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Abstract- This paper summarizestwo useful techniques
for aggregating theoretical models of evolutionary algo-
rithms (EAs). Aggregation removes unnecessarydetail
fr om the models, producing simpler models with good
predictiveaccuracy. Thefirst aggregationtechniqueis ap-
plicable to “equation of motion” modelsof EAs that have
selectionand mutation, for a particular classof interest-
ing fitnessfunctions. This form of aggregationintr oduces
no error into the theoretical model. The secondaggre-
gation technique is more general – it can be applied to
arbitrary Mark ov chain modelsof dynamic systems,such
as EAs with selection,mutation, and recombination. No
assumptionsare made about the fitness functions. This
form of aggregationintr oducesonly a small amount of er-
ror into the theoretical model.

1 Intr oduction

The standarddifficulty in modelingcomplex adaptive