A Comparison of Action Selection Learning Methods

Diana F. Gordon
Naval Research Laboratory, Code 5510
4555 Overlook Avenue, S.W.
Washington, D.C. 20375

gordon@aic.nrl.navy.mil

Abstract

Our goal is to develop a hybrid cognitive model
of how humans acquire skills on complex cogni-
tive tasks. We are pursuing this goal by designing
hybrid computational architectures for the NRL
Navigation task, which requires competent senso-
rimotor coordination. In this paper, we empiri-
cally compare two methods for control knowledge
acquisition (reinforcement learning and a novel
variant of action models), as well as a hybrid
of these methods, with human learning on this
task. Our results indicate that the performance
of our action models approach more closely ap-
proximates the rate of human learning on the
task than does reinforcement learning or the hy-
brid. We also experimentally explore the impact
of background knowledge on system performance.
By adding knowledge used by the action models
system to the benchmark reinforcement learner,
we elevate its performance above that of the ac-
tion models system.

Introduction

Our goal is to develop a hybrid cognitive model of how
humans acquire skills by explicit instruction and re-
peated practice on complex cognitive tasks. We are
pursuing this goal by designing hybrid (multistrategy)
computational architectures for the NRL Navigation
task, which requires sensorimotor coordination skill. In
this paper, we develop a novel method based on para-
metric action models for actively learning visual-motor
coordination. Although similar to previous work on ac-
tion models, our method is novel because it capitalizes
on available background knowledge regarding sensor
relevance. We have confirmed the existence and use
of such knowledge with extensive verbal protocol data
collected from human subjects. In our action models
approach, the agent actively interacts with its envi-
ronment by gathering ezecution traces (time-indexed
streams of visual inputs and motor outputs) and by
learning a compact representation of an effective pol-
icy for action choice guided by the action model.

This paper begins by describing the NRL Navigation
task, as well as the types of data collected from hu-

Devika Subramanian
Department of Computer Science
Rice University
Houston, TX 77005

devika@cs.rice.edu

man subjects performing the task. Then, two learning
methods are described: our model-based method and a
benchmark reinforcement learning algorithm that does
not have an explicit model. Prior results reported
in the literature of empirical comparisons of action
models versus reinforcement learning are mixed (Lin,
1992; Mahadevan, 1992); they do not clearly indicate
that one method is superior. Here we compare these
two methods empirically on the Navigation task us-
ing a large collection of execution traces. Our pri-
mary goal in this comparison is to determine which
performs more like human learning on this task. Both
methods include sensor relevance knowledge from the
verbal protocols. The results of this empirical com-
parison indicate that our action models method more
closely approximates the time-scales and trends in hu-
man learning behavior on this task. Nevertheless, nei-
ther algorithm performs as well as the human subject.
We next explore a multistrategy variant that com-
bines the two methods for the purpose of better ap-
proximating the human learning, and present empirical
results with this method. Although the multistrategy
approach is unsuccessful, an alternative is highly suc-
cessful. This alternative consists of modifying the ar-
chitecture of the reinforcement learner to incorporate
knowledge used by the action models method.

The NRL Navigation and Mine
Avoidance Domain

The NRL navigation and mine avoidance domain, de-
veloped by Alan Schultz at the Naval Research Labora-
tory and hereafter abbreviated the “Navigation task,”
is a simulation that can be run either by humans
through a graphical interface, or by an automated
agent. The task involves learning to navigate through
obstacles in a two-dimensional world. A single agent
controls an autonomous underwater vehicle (AUV)
that has to avoid mines and rendezvous with a sta-
tionary target before exhausting its fuel. The mines
may be stationary, drifting, or seeking. Time is di-
vided into episodes. An episode begins with the agent
on one side of the mine field, the target placed ran-
domly on the other side of the mine field, and random

mine locations within a bounded region. An episode
ends with one of three possible outcomes: the agent
reaches the goal (success), hits a mine (failure), or ex-
hausts its fuel (failure). Reinforcement, in the form of
a binary reward dependent on the outcome, is received
at the end of each episode. An episode is further sub-
divided into decision cycles corresponding to actions
(decisions) taken by the agent.

