn, based on predictive
performance. We will pursue this possibility in future
implementations of GABIL.

4.4 CHANGES IN CONSISTENCY LEVEL

One of the advantages of an adaptive mechanism is
robustness. This advantage has been shown in Section
4.2. Another advantage is that the adaptive system can be
monitored. Figures 7 - 10 illustrate how the consistency
level (denoted "N%") within AGABIL changes, for partic-
ular target concepts and levels of noise. These figures
highlight some interesting points. First, the appropriate
____________________________________

4 The negation of 3D1C is a 1D3C concept, and the negation of
4D1C is a 1D4C concept, for this particular domain.
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Figure 7: 1D1C - 0% noise
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Figure 8: 1D1C - 20% noise
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Figure 9: 4D3C - 0% noise
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Figure 10: 4D3C - 20% noise
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level of consistency is lower both for more complex tar-
get concepts and for greater levels of noise (which is
analogous to a more complex target concept). Second,

the consistency level varies more when fewer examples
are presented. This indicates that the adaptive mechan-
ism is having some trouble early on, possibly due to
insufficient sampling. Finally, and perhaps most interest-
ingly, the consistency level usually drops as the number
of examples increases. This behavior appears similar to
that described by Fisher and Schlimmer (1988).

5 RELATED WORK
There have been many methods for handling noisy data,
such as weighted hypotheses (Schlimmer & Granger
1986), Bayesian approaches (Buntine 1991), multiple
version spaces (Mitchell 1978), and tree pruning (Quin-
lan 1987; Breiman et al. 1984). The goal of our research
is to vary the consistency level to handle noisy data and
complex concepts. No previous research has had pre-
cisely the same goal. The most closely related research
investigates the effectiveness of a simplicity bias. This
research is related because increased simplicity can result
in a reduced consistency level.

Simplicity biases have been implemented with two of the
most widely used hypothesis representations: decision
trees and DNF hypotheses. Pruning (Quinlan 1987),
which applies to decision trees, can reduce the con-
sistency level because each decision tree branch that is
pruned away may contain information to distinguish the
classes of instances. After pruning, this information is
lost. The removal of hypothesis disjuncts (Michalski
1990) is an effective method to increase the simplicity of
DNF hypotheses. This method may sacrifice 100% con-
sistency because the removed disjuncts may uniquely
cover some of the training examples.

Breiman et al. (1984) and Quinlan (1987) have demon-
strated that the simplicity bias is highly effective on a
number of real-world domains, including domains con-
taining noisy data. On the other hand, Schaffer (1991)
claims that 100% consistency is usually better than
selecting greater simplicity when trying to improve the
predictive accuracy of a concept learner, even on data
with classification noise. Schaffer draws this conclusion
from a comparison of the CART system of Breiman et al.
(1984), that has an adaptive strategy for selecting the best
level to which to prune a decision tree, with a ‘‘naive’’
system that always maintains 100% consistency. The
‘‘naive’’ system keeps the full unpruned decision tree.
Schaffer’s experiments indicate that CART will only out-
perform this ‘‘naive’’ system when the target concept is
simple and there is little classification noise.

Some of our results, however, seem to conflict with those
of Schaffer. For example, AGABIL usually performs
better in relation to 100% consistent GABIL as target
complexity increases. Also, AGABIL usually performs



better as classification noise increases. Further experi-
mentation will be required to determine whether our
results conflict because AGABIL’s goal and CART’s goal
differ, or because other biases differ. The goal of our sys-
tem is to find the appropriate consistency level, whereas
the goal of the latter system is to find the appropriate sim-
plicity level.5

Finally, if further experiments indicate that the difference
in goals (i.e., selecting consistency versus selecting sim-
plicity) accounts for the differences between our results
and Schaffer’s, then this might justify the advantage of
using AGABIL’s goal, rather than CART’s, on real-world
databases if human understandability is not an objective.
The reason for preferring the goal of selecting con-
sistency would be that AGABIL, which implements this
goal, seems to perform better as the noise level or the tar-
get concept complexity increases.

6 CONCLUSIONS AND FUTURE WORK
In this paper, we have addressed the issue of finding an
appropriate consistency level for improving predictive
accuracy. Given a suite of target concepts that incremen-
tally increase in complexity, and a corresponding set of
training examples that vary in their level of noise, we
identify the ‘‘best’’ consistency level for each case. The
‘‘best’’ consistency level is one that yields the highest
predictive accuracy. We also describe a method for feed-
ing the predictive accuracy information back into a
learner to dynamically adjust the consistency level bias.
Finally, we compare the performance of this adaptive
system with a system that maintains 100% consistency
over the training examples.

From these experiments, we have formed the following
conclusions. First, lowering the consistency level seems
to be more appropriate as the noise increases. Second,
lowering the consistency level also seems to be more
appropriate as target concept complexity increases.
Finally, we have developed an adaptive concept learner
that can select the best consistency level by using predic-
tive accuracy feedback. This adaptive system is novel
because it uses the predictive accuracy feedback to select
a consistency level, rather than to select a simplicity
level.

Future work will focus on three major directions. Our
first direction will be to compare the lower consistency
bias with the greater simplicity bias, in order to learn
____________________________________

5 Schaffer (1991) also considers the effects that the hypothesis
language bias and the ratio of positive to negative examples have on his
conclusions. See Section 4.3 for our discussion of AGABIL and this
ratio. We have not yet experimented with variations in the
representational (hypothesis language) bias.

when each bias is more effective. Another direction for
future research will be to further test the generality of our
results by rerunning our experiments using different sys-
tems and a wider variety of target concepts.

Our third direction for future research relates to the
results in computational learning theory. Valiant (1984)
has introduced the criterion of Probably Approximately
Correct (PAC) identification of a target concept.
Recently, a number of researchers have considered the
computational feasibility of PAC identification in the
context of noisy examples (e.g., Angluin & Laird 1988).
However, they assume the strategy is to maximize con-
sistency with the training sample. It would be interesting
to also explore the computational feasibility of PAC
identification assuming a strategy of lower consistency.
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Appendix: nDmC Target Concepts

This appendix fully describes the target concepts of the
artificial domain. There are four features, denoted as F1,
F2, F3, and F4. Each feature has four values {v1, v2, v3,
v4}.

All the target concepts have the following form:

4DmC == d1 v d2 v d3 v d4
3DmC == d1 v d2 v d3
2DmC == d1 v d2
1DmC == d1

For the nD3C target concepts we have:

d1 == (F1 = v1) & (F2 = v1) & (F3 = v1)
d2 == (F1 = v2) & (F2 = v2) & (F3 = v2)
d3 == (F1 = v3) & (F2 = v3) & (F3 = v3)
d4 == (F1 = v4) & (F2 = v4) & (F3 = v4)

Finally, we define the nD1C target concepts:

d1 == (F1 = v1)
d2 == (F1 = v2)
d3 == (F1 = v3)
d4 == (F1 = v4)


