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Abstract

On the basis of early theoretical and empirical studies, genetic algorithms
have typically used 1 and 2-point crossover operators as the standard mechan-
isms for implementing recombination. However, there have been a number of
recent studies, primarily empirical in nature, which have shown the benefits of
crossover operators involving a higher number of crossover points. From a trad-
itional theoretical point of view, the most surprising of these new results relate
to uniform crossover, which involves on the average L  / 2 crossover points for
strings of length L. In this paper we extend the existing theoretical results in an
attempt to provide a broader explanatory and predictive theory of the role of
multi-point crossover in genetic algorithms. In particular, we extend the tradi-
tional disruption analysis to include two general forms of multi-point crossover:
n-point crossover and uniform crossover. We also analyze two other aspects of
multi-point crossover operators, namely, their recombination potential and
exploratory power. The results of this analysis provide a much clearer view of
the role of multi-point crossover in genetic algorithms. The implications of
these results on implementation issues and performance are discussed, and
several directions for further research are suggested.
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1. Introduction

One of the unique aspects of the work involving genetic algorithms (GAs)
is the important role that recombination plays in the design and implementation
of robust adaptive systems. In most GAs, individuals are represented by fixed-
length strings and recombination is implemented by means of a crossover opera-
tor which operates on pairs of individuals (parents) to produce new strings
(offspring) by exchanging segments from the parents’ strings. Traditionally, the
number of crossover points (which determines how many segments are
exchanged) has been fixed at a very low constant value of 1 or 2. Support for
this decision came from early work of both a theoretical and empirical nature
[Holland75, DeJong75].

However, there continue to be indications of an empirical nature that there
are situations in which having a higher number of crossover points is beneficial
[Syswerda89, Eschelman89]. Perhaps the most surprising result (from a tradi-
tional perspective) is the effectiveness on some problems of uniform crossover,
an operator which produces on the average (L / 2) crossings on strings of length
L [Syswerda89].

The motivation for this paper is to extend the theoretical analysis of the
crossover operator to include the multi-point variations and provide a better
understanding of when and how to exploit their power. We will concentrate on
three different aspects of multi-point crossover operators: their disruptive effect,
recombination potential, and exploratory power. Specifically, this paper will
focus on two forms of multi-point crossover: n-point crossover and uniform
crossover.

Sections 2 through 5 of this paper provide a thorough treatment of the dis-
ruptive effects of n-point and uniform crossover, while Section 6 explains the
role of disruption in the genetic algorithm. Section 7 describes, in detail, a new
theory of recombination potential, based on the earlier disruption theory. Our
thoughts on the exploratory power of n-point and uniform crossover are outlined
in Section 8. The implications of these theories are discussed in the final sec-
tion.

2. Traditional Analysis

Holland provided the initial formal analysis of the behavior of GAs by
characterizing how they biased the makeup of new offspring in response to feed-
back on the fitness of previously generated individuals. By focusing on hyper-
plane subspaces of L-dimensional spaces (i.e., subspaces characterized by
hyperplanes of the form "−−d 1−−d 2−−d 3−−", where the di are the defining
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positions of the hyperplane), Holland showed that the expected number of sam-
ples (individuals) allocated to a particular kth order hyperplane Hk at time t  + 1
is given by:

m (Hk ,t +1) > m (Hk ,t) 
f
_

f (Hk)______ (1 − k  Pm − Pc Pd(Hk) ) (1)

In this expression, f (Hk) is the average fitness of the current samples allocated
to Hk , f

_
is the average fitness of the current population, Pm is the probability of

using the mutation operator, Pc is the probability of using the crossover opera-
tor, and Pd(Hk) is the probability that the crossover operator will be "disruptive"
in the sense that the children produced will not be members of the same sub-
space as their parents.

The usual interpretation of this result is that subspaces with higher than
average payoffs will be allocated exponentially more trials over time, while
those subspaces with below average payoffs will be allocated exponentially less
trials. This assumes that there are enough samples to provide reliable estimates
of hyperplane fitness, and that the effects of crossover and mutation are not too
disruptive. Since mutation is typically run at a very low rate (e.g., Pm = 0.001),
it is generally ignored as a significant source of disruption. However, crossover
is usually applied at a very high rate (e.g., Pc  ≥ 0.6). So, considerable attention
has been given to estimating Pd, the probability that a particular application of
crossover will be disruptive.

To simplify and clarify the analysis, it is typically assumed that individuals
are represented by fixed-length binary strings of length L, and that crossover
points can occur with equal probability between any two adjacent bits. For ease
of presentation these same assumptions will be made for the remainder of this
paper. Generalizing the results to non-binary fixed-length strings is quite
straightforward. Relaxing the other assumptions is more difficult.

Under these assumptions, Holland provided a simple and intuitive analysis
of the disruption of 1-point crossover: as long as the crossover point does not
occur within the defining boundaries of Hk (i.e., between any of the k fixed
defining positions), the children produced from parents in Hk will also reside in
Hk [Holland75]. Figure 1 represents this graphically for a 3rd order hyperplane.
Note that d 1 , d 2 , and d 3 represent the 3 defining positions of the 3rd order
hyperplane, while P1 and P2 indicate the two parents. The dotted line represents
1-point crossover.