The agent has a limited capacity to observe the
world it is in; in particular, it obtains information
about its proximal environs through a set of seven con-
secutive sonar segments that give it a 90 degree forward
field of view for a short distance. Obstacles in the field
of view cause a reduction in sonar segment length (seg-
ment length is proportional to obstacle distance); one
mine may appear in multiple segments. The agent also
has a range sensor that provides the current distance
to the target, a bearing sensor (in clock notation) that
indicates the direction in which the target lies, and a
time sensor that measures the remaining fuel. A hu-
man subject performing this task sees visual gauges
corresponding to each of these sensors. The turn and
speed actions are controlled by joystick motions. The
turn and speed chosen on the previous decision cycle
are additionally available to the agent. Given its de-
layed reward structure and the fact that the world is
presented to the agent via sensors that are inadequate
to guarantee correct identification of the current state,
the Navigation world is a partially observable Markov
decision process (POMDP).

An example of a few snapshots from an execution
trace (with only a subset of the sensors shown) is the
following:

time | range | bearing | sonarl | turn | speed
4 | 1000 1 220 32 20
5 | 1000 12 220 | -32 20
6 | 1000 11 220 0 20
7 | 1000 11 90 0 20

A trace file records the binary success/failure for each
episode.

Data from Human Subjects

In the experiments with humans, seven subjects were
used, and each ran for two or three 45-minute sessions
with the simulations. We instrumented! the simula-
tion to gather execution traces for subsequent analysis
(Gordon et al., 1994). We also obtained verbal proto-
cols by recording subject utterances during play and

INote that although human subjects use a joystick for
actions, we do not model the joystick but instead model
actions at the level of discrete turns and speeds (e.g., turn
32 degrees to the left at speed 20). Human joystick mo-
tions are ultimately translated to these turn and speed val-
ues before being passed to the simulated task. Likewise,
the learning agents we construct do not “see” gauges but
instead get the numeric sensor values directly from the sim-
ulation (e.g., range is 500).

by collecting answers to questions posed at the end of
the individual sessions.

Methods for Modeling Action Selection
Learning

Our goal is to build a model that most closely dupli-
cates the human subject data in learning performance.
In particular, subjects become proficient at this task
(assuming no noise in the sensors and only 25 mines)
after only a few episodes. Modeling such an extremely
rapid learning rate presents a challenge. In develop-
ing our learning methods, we have drawn from both
the machine learning and cognitive science literature.
By far the most widely used machine learning method
for tasks like ours is reinforcement learning. Reinforce-
ment learning is mathematically sufficient for learning
policies for our task, yet has no explicit world model.
More common in the cognitive science literature are ac-
tion models, e.g., (Arbib, 1972), which require building
explicit representations of the dynamics of the world to
choose actions.

Reinforcement learning

Reinforcement learning has been studied extensively in
the psychological literature, e.g., (Skinner, 1984), and
has recently become very popular in the machine learn-
ing literature, e.g., (Sutton, 1988; Lin, 1992; Gordon &
Subramanian, 1993). Rather than using only the dif-
ference between the prediction and the true reward for
the error, as in traditional supervised learning, (tempo-
ral difference) reinforcement learning methods use the
difference between successive predictions for errors to
improve the learning. Reinforcement learning provides
a method for modeling the acquisition of the policy
function:

F : sensors — actions

Currently, the most popular type of reinforcement
learning is g-learning, developed by Watkins, which is
based on ideas from temporal difference learning, as
well as conventional dynamic programming (Watkins,
1989). It requires estimating the g-value of a sensor
configuration s, i.e., ¢(s,a) is a prediction of the util-
ity of taking action @ in a world state represented by
s. The g-values are updated during learning based on
minimizing a temporal difference error. Action choice
is typically stochastic, where a higher g-value implies
a higher probability that action will be chosen in that
state.