If crossover does occur inside the defining boundaries, disruption may or
may not result. Disruption will depend on where the crossover point occurs
inside the defining boundaries and on the alleles that the parents have in
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L

dl(H 3) = L 1

P1:
d 1 d 2 d 3

P2:

Figure 1: A 3rd Order Hyperplane

common on the k defining positions. Hence, Pd can be bounded by the probabil-
ity that the crossover point will fall within the defining boundaries of Hk . Under
the assumption of uniformly distributed crossover points, this yields:

Pd(Hk) ≤ 
L −1

dl (Hk)_______ (2)

where dl (Hk) is the "defining length" of Hk , namely, the distance between the
first and last of the k fixed defining positions of hyperplane Hk .

This analysis has lead to considerable discussion of the "representational
bias" built into 1-point crossover, namely, that crossover is much more disrup-
tive to hyperplanes whose defining positions happen to be far apart. It also sug-
gests a plausible role for inversion operators capable of effecting a change of
representation in which the defining lengths of key hyperplanes are shortened.

De Jong [DeJong75] extended this analysis to n-point crossover by noting
that no disruption can occur if there are an even number of crossover points
(including 0) between each of the defining positions of a hyperplane. Hence, we
have a bound for the disruption of n-point crossover:

Pd( n,  Hk ) ≤ 1 − Pk,even ( n,  Hk  ) (3)

Note that Pk,even is defined to be the probability that an even number of cross-
over points will fall between each of the k defining positions. De Jong [De
Jong75] provided an exact expression for Pk,even for the special case of 2nd
order hyperplanes (i.e., k  = 2):

P2,even ( n,  L,  L 1  ) = 
i = 0 
Σ

���
 

2
n__ 

������
2i
n ��
	��  

L

L 1___ 


��
� 2i ���  L

L  − L 1_______ 

���
� n  − 2i

(4)
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P2,even ( n,  L,  L 1  ) is the probability that an even number of crossover points
will fall within the 2nd order hyperplane defined by L and L 1 . Recall that L is
the length of the string, while L 1 is the defining length of the hyperplane. The
second term of the summation is the probability of placing an even number of
crossover points within the 2 defining points. The third term is the probability of
placing the remaining crossover points outside the 2 defining points. Finally, the
combinatorial represents the number of ways an even number of points can be
drawn from the n crossover points.

The family of curves generated by P2,even provide considerable insight
into the change in disruptive effects on second order hyperplanes as the number
of crossover points is increased. Figure 2 plots the curves for binary strings of
length L. Notice how the curves fall into two distinct families depending on
whether the number of crossover points is even or odd. Since P2,even guarantees
no disruption, we are interested in increasing P2,even whenever possible. By
going to an even number of crossover points, we can reduce the representational
bias of crossover, but only at the expense of increasing the disruption of the
shorter definition length hyperplanes.
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Figure 2. n-point Crossover Disruption on 2nd Order Hyperplanes

If we interpret the area above a particular curve as measure of the cumula-
tive disruption potential of its associated crossover operator, then these curves
suggest that 2-point crossover is the best as far as minimizing disruption. These
results together with early empirical studies were the basis for using 2-point
crossover in many of the implemented systems. Since then, there have been
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several additional studies focusing on crossover.

Bridges and Goldberg [Bridges85] have extended Holland’s analysis of 1-
point crossover, deriving tighter bounds on the disruption by taking into account
the properties of the second parent and gains in samples in Hk due to disruption
elsewhere.

Syswerda [Syswerda89] introduced a "uniform" crossover operator in
which P 0 specified the probability that the allele of any position in an offspring
was determined by using the allele of the first parent, and 1 − P0 the probability
of using the allele of the second parent. He provided an initial analysis of the
disruptive effects of uniform crossover for the case of P0  = 0.5, and compared it
with 1 and 2 point crossover. He presented some provocative results suggesting
that, in spite of higher disruption properties, uniform crossover can exhibit
better recombination behavior, which can improve empirical performance.

Eschelman, Caruana, and Schaffer [Eschelman89] analyze crossover
operators in terms of "positional" and "distributional" biases, and present a set of
empirical studies suggesting that no n-point, shuffle, or uniform crossover opera-
tor is universally better than the others.

These results and other empirical studies motivated us to attempt to clarify
the effects of multi-point crossover by extending the current analysis. In the
remaining sections we present a general analysis of crossover disruption, pro-
viding precise formulations for the disruption probabilities of both uniform and
n-point crossover on kth order hyperplanes. Two other properties of crossover
are also analyzed in detail: the recombination potential and exploratory power
of both uniform and n-point crossover.

These theoretical extensions allow us to explain the apparent contradictory
nature of recent empirical studies, and help us understand more clearly the
interacting effects of crossover and other GA features such as population size.
In addition, the analysis reemphasizes the important differences between the
roles of crossover and mutation, and suggests the need for an adaptive crossover
mechanism.

3. Crossover Disruption for Higher Order Hyperplanes

One possible explanation for the conflict between the early analysis and
recent empirical results on the merits of having more crossover points is that the
analysis involved only the special case of 2nd order hyperplanes. It is possible
that, if properly extended to higher order hyperplanes, the theory would predict
the benefits of a corresponding increase in the number of crossover points. In
this section we attempt to resolve this issue by generalizing De Jong’s disruption
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results to hyperplanes of arbitrary order.

As noted earlier, the disruption probability Pd( n,  Hk  ) of n-point crossover
on a kth order hyperplane Hk can be conservatively bounded by
1 − Pk,even ( n,  Hk ) where Pk,even ( n,  Hk  ) is the probability that n-point cross-
over produces only an even number of crossover points between each of the
defining positions of Hk .

De Jong’s formula for calculating P 2,even can be generalized by noting that
Pk,even can be defined recursively in terms of Pk −1,even . To see this, consider
how P3,even can be calculated in terms of P2,even . Figure 3 illustrates the
approach graphically.

L

L 1

L 2

P1:
d 1 d 2 d 3

P2:

Figure 3. Non-disruptive n-point Crossover

The probability of n-point crossover generating only an even number of
crossover points between both d 1−−d 2 and d 2−−d 3 can be calculated by count-
ing the number of ways an even number of crossover points can fall between
d 1−−d 3 , and for each of these possibilities requiring an even number to fall in
d 1−−d 2 (a second order calculation involving L 1 and L 2). More formally, we
have:

P 3,even ( n,  L,  L 1 , L 2  ) =                                                                           (5)

                             
i = 0 
Σ
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In general, we have:

Pk,even ( n,  L,  L 1 , . . . , Lk −1  ) =                                                                     (6)

                      
i = 0 
Σ

,,-
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n__ 

../�01
2i
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456  

L

L 1___ 
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9 2i :;<  L

L  − L 1_______ 
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Pk −1,even ( 2i,  L 1 , . . . , Lk −1  )

Figures 4 and 5 illustrate Pk,even for hyperplanes of order 3 and 5. Note that each
point on the graph represents an average over all hyperplanes of a particular
defining length. Note that, apart from a skewing effect, the curves yield the
same interpretation as De Jong’s earlier curves for 2nd order hyperplanes: 2-
point crossover minimizes disruption. So, extending the analysis thus far does
not help in understanding the potential benefits of higher numbers of crossover
points (seen in some empirical results).
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Figure 4. Pk,even on 3rd Order Hyperplanes

4. Precise Formulations of N-point Disruption Probabilities

Although the previous section generalized De Jong’s initial disruption
analysis, it did not explain the potential benefits of higher numbers of crossover
points (seen experimentally). A second explanation for the conflicting results
on the merits of a higher number of crossover points is that the Pk,even curves are
very weak bounds on Pd. It is possible that Pd itself, if computable, would yield
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Figure 5. Pk,even on 5th Order Hyperplanes

different results. In this section we attempt to resolve this issue by providing
exact equations for Pd .

The primary reason for the weakness of the Pk,even bound is that it ignores
the fact that many of the cases in which an odd number of crossover points fall
between hyperplane defining positions are not disruptive to the sampling pro-
cess. This occurs whenever the second parent happens to have identical alleles
on the hyperplane defining positions which are exchanged by "odd" crossovers.†
Figure 6 illustrates this in the simple case of 2nd order hyperplanes. Note that, in
this figure, v 1 and v 2 represent the alleles (i.e., values) at those defining posi-
tions. Of the 4 possible combinations of matches on the defining positions of
H 2 , only the first ( −v 1−−v 2−, −v

_
1−−v

_
2− ) actually results in a disruption.

Hence, in order to obtain precise disruption probabilities for an arbitrary
hyperplane Hk , we must generalize Pk,even to Pk,s (i.e., the probability of sur-
vival) by including "odd" crossovers which are not disruptive. We achieve this
in two steps: by first counting all possible odd crossovers, and then calculating
which of those are not disruptive.

The probability that an odd number of crossover points will fall within a
2nd order hyperplane is given by:

P2,odd ( n,  L,  L 1  ) = 
i = 0 
Σ

@AA
 

2
n__ 

B CCED
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2i −1
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L 1___ 

L�M
N 2i −1 OPQ  L

L  − L 1_______ 

R�S
T n  − (2i −1)

(7)

_______________

† An "odd" crossover occurs when an odd number of crossover points falls within 2 adjacent
defining positions of the hyperplane.
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Figure 6. Disruption in "Odd" Crossovers

Let C be the probability that a particular odd crossover will not be disrup-
tive. Then we can write:

P2,s( n,  L,  L 1  ) = P2,even ( n,  L,  L 1  ) + C  P2,odd( n,  L,  L 1  ) (8)

We can combine the contributions from the odd and even cases by defining Cs

to be the probability that any particular crossover will not be disruptive. In this
case:

P 2,s( n,  L,  L 1  ) = 
i = 0 
Σ
 n  UV

i
n WX
YZ[  

L

L 1___ 

\�]
^ i _`a  L

L  − L 1_______ 

b�c
d n  − i

Cs (9)

Notice the similarity to Eq. 4 defined earlier. In this case we are now con-
sidering all possible distributions of crossover points (both even and odd). In
general:

Pk,s( n,  L,  L 1 , . . . , Lk −1  ) =                                                             (10)

                          
i = 0 
Σ
 n  ef

i
n gh
ijk  

L

L 1___ 

l�m
n i opq  L

L  − L 1_______ 

r�s
t n  − i

Pk −1,s( i,  L 1 , . . . , Lk −1  ) 

We are left, then, with the problem of computing the correction factor Cs .
We achieve this in the following manner. Given a particular distribution of
crossover points, we can identify how many of the given hyperplane’s defining
positions are being exchanged by this particular crossover. If both parents
match on these positions, no disruption occurs. For example, reconsider Figure
6. In this case the particular crossover will not disrupt the 2nd order hyperplane
if the parents match on either the first or the second or both defining positions.
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If we let Peq(d) represent the probability that both parents have the same alleles
on a particular defining position d, then

Cs = Peq(d 1) + Peq(d 2) − Peq(d 1)Peq(d 2) (11)

specifies the probability that this crossover will not be disruptive. If we assume,
for example, that Peq(di) = 0.5 for both defining positions, then Cs  = 0.75 which
agrees with the prior discussion for Figure 6.