While g-learning with explicit state representations
addresses the temporal credit assignment problem, it
is standard practice to use input generalization and
neural networks to also address the structural credit
assignment problem, e.g., (Lin, 1992). The ¢-value out-
put node of the control neural network corresponding
to the chosen action a is given an error that reflects the
difference between the current prediction of the utility,

q(s1,4a;), and a better estimate of the utility (using the
reward) of what this prediction should be:

error; =

otherwise

{ (()r—i— v maz{q(s2, k)|k € A}) — q(s1,a;) ifa;=a

where r is the reward, A is the set of available ac-
tions, a is the chosen action, ss is the state achieved
by performing action a in state s, ¢ indexes the pos-
sible actions, and 0 < 7 < 1 is a discount factor that
controls the learning rate. This error is used to update
the neural network weights using standard backpropa-
gation. The result is improved g¢-values at the output
nodes.

We selected ¢-learning as a benchmark algorithm
with which to compare because the literature reports a
wide range of successes with this algorithm, including
on tasks with aspects similar to the NRL Navigation
task, e.g., see (Lin, 1992). Our implementation uses
standard g¢-learning with neural networks. One net-
work corresponds to each action (i.e., there are three
turn networks corresponding to turn left, turn right,
and go straight; speed is fixed at a level frequently
found in the human execution traces, i.e., 20/40). Each
turn network has one input node for every one of the 12
sensor inputs (e.g., one for bearing, one for each sonar
segment, etc.), one hidden layer? consisting of 10 hid-
den units, and a single output node corresponding to
the g-value for that action. A Boltzmann distribution
is used to stochastically make the final turn choice:

probability(a|s) = /T / Z ed(s,a)/T (1)

where s is a state and the temperature T controls the
degree of randomness of action choice.

We use a reward r composed of a weighted sum of
the sensor values.2 Our reward models a special type of
sensor relevance information derived from the human
subject data we collected — it represents knowledge of
the relative importance of the various sensory inputs in
determining action. The verbal protocols reveal that
the sonar and bearing sensors appear to be critical for
action selection. This is logical: after all, the sonar
shows mines which you need to avoid, and the bearing
tells you whether you are navigating toward or away
from the target. We have implemented a reward func-
tion that weights the bearing and sonar equally and

2We ran initial experiments to try to optimize the re-
inforcement learning parameters. For the neural networks,
the chosen learning rate is 0.5, momentum 0.1, 10 hidden
units, and 10 training iterations for the neural networks
and a discount factor of 0.9.

®Ron Sun suggested a reward of sensor values for this
task (personal communication). Our choice of sensor
weights for the reward is 30 for bearing and 10 for each
of the seven sonar segments, and the scale for the reward
is between -1.0 and 0.

gives 0 weight to the other sensors. Thus, if the bear-
ing shows the target straight ahead and the sonar seg-
ments show no obstacles, then the reward is highest.
Our subjects appeared to learn relevance knowledge
and action selection knowledge simultaneously. Here,
we assume the relevance is known. Future work will
involve methods for acquiring relevance knowledge.

The verbal protocols also indicate heuristics for fo-
cusing attention on different sensors at different times.
This knowledge is implemented in our novel variant of
action models, described next. Nevertheless it is not
implemented in the g-learner because to do so would
require a departure from the standard ¢-learning ar-
chitecture reported in the literature, with which we
wish to compare initially as a benchmark. Later, we
describe modifications to the g-learner to include this
focusing knowledge.

Learning action models

One of the more striking aspects of the verbal protocols
we collected was that subjects exhibited a tendency
to build internal models of actions and their conse-
quences, 1.e., forward models of the world. These ex-
pectations produced surprise, disappointment, or pos-
itive reinforcement, depending on whether or not the
predictions matched the actual results of performing
the action. For example, one subject had an expecta-
tion of the results of a certain joystick motion: “Why
am I turning to the left when I don’t feel like I am mov-
ing the joystick much to the left?” Another expressed
surprise: “It feels strange to hit the target when the
bearing is not directly ahead.” Yet a third subject
developed a specific model of the consequences of his
movements: “One small movement right or left seems
to jump you over one box to the right or left,” where
each box refers to a visual depiction of a single sonar
segment in the graphical interface.

Action models (i.e., forward models) have appeared
in multidisciplinary sources in the literature. Arbib
(1972) and Drescher (1991) provide examples in the
psychological literature, STRIPS (Nilsson, 1980) is a
classic example in the Al literature, and Sutton uses
them in DYNA (Sutton, 1988). The learning of ac-
tion models has been studied in the neural networks
(Moore, 1992), machine learning (Sutton, 1990; Ma-
hadevan, 1992), and cognitive science (Munro, 1987;
Jordan & Rumelhart, 1992) communities.

Our algorithm uses two functions:

M : sensors x actlons — sensors
P :sensors — R

M is an action model, which our method represents
as a decision tree. The decision trees are learned using
Quinlan’s C4.5 system (Quinlan, 1986).% P rates the

*We are not claiming humans use decision trees for ac-
tion models; however, we use this implementation because
it appears to have a computational speed that is needed for

desirability of various sensor configurations. P embod-
ies background (relevance) knowledge about the task.
For sonars, high utilities are associated with large val-
ues (no or distant mines), and for the bearing sensor
high utilities are associated with values closer to the
target being straight ahead. Currently, P is supplied
by us. At each time step, actions are selected using P
and M by performing a 1-step lookahead with model
M and rating sensory configurations generated using
P. The action models algorithm has the same action
set as the g-learning algorithm, i.e., turn right, turn
left, or go straight at a fixed speed (20/40).

First, our algorithm goes through a training phase,
during which random turns are taken and the execu-
tion traces saved as input for C4.5. C4.5 models the
learning of the function M. In particular, it constructs
two decision trees from the data: one tree to predict
(from (s,a)) the next composite value of the sonar
segments (prediction choices are no-mines, mine-far,
mine-mid, mine-fairly-close, or mine-close, where these
nominal values are translations from the numeric sonar
readings) and one tree to predict the bearing on the
next time step. Note that the choice of these two trees
employs the same relevance information used in the
reinforcement learning reward function, namely, that
the sonar and bearing are the relevant sensors. The
training phase concludes after C4.5 constructs these
two decision trees.

During the testing phase, these trees representing
the world dynamics (M) are consulted to make predic-
tions and select turns. Given the current state, a tree
is chosen. The tree selection heuristic for focus of at-
tention (hereafter called the focus heuristic) states: if
all the sonar segments are below a certain empirically
determined threshold (150/220), the sonar prediction
tree selects the next turn. Otherwise, the bearing pre-
diction tree selects the next turn. To make a predic-
tion, the agent feeds the current sensor readings (which
include the last turn and speed) and a candidate next
turn to the decision tree and the tree returns the pre-
dicted sonar or bearing value. The agent chooses the
next turn which maximizes P.5

It is unlikely that humans recompute the conse-
quences of actions when the current state is similar to
one seen in the past. Therefore, our future work will
address memorizing cases of successful action model
use so that memory can be invoked, rather than the
trees, for some predictions.

modeling human learning. We are also investigating con-
nectionist models as in Jordan & Rumelhart (1992). Cur-
rently, C4.5 learning is in batch. To more faithfully model
human learning, we are planning to use an incremental ver-
sion of decision tree learning in future implementations.

°If the next turn is considered irrelevant by the decision
tree, a random action choice is made.