This same observation is true for kth order hyperplanes. We now must
consider subsets X of the set of k defining positions. For the ease of presentation
we denote K to be that set of k defining positions. Suppose that a crossover
results in a subset X of defining positions being exchanged. In this case no disr-
uption will occur if: 1) the parents match on the subset X, or 2) if they match on
the subset K  − X, or 3) they match on the set K. Hence, the general form of the
correction is:

Cs    =   
d∈X
Π Peq(d) + 

d∈K −X
Π Peq(d) − 

d∈K
Π Peq(d) (12)

If an even crossover occurs, then | X |  = 0 and Cs  = 1, as we would expect.
However, for an odd crossover Cs  < 1 (unless Peq(d) = 1 for all d∈K). Figure 7
illustrates these ideas for one particular crossover on 4th order hyperplanes.

P1:

P2:

Figure 7. Non-disruptive "Odd" Crossover on 4th Order Hyperplanes

Deriving precise expressions for the values of Peq(d) at a particular point
in time is difficult in general since they vary from generation to generation in
complex, non-linear, and interacting ways. We can, however, get considerable
insight into the effects of shared alleles on disruption analysis by looking at
several specific cases. Suppose, for simplicity, that for the hyperplane Hk of
interest, Peq(d) is approximately the same for all the defining positions d∈K,
i.e., Peq(d) = Peq . In this case the general form for Cs reduces to the simpler
form:
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Cs    =   Peq
| X |  + Peq

| K −X |  − Peq
| K | (13)

In the case of the 4th order hyperplane in Figure 7, this becomes

Cs    =   Peq
2  + Peq

2  − Peq
4 (14)

If we assume Peq  = 0.5 (as is typical in the first few generations), then
Cs  = (7 / 16) reflects the proportion of cases in which this particular crossover
will not be disruptive.

Figures 8 and 9 show the effects of counting the non-disruptive "odd"
crossovers in these special cases. Figure 8 assumes a value of Peq  = 0.5, which
is likely to hold in the early generations when matches are least likely. Figure 9
assumes a value of Peq  = 0.75 to get a feeling of the effect as the population
becomes more homogeneous. Note that in both cases, the amount of expected
disruption has been significantly reduced and the relative difference in disrup-
tion among different numbers of crossover points is reduced as well. At the
same time, note that the curves for the various number of crossover points have
held their relative position with respect to one another.
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Figure 8. Pk,s on 3rd Order Hyperplanes with Peq = 0.5

These results help explain the fact that in some empirical studies little or
no difference in effect is seen by varying the number of crossover points used in
n-point crossover between, say, 1 and 16. It does not help explain why more
crossover points might be significantly better, nor does it provide any insight
into the relationship between n-point crossover and uniform crossover.
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Figure 9. Pk,s on 3rd Order Hyperplanes with Peq = 0.75

5. Analyzing Uniform Crossover

Syswerda [Syswerda89] defined a family of "uniform" crossover operators
which is a variant of a notion that has been informally experimented with in the
past: to produce offspring by randomly selecting at each locus the allele of one
of the parents. By defining P0 to be the probability of using the first parent’s
allele, offspring can be produced by flipping a P 0 biased coin at each position.†

A good way of relating uniform crossover to the more traditional n-point
crossover is to think of uniform crossover as generating a mask of 0s and 1s,
indicating which parent’s allele is to be used at each position. As we scan the
mask from left to right, a switch from 0 to 1 or from 1 to 0 represents a cross-
over point. For example, the mask 0011100 defines a 2-point crossover opera-
tion. If P0  = 0.5, all masks are equally likely. If we examine the n-point cross-
over operations defined by this set of masks, we see immediately that they are
binomially distributed around ((L −1) / 2). For example, the set of all 8-bit
masks results in the following distribution:

_______________

† Other informal studies viewed the process as a random walk and defined P 0 as the
probability of switching between parents. The two views are equivalent if and only if P 0 = 0.5.
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0-pt crossover: 0.008
1-pt crossover: 0.055
2-pt crossover: 0.164
3-pt crossover: 0.273
4-pt crossover: 0.273
5-pt crossover: 0.164
6-pt crossover: 0.055
7-pt crossover: 0.008

resulting in an average of 3.5 crossover points for an 8 bit mask.

If P0  ≠ 0.5, the masks are no longer uniformly distributed, but contain on
the average longer runs of 0s or 1s. From the point of view of n-point crossover,
the effect is to skew the binomial distribution toward 0. For example, setting
P0  = .1 changes the distribution of 8-bit masks to:

0-pt crossover: 0.430
1-pt crossover: 0.108
2-pt crossover: 0.323
3-pt crossover: 0.064
4-pt crossover: 0.064
5-pt crossover: 0.008
6-pt crossover: 0.003
7-pt crossover: 0.000

resulting in an average of 1.26 crossover points for an 8 bit mask.