Empirical Comparison of the Two
Methods

To make our comparisons fair, we include a training
phase for the reinforcement learner with Boltzmann
temperature at 0.5, which results in random actions.®
A testing phase follows in which the turn with the best
g-value 1s selected deterministically at each time step.
In summary, the reinforcement learner takes random
actions and learns its g-values during training.” It uses
these learned g¢-values for action selection during test-
ing. The action models method takes the same ran-
dom actions as the g¢-learner during training (i.e., it
experiences exactly the same sensor and action train-
ing data as the g-learner), and then from the execution
trace training data it learns decision tree action mod-
els. The focus heuristic uses the learned trees for action
selection during testing. Neither of the two methods
learns during testing. Both methods have the same
knowledge regarding which sensors are relevant, i.e.,
the bearing and sonar sensors.

In our experimental tests of all hypotheses, the train-
ing phase length is varied methodically at 25, 50, 75,
and 100 episodes. The testing phase remains fixed at
400 episodes.® Each episode can last a maximum of 200
time steps, i.e., decision cycles. In all experiments, the
number of mines is fixed at 25, there is a small amount
of mine drift, and no sensor noise. These task param-
eter settings match exactly those used for the human
subject whose learning we wish to model.?

Recall that the outcome of every episode is binary
(success/failure) and that success implies the AUV
avoids all the mines and reaches the target location.
The performance measure we use is the percentage of
test episodes in which the AUV succeeds. This infor-
mation is obtained from the trace file. Performance is
averaged over 10 experiments because the algorithms
are stochastic during training, and testing results de-
pend upon the data seen during training. Graphs show
mean performance, and error bars denote the standard
deviation.

We denote the g¢-learning scheme described above
as () and the action model scheme with decision trees
described above as A. Our goal is to find an algorithm
that most closely approximates the human learning.
We start with the basic algorithms (@ and A), then

6We also tried an annealing schedule but performance
did not improve.

T Arbib (1972) provides convincing cognitive justification
for the role of random exploration of actions in the acqui-
sition of motor skill.

8We experimented with the number of episodes and
chose a setting where performance improvement leveled off
for both algorithms.

°Both algorithms go straight (0 turn) for the first three
time steps of every episode during training. This not only
matches performance we observed in the execution traces
from human subjects, but also aids the learning process by
quickly moving the AUV into the mine field.

100 0
gg: — human subject
% Success 28: /+/+
on Test 58—
Daa 40| /
30 /b
20|/ - \ \ e \
10,
0 I
0 25 50 75 100
Training
Episodes

Figure 1: The graph represents the learning curves for
A,), and the human subject.

make changes as needed to more closely approximate
the human learning.

We begin by empirically testing the following hy-
pothesis:

e Hypothesis 1: The slope of A’s learning curve is
closer than @)’s to the slope of the human learning
curve, for the Navigation task.

The justification for Hypothesis 1 is that our action
models method uses an action choice policy, including
a focus heuristic, specially designed to capitalize on
sensor relevance knowledge.

To test Hypothesis 1, we used data from a typical
(the variance between subjects was surprisingly low)
subject for a single 45-minute session. Note that we
cannot divide the human learning into a training phase
and a testing phase during which the human stops
learning. Therefore, we have averaged performance
over a sliding window of 10 previous episodes. We con-
sidered averaging performance over multiple subjects,
but that would entail significant information loss.

Figure 1 shows the results of testing Hypothesis 1.
A outperforms () at a statistically significant level (us-
ing a paired, two-tailed ¢-test with o = 0.05). Thus,
Hypothesis 1 is confirmed.!® Apparently, our novel
method for coupling action models with an action
choice policy that exploits sensor relevance has tremen-
dous value for this task.

Among the most plausible explanations for the
power of our action models approach over the g-learner
for this task are: (1) A’s focus of attention heuristic,
(2) use of an action model per se, and (3) the deci-
sion tree representation, e.g., Chapman and Kaelbling
(1991) discuss how decision trees can improve over neu-
ral networks with backpropagation for reinforcement
learning.

107t is unclear why the performance of the g-learner drops
slightly with more training episodes, though perhaps over-
fitting explains this.