We are now in a position to analyze the disruption properties of uniform
crossover in the same manner as the analysis of n-point crossover in the preced-
ing sections. The notion of an even number of crossover points between the
defining positions of hyperplane Hk corresponds to masks which have either all
0s or all 1s on the defining positions of Hk . Hence, the corresponding conserva-
tive bound on the disruption of uniform crossover is given by:

Pd(Hk) ≤ 1 − Pk,even (Hk) (15)

where

Pk,even (Hk) = (P0)k  + (1−P 0)k (16)

If P 0  = 0.5 for example, then

Pk,even (Hk) = (
2
1__)k −1 (17)
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for all hyperplanes of order k. Notice that, unlike the traditional n-point cross-
over, there is no representational bias with uniform crossover in the sense that
all hyperplanes of order k are equally disrupted regardless of how long or short
their defining lengths are.

As before, we can obtain an exact formulation of Pd if we include non-
disruptive "odd" crossovers. For uniform crossover this corresponds to those
masks which are not either all 0s or all 1s on the hyperplane defining positions,
but are non-disruptive because the parents share common alleles on those par-
ticular positions. If we let | K | be the cardinality of the set K, and PS(K ) be the
power set of K, then the probability of survival for uniform crossover is:

Pk,s(Hk) = Pk,even (Hk) + (18)

I∈PS(K )−K−{}
Σ (P 0) | I |   (1 − P0) | K −I |

uv
w
d∈I
ΠPeq(d) + 

d∈K −I
Π Peq(d) − 

d∈K
Π Peq(d)

x�y
z

where Peq is the probability of matching alleles, as before. Note that the last
term in the expression is identical to the correction Cs defined earlier for the n-
point crossover analysis. If the above is rewritten more concisely by combining
the "even" and "odd" terms, , Pk,s can be expressed in a form similar to that
derived for the n-point crossover analysis:

Pk,s(Hk) = (19)

I∈PS(K )
Σ (P 0) | I |   (1 − P0) | K −I |

{|
}
d∈I
ΠPeq(d) + 

d∈K −I
Π Peq(d) − 

d∈K
Π Peq(d)

~��
�

As before, we can get considerable insight into these equations by examin-
ing the disruption on hyperplanes for which Peq(d) = Peq for all d∈K. Figure
10 graphically illustrates this for 3rd order hyperplanes, and shows the relation-
ship between uniform crossover (P 0  = .5) and n-point crossover. Note that uni-
form crossover is much more disruptive than n-point crossover, but has the
interesting property that its disruption is independent of hyperplane defining
length.

This analysis also allows us to see clearly the effect of setting P 0 to some-
thing other than 0.5. Note that because of the symmetry of uniform crossover,
P0 and 1 − P0 produce the same effects. So, it is sufficient to consider the
effects of decreasing P 0 . As noted earlier, this has the effect of reducing the
expected number of crossover points. One would therefore expect a reduction
in disruption as well. Figure 11 illustrates this effect for 3rd order hyperplanes.
Notice how the disruption of uniform crossover can be controlled by lowering
P0 , without affecting the property that the disruption has no defining length bias.
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Figure 10. Pk,s on 3rd Order Hyperplanes with Peq = 0.5

In particular, note that by simply lowering P0 to .1, uniform crossover is less
disruptive (overall) than 2-point crossover and has no defining length bias! This
suggests a much more positive view of the potential of uniform crossover,
namely, as an unbiased recombination operator whose disruption potential can
be easily controlled by a single parameter P 0 .
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Figure 11. Disruption of Uniform Crossover (Peq = 0.5)
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To illustrate the effect of disruption on performance, Figure 12 presents the
results of running a GA on a 30 bit problem with 6 peaks [from DeJong90]. The
measure of performance is simply the best individual found at every generation.
Since we are maximizing, higher curves represent better performance.† It is
clear that the level of disruption provided by the standard form of uniform cross-
over (P 0  = .5) is too high for this problem and performance suffers relative to
2-point crossover. However, with uniform crossover we can increase and
decrease performance on a given problem with a fixed population size simply by
varying P0 . Note that in this particular case, a value of P0  = 0.2 for uniform
crossover results in performance similar to 2-point crossover. Referring back to
Figure 11, we can now see why. On this particular problem uniform crossover
with P 0  = 0.2 provides approximately the same level of disruption as 2-point
crossover, but without the corresponding length bias.

Perf

Evaluations * 100

0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

0 100 200 300
•
•
•••
•
•
•••
••••

•••••••
•
••••••••

••••••
••••

••
••••••••••••••••••

••
•••••••••••••

•••••••
••
•••••••••••

••••••
••••

•••••••
•••••••••••

•••••••
•••••••••••••••••••••••••••••••

•••
••••••••••

••••••••••••••••••••
••••••••••••••••••

••••••••••••••••••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••

2−pt

.01 uniform

.2 uniform

.5 uniform

Figure 12: 6-Peak (30 bits) - Population 1000

One might be tempted to conclude that further reductions in disruption
(P 0  < .2) would result in even better performance. However, Figure 12 indi-
cates that, for this particular problem, performance is significantly degraded
when P 0  = 0.01. This suggests that having a proper (but not necessarily
minimal) crossover disruption rate is an important component in achieving good
performance. We explore this theme in some detail in the next section.

_______________

† All experimental results are averaged over 10 independent runs.
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The fact that the disruption rate of uniform crossover is independent of
hyperplane defining length can be shown to be helpful in overcoming certain
representational dependencies. Suppose an important hyperplane has a defining
length of 30. If the string length L is 60, then the defining length of the hyper-
plane is L  / 2. However, if the string length is 300, then the defining length of
the hyperplane is L  / 10. Figure 11 indicates that the disruptive effect of uniform
crossover is the same in either situation, while the disruptive effect of n-point
crossover changes.

Syswerda illustrated how this can clearly affect performance with his
"sparse 1-max" problem in which 270 fake bits were appended to a 30-bit prob-
lem [Syswerda89]. One can show similar results with almost any problem. Fig-
ure 13 illustrates this on our 6-Peak problem appended with 270 fake bits. Note
that, in comparison to the original 30-bit problem shown in Figure 12, the per-
formance of uniform crossover (P 0  = .2) remains unchanged, while the perfor-
mance of 2-point crossover is considerably worse after the 270 fake bits have
been added. Referring back to Figure 11, we see that the effect of appending
270 fake bits is that the defining lengths of the hyperplanes involving the 30
important bits are now all  ≤ L / 10 (L is the length of the string). 2-point cross-
over is less disruptive within this range (0 to L  / 10) of defining lengths and, in
this case, the result is a less than optimal balance of exploration and exploita-
tion.
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Figure 13: 6-Peak (30 + 270 fake bits) - Population 1000

In summary, we note that the analysis in this section has highlighted two
important properties of uniform crossover. The first is the ease with which the
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disruptive effect of uniform crossover can be precisely controlled by varying
P0 . The second important property is that the disruptive potential of uniform
crossover does not depend on the defining length of hyperplanes. This allows
uniform crossover to perform effectively regardless of the distribution of impor-
tant alleles.

6. A More Positive View of Disruption

An implicit assumption of the previous sections was that disruption is a bad
thing and should be minimized. If we take this point of view that, performance
of GAs is inversely related to the amount of sampling disruption of crossover,
then we have not achieved our goal of extending the existing theoretical
analysis to explain the recent empirical results involving the benefits of cross-
over operators involving larger numbers of crossover points. The disruption
analysis of the previous sections clearly shows that increasing the number of
crossover points for both uniform and n-point crossover increases the disruption
rates.

The escape from this apparent dilemma can be found in a recurring theme
in Holland’s work: the importance of a proper balance between exploration and
exploitation when adaptively searching an unknown space for high performance
solutions [Holland75]. Because GAs involve finite populations, because selec-
tion pressure comes from observed (rather than actual fitness differentials), and
because no a priori assumptions are made about the space being searched, a cer-
tain level of disruption is required (beneficial) to balance the pressure to exploit
current observations.

This suggests the need for a broader theory which captures the effects of
crossover in conjunction with other key aspects of GAs such as population size,
mutation rate, and selection mechanisms. The initial pieces of such a theory are
beginning to emerge, but are not as well developed as the disruption analysis. In
this section we analyze two important situations in which crossover disruption
interacts strongly with other aspects of GAs. The first relates to the evolving
makeup of the population and the need for different levels of disruption at
different points in the evolutionary process. The second involves the need for
varying disruption levels as a function of population size and problem complex-
ity.

6.1. Crossover Productivity

Sampling disruption is important for understanding the effects of crossover
when populations are diverse (typically early in the evolutionary process).
However, when a population becomes quite homogeneous, another factor
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becomes important: whether the offspring produced by crossover will be
different than their parents in some way (thus generating a new sample) or the
same (clones).

If we try to formally compute the probability that the offspring will be
different than their parents, the computation is precisely the same as the previ-
ous disruption computations. To see this, consider two parents whose alleles
differ on only 4 loci. In order for crossover to produce new offspring, some but
not all of those alleles must be exchanged. The probability of this occurring is
just Pd(H 4). In other words, those operators that are more disruptive are also
more likely to create new individuals from parents with nearly identical genetic
material.

This property of crossover has been dubbed "crossover productivity" and is
easy to measure experimentally. Figure 14 illustrates how significantly the "pro-
ductivity" of 2-point crossover can drop off as evolution proceeds on the 6-Peak
problem. The vertical axis indicates the number of crossovers, per 100 evalua-
tions, that produced offspring different from their parents. Since Pc  = .6, and the
population size is 1000, the maximum productivity is 600. Note that, as
expected, uniform crossover (P 0  = .5) is more productive than 2-point cross-
over, especially as the population loses diversity.
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Figure 14. Productivity on 6-Peak (30 bits) - Population 1000

This observation helps explain some of the experimental results in which
higher crossover rates performed well. Figure 12 illustrates how the added pro-
ductivity of uniform crossover (P 0  = .5) helps performance at the end of a run
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(i.e., when the population loses diversity). A more dramatic example is shown in
Figure 15. Notice that, in this case, 2-point crossover is surpassed by uniform
crossover.
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Figure 15: 6-Peak (30 + 270 fake bits) - Population 1000

This analysis strongly suggests the need for an adaptive crossover operator
whose disruption rate changes with the context of the evolving population
dynamics. We have some empirical results to support this (e.g., [Booker87]).
However, a formal analysis specifying the "balance equations" involving cross-
over disruption and population homogeneity is not yet available.

6.2. Population Size Effects

It is also quite straightforward to show that additional exploration is
required when the population size is too small to provide the necessary sampling
accuracy for complex search spaces [DeJong90]. Figures 12 and 16 illustrate
this effect on the 6-peak problem. Notice how uniform crossover dominates 2-
point crossover on the 6-peak problem with a small population, but just the
opposite is true with a large population.