100 AL

oo Qg
38: —hu:*nansubject
% Success 28: /J({
on Test 28— -
Data =1 /.
30 /. } fonn, |
20/ /.
10—,
0 T T
0 25 50 75 100
Training
Episodes

Figure 2: The graph represents the learning curves for
Arer, @Qret, and the human subject.

Although A performs more like the human than @,
the most pressing question is why neither performs as
well the human. We next add more knowledge in order
to gain a better approximation of the curve of the hu-
man learner. A more careful examination of the verbal
protocols indicates that subjects not only attended to
the sonar sensor, but some subjects mentioned focusing
almost exclusively on the middle three sonar segments.
This makes sense if you consider the middle three sonar
segments show mines straight ahead, which is critical
information for avoiding immediate collisions. We have
have altered @’s reward function to weight the bear-
ing equally to the middle three sonar segments and to
give all other sensors zero weight. Thus, if the bearing
shows the target straight ahead and the middle three
sonar segments show no obstacles ahead, then the re-
ward is highest. A was also modified to include this
more specific relevance knowledge, i.e., the modified
version only predicts the values of the middle three
sonar segments rather than all, and the focus heuris-
tic checks the threshold for only those three segments.
We denote the modified g-learning scheme @,.; and
the modified action model scheme A,;.

We empirically test the following hypothesis:

o Hypothesis 2: The slope of A,.;’s learning curve (re-
spectively, Qre1) is higher than that of A (respec-
tively, @), for the Navigation task.

The justification for Hypothesis 2 is that the addition
of relevance knowledge should improve performance.
Figure 2 shows the results of testing Hypothesis 2.
If we compare Figure 2 with Figure 1, we see that @,
performs slightly better than @). The performance dif-
ference is not statistically significant (e = 0.10) for
training lengths of 25, 50, and 100, but is significant
(o = 0.10) with a training length of 75. The surprise
is that A, performs worse than A. The differences
are statistically significant at @ = 0.05 for training
lengths of 75 and 100, but only at o = 0.20 for training
lengths of 25 and 50. Our results refute Hypothesis 2.

(Although these results refute Hypothesis 2, they pro-
vide further confirmation of Hypothesis 1 because the
performance improvement of A,..; over that of). is
statistically significant with o = 0.05).

Apparently, adding this relevance knowledge does
not help A, which is the better performer. We con-
jecture the reason is that although the middle three
sonar segments may be the most relevant, all the sonar
segments are in fact relevant for action choice. For ex-
ample, if there is a mine ahead as well as one to the
left, then the best action to take to avoid the mines is
to turn right. With knowledge only of what is straight
ahead, turning right or left would seem equally valid.
The subjects were most likely using this knowledge,
but their verbal recollections were probably incomplete
accounts of the full knowledge that they actually used
for decision-making.

A Multistrategy Approach

The addition of knowledge about which sensors are
relevant does not improve our algorithms. There-
fore, we are still left with the question: why are both
methods slower learners than the human?'! While @
in principle could match A’s performance, the search
that it embodies has to be rescued from the perfor-
mance plateau we find in Figures 1 and 2, in order
to match human learning rates. () possesses the abil-
ity to implicitly acquire the function P as well as the
focus heuristic from task interaction. Therefore we
examine the question: is it possible to combine algo-
rithms A and @ to create a hybrid method that out-
performs both, and which more closely matches the
human learning curve on this task?

We are in the preliminary stages of investigating this
question. The idea is to use A’s superior performance
after the same level of training to get () out of its per-
formance plateau and then use () to refine the knowl-
edge it acquired from A’s focus heuristic and sensor
evaluation function P. We have implemented the first
part of our hybrid scheme in the algorithm M SL, de-
scribed below.