Figure 16 illustrates the importance of high disruption when small popula-
tion sizes are used. Since small populations tend to converge quickly, high disr-
uption helps to maintain exploration. Since larger populations converge less
quickly, disruption is less useful. However, despite a larger population, it is still
possible to have too little disruption. Consider our 6-Peak problem in which
uniform crossover is run with a P 0 of .01. The results are shown in Figure 17.
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Figure 16: 6-Peak (30 bits) - Population 20

Notice that a reduction of P0 from .2 to .01 is detrimental to performance,
although the reduction from .5 to .2 is beneficial. This reemphasizes the need
for a balance between exploration and exploitation in order to achieve efficient
search, and points out that problem complexity and population size can change
the balance point.
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Figure 17: 6-Peak (30 bits) - Population 1000
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These results go a long way towards explaining the sometimes contradic-
tory results of many empirical studies concerning the use of uniform and n-point
crossover. It does not, however, provide a strong predictive theory relating
specific population sizes to appropriate crossover disruption rates. One of the
difficulties in developing such a theory is that the properties of the space being
searched affect the relationships which need to be expressed. If the important
properties of the search space are assumed to be unavailable a priori, these
results strongly suggest the need for adapting population size, disruption rates,
etc. to the characteristics of the search space. Again, we have some tantalizing
empirical evidence of the benefits of such an approach (e.g, [Davis89]), but a
theoretical analysis at this level is still a long way off.

6.3. Mutation as a Source of Disruption

An obvious question at this point is how the sampling disruption provided
by mutation affects the balance and choice of crossover operators. There are a
significant number of empirical studies in which GA performance is improved
by increasing and/or adapting the mutation rate (see, for example, [Fogarty89]).
Currently, there is no theory which captures the interrelationship precisely.
Clearly, all of the issues raised earlier come into play, including population size,
selection pressure, and the properties of the search space.

However, it is important to understand that the nature of the disruption pro-
duced by crossover is significantly different than that of mutation. Crossover
disruption is better viewed and understood as a side effect of two important pro-
perties of crossover, namely its recombination potential and its exploratory
power. Focusing on these two "positive" aspects of crossover give a clearer pic-
ture of its role in GAs. We analyze these features in the next two sections.

7. Crossover Recombination Potential

The previous sections have described, in detail, the disruptive effects of n-
point and uniform crossover. A more positive approach to analyzing crossover
operators is to focus on their recombination potential, which is defined as the
ability of crossover to create higher order hyperplanes when the parents contain
the necessary lower order hyperplanes (building blocks). Syswerda pointed out
that recombination can be considered to be a specialized form of survival, in
which two lower order hyperplanes survive onto the same string, resulting in a
higher order hyperplane [Syswerda89]. This observation allowed Syswerda to
construct a recombination analysis from his survival analysis. His analysis
shows uniform crossover (P 0  = .5) to have a higher recombination potential
than 1 and 2-point crossover.
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However, since this survival analysis was limited to 1 and 2-point cross-
over, and to uniform crossover with a P0 of .5, the recombination analysis was
similarly limited. This motivated us to create a new recombination analysis in a
similar vein, since our survival analysis includes all of n-point crossover and a
parameterized uniform crossover. In the following discussion we will consider
the creation of a kth order hyperplane from two hyperplanes of order m and n.
We will restrict the situation such that the two lower order hyperplanes are
non-overlapping, and k  = m + n. Each lower order hyperplane is in a different
parent. We denote the probability that the kth order hyperplane will be recom-
bined from the two hyperplanes as Pk,r.

7.1. Recombination Analysis for N-Point Crossover

Since recombination is a restricted form of survival, it is appropriate to
reexamine our previous survival equations (Eqs. 9 and 10). Recall that the equa-
tions correctly consider all possible crossover distributions (both even and odd),
while the correction factor Cs computes the probability that disruption will not
occur, given a particular distribution. An analysis of recombination under n-
point crossover is simple if one modifies Cs . Recall that recombination will
occur if both lower order hyperplanes survive in the same individual. Suppose
that a n-point crossover results in a subset X of the k defining positions surviving
in the same individual. In this case recombination will occur if: 1) the parents
match on the subset X, or 2) if they match on the subset K  − X, or 3) they match
on the set K. Hence, the general form of the correction is:

Cr    =   
d∈X
Π Peq(d) + 

d∈K −X
Π Peq(d) − 

d∈K
Π Peq(d) (20)

As an example, consider Figure 18. In this figure, we represent the recom-
bination of two 2nd order hyperplanes. One hyperplane is depicted with circles,
and the other with squares. Since 3 of the defining positions will survive onto
the same individual (under the 2-point crossover shown), the probability of
recombination, assuming Peq(d) = Peq for all d∈K, is:

Cr    =   Peq
1  + Peq

3  − Peq
4 (21)

Note the similarity in description with the survival correction factor Cs

(the only difference is in how X is defined). In other words, given a kth order
hyperplane, and two hyperplanes of order n and m, Pk,r is simply Pk,s with the
correction factor redefined as above.
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P1:

P2:

Figure 18: Recombination of two 2nd Order Hyperplanes

7.2. Recombination Analysis for Uniform Crossover

The analysis of recombination under uniform crossover also involves the
analysis of the original survival equation (see Eq. 19). Note that, due to the
independence of the operator (each allele is swapped with probability P0), Eq.
19 can be divided into three parts. The first part expresses the probability that a
hyperplane will survive in the original string:

Pk,s,orig(Hk) =
I∈PS(K)

Σ   (P0) | I |   (1 − P0) | K −I |   
d∈K  − I

Π Peq(d) (22)

The second part expresses the probability that a hyperplane will survive in the
other string:

Pk,s,other(Hk) =
I∈PS(K )

Σ   (P0) | I |   (1 − P0) | K −I |   
d∈I
ΠPeq(d) (23)

The final part expresses the probability that a hyperplane will exist in both
strings:

Pk,s,both(Hk) =
I∈PS(K )

Σ   (P0) | I |   (1 − P0) | K −I |   
d∈K
Π Peq(d) (24)

Then:

Pk,s(Hk) = Pk,s,orig(Hk) + Pk,s,other (Hk) − Pk,s,both (Hk) (25)

This formulation allows us to express recombination under uniform crossover.
Again, assuming the recombination of two non-overlapping hyperplane of order
n and m into a hyperplane of order k:

Pk,r(Hk) = Pm,s,orig(Hm) Pn,s,other(Hn) + (26)

Pm,s,other (Hm) Pn,s,orig(Hn) −

Pm,s,both (Hm) Pn,s,both(Hn)
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This equation reflects the decomposition of recombination into two
independent survival events. The first term is the probability that Hm will sur-
vive on the original string, while Hn switches (i.e., both hyperplanes survive on
one parent). The second term is the probability that both hyperplanes survive on
the other parent. The third term reflects the joint probability that both hyper-
planes survive on both strings, and must be subtracted.
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Figure 19: Recombination of 3rd Order Hyperplanes (Peq = 0.5)

Figure 19 illustrates the relationships of the crossover operators in terms of
their recombination potential. Note specifically that there is evidence to support
the claim that uniform crossover (P 0  = .5) has a higher recombination potential
than the other crossover operators. However, it is even more interesting to note
that these relationships are qualitatively identical to those shown in Figure 11.
In other words, if one operator is better than another for survival, it is worse for
recombination (and vice versa). This observation appears to hold for all k, and
suggests very strongly that one cannot increase the recombination power
without a corresponding increase in disruption. It also suggests that, because of
this direct relationship, both recombination and crossover disruption rates can
be controlled by a single mechanism.

8. Crossover Exploration Power

Throughout this paper we have viewed disruption as a means for maintain-
ing a balance between exploration and exploitation during adaptive search. It
has also been pointed out that disruption does not necessarily imply useful
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exploration. The disruption caused by crossover and mutation simply implies
that a hyperplane sample has been modified in some way so as to no longer be a
member of that hyperplane, without any indication as to the possible forms that
change might take. The potential number of ways in which a genetic operator
can effect a change has been called its exploratory power. It is clear that cross-
over, in general, can make significantly broader changes to an individual than
mutation can, thus providing for a more radical, but more performance-biased
form of disruption.

Recently, it has been pointed out that uniform crossover has the additional
property that it has more exploratory power than n-point crossover [Eschel-
man89]. To see that this is true, consider the extreme case in which one parent is
a string of all 0s and the other all 1s. Clearly uniform crossover can produce
offspring anywhere in the space while 1 and 2-point crossover are restricted to
rather small subsets. In general, uniform crossover is much more likely to distri-
bute its disruptive trials in an unbiased manner over larger portions of the space.

The difficulty comes in analyzing whether this exploratory power is a vir-
tue. If we think of exploitation as the biased component of the adaptive search
process, it makes sense to balance this with unbiased exploration. Clearly, this
exploratory power can help in the early generations, particularly with smaller
population sizes, to make sure the whole space is well sampled. It can help
avoid some "deceptive" traps presented by certain classes of problems. At the
same time, some of this same exploratory power can be achieved over several
generations via repeated applications of 1 and 2-point crossover. Unfortunately,
our current analysis tools do not allow us to make comparisons of properties
which span generations and are strongly affected by selection. Hopefully we
will develop such tools and resolve questions of this type in the near future.

9. Conclusions and Further Work

The extensions to the analysis of n-point and uniform crossover presented
in this paper provide considerable additional insight into the role of multi-point
crossover in genetic algorithms. One of the unanticipated results of this effort is
the surprisingly positive view of uniform crossover that emerges. There appear
to be three potentially important features of uniform crossover. First, the
disruption/recombination of hyperplane sampling under uniform crossover does
not depend on the defining length of the hyperplanes. This reduces the possibil-
ity of representation effects, since there is no defining length bias. Second, the
disruption potential is easily controlled via a single parameter P0 . This suggests
the need for only one crossover form (uniform crossover), which is adapted to
different situations by adjusting P0 . Finally, when a disruption does occur,
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uniform crossover results in a minimally biased exploration of the space being
searched.

The paper, however, raises another issue: the need for a broader theory
capable of indicating how to achieve a proper balance of exploration and
exploitation for a particular problem by appropriate choice of population size,
genetic operator rates, and selection pressure. A full theoretical analysis of this
appears to be quite far off. The authors are currently working on extending the
results presented here in that direction. Our goal is to understand these interac-
tions well enough so that GAs can be designed to be self-selecting with respect
to such decisions as optimal population size and the proper balance between
exploration and exploitation.
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