MSL performs a random walk in the space of ac-
tions for the first 25 episodes, i.e., it experiences ex-
actly the same training data as A and @ for the first
25 episodes. The A component of M SL then builds
the decision trees. Next, M SL uses the focus heuristic
with the learned decision trees to select actions from
episodes 25 to 100. Concurrently, action choices and
rewards are used to refine the g-values for). Since
we have empirically established that the action choices
of A are significantly better than those of) after 25
episodes, we expect algorithm @ to find itself in a bet-
ter region of the policy space during learning episodes

117t may also be the case that their asymptotic perfor-
mance is lower than that of humans, although A does show
signs of a steady increase and the slope is positive even at
100 training episodes.

25 to 100. After the 100th episode, we turn off learning
and test M SL for 400 episodes. In the testing phase,
MSL chooses actions based on the learned g¢-values
alone. The results of this experiment (shown below)
are quite surprising. The performance of M SL turns
out to be not statistically significantly different from
that of @ (« = 0.20). This experiment highlights some
of the difficulties in constructing hybrid algorithms for
complex tasks.

Algorithm | Training Length | Mean | Std
Q 100 24.92 | 6.62
MSL 100 27.07 | 8.56
A 25 53.50 | 15.81

It seems the multistrategy approach is not rescuing
() to make the combined system perform more like the
human. In the next section, we try an alternative tac-
tic, namely, that of adding what we consider to be
one of the most useful elements of A into (). Perhaps
by adding elements of A one by one into) we can
eventually develop a system whose learning rate more
closely approximates that of the human than either A
or () because it would include the best elements of both
systems.

Adding the Focus Heuristic to)

As mentioned above, the focus heuristic, the use of
action models, and the use of decision trees are all
candidate explanations for A’s superior performance
over that of (). We begin by considering the impact
of the focus heuristic. This heuristic separates sonar
and bearing information and therefore is able to take
advantage of knowledge regarding which sensors are
relevant when. Because the g-learning method lumps
all knowledge into one reward it probably needs longer
training to do likewise. Here, we explore the impact
of adding the focus heuristic to . Future work will
investigate adding other elements of A to) one by
one.

A new version of (), called Qf,cus, has been cre-
ated by generating two sets of neural networks, one
for selecting the actions for making choices to improve
the bearing and another set for improving the sonar.
The first set receives the bearing component of the
reward and the second receives the sonar component
(i.e., these are the respective elements of the previ-
ous reward, which is a weighted sum). Arbitration
between the two sets of networks is done by the same
focus heuristic used by the action models approach,
namely, use the sonar networks to select a turn (based
on Boltzmann selection using the g-values) if the sonar
values are below the threshold; otherwise use the bear-
ing networks to select.

We empirically test the following hypothesis:

o Hypothesis 3: The slope of Qf,cus’s learning curve
is closer to that of the human’s than @’s is.

-
% Success g0 _|

on Test 58— R
D 40 — -'.//
e
20—/,
10 ;
0 T T
0 25 50 75 100
Training
Episodes

Figure 3: The graph represents the learning curves for
A, Qfocus, and the human subject.

The results of testing Hypothesis 3 are in Figure 3.
The hypothesis is confirmed, but what is unexpected
is that @ focus outperforms A and comes significantly
closer to the human learning curve. The differences
between the curves for Qf,cus and A are statistically
significant at all points (o = 0.05). Apparently the
focus heuristic plays a major role in the advantage of
A over), and by adding that knowledge to generate
Qfocus, we have generated a system that most closely
approximates the human learner of any system we have
investigated so far.

Discussion

Our results indicate that relevance knowledge, espe-
cially knowledge regarding which sensors are relevant
when, is one of the keys to better performance on this
domain. Future work will explore adding other ele-
ments of A to (. The rate of human learning on
this task is a function of both the amount of strategic
knowledge that humans possess on related navigation
tasks, as well as the finely honed sensorimotor proce-
dural machinery that makes effective use of this in-
formation. To make our algorithms competitive with
human learning, we are making explicit other forms
of navigational knowledge brought to bear by humans
and by refining our algorithms for making use of this
knowledge. We hope to thereby achieve our goal of
developing an algorithm that models human learning
on the Navigation task.

Acknowledgements

This research was sponsored by the Office of Naval
Research N00014-95-WX30360 and N00014-95-1-0846.
We thank Sandy Marshall and William Spears for
their helpful comments and suggestions, and especially
William Spears for his suggestion to divide the g¢-
learner into two data structures in order to use the
focus heuristic. Thanks also to Helen Gigley and Susan
Chipman for their encouragement and support, to Jim

Ballas for the joystick interface, and to Alan Schultz
for all the work he did to tailor the simulation to both
machine learning and human experimental needs.

References

Arbib, M.A. 1972. The Metaphorical Brain. NY: Wi-
ley and Sons Publishers.

Breiman, L., Friedman, J.H. Olshen, R.A.. & Stone,
C.J. 1984. Classification and Regression Trees. Bel-
mont, CA: Wadsworth International Group Publish-
ers.

Chapman, D. & Kaelbling, L. 1991. Input gener-
alization in delayed reinforcement learning: An algo-
rithm and performance comparisons. In Proceedings
of Twelfth International Joint Conference on Artificial
Intelligence (pp. 726-731). San Mateo, CA: Morgan
Kaufmann Publishers.

Drescher, G.L. 1991. Made-Up Minds. Cambridge,
MA: MIT Press.

Gordon, D., Schultz, A., Grefenstette, J., Ballas, J.,
& Perez, M. 1994. User’s Guide to the Navigation and
Collision Avoidance Task. Naval Research Laboratory
Technical Report AIC-94-013.

Gordon, D. & Subramanian, D. 1993. A Multistrat-
egy Learning Scheme for Agent Knowledge Acquisi-
tion. Informatica, 17, 331-346.

Jordan, M.I. & Rumelhart, D.E. 1992. Forward
models: supervised learning with a distal teacher. Cog-
nitive Science, 16, 307-354.

Lin, L. 1992. Self-Improving Reactive Agents Based
on Reinforcement Learning, Planning and Teaching.
Machine Learning, 8, 293-321.

Mahadevan, S. 1992. Enhancing transfer in rein-
forcement learning by building stochastic models of
robot actions. In Proceedings of the Ninth Interna-
tional Conference on Machine Learning (pp. 290-299).
San Mateo, CA: Morgan Kaufmann Publishers.

Moore, A. 1992. Fast, robust adaptive control by
learning only forward models. In Proceedings of the
International Joint Conference on Neural Networks, 4,
(pp- 571-578). San Mateo, CA: Morgan Kaufmann.

Munro, P.1987. A dual back-propagation scheme for
scalar reward learning. In Proceedings of the Ninth An-
nual Conference of the Cognitive Science Society (pp.
165-176). Hillsdale, NJ: Erlbaum.

Nilsson, N. 1980. Principles of Artificial Intelli-
gence. Palo Alto, CA: Tioga Publishing Company.

Quinlan, J.R. 1986. Induction of decision trees. Ma-
chine Learning, 1, 81-107.

Rissanen, J. 1983. Minimum Description Length
Principle. Report RJ 4131 (45769), IBM Research
Laboratory, San Jose.

Rumelhart, D.E. & McClelland, J.I. 1986. Paral-
lel Distributed Processing : FEzxplorations in the Mi-
crostructure of Cognition. Cambridge, MA: MIT
Press.

Skinner, B.F. 1984. Selection by consequences. The
Behavior and Brain Sciences, T, 477-510.

Sutton, R. 1988. Learning to Predict by the Meth-
ods of Temporal Differences. Machine Learning, 3, 9-
44,

Sutton, R. 1990. Integrated architectures for learn-
ing, planning, and reacting based on approximating
dynamic programming. In Proceedings of the Seventh
International Conference on Machine Learning (pp.
216-224). San Mateo, CA: Morgan Kaufmann.

Watkins, C. 1989. Learning from Delayed Rewards.
Doctoral dissertation. Cambridge, England: Cam-
bridge University.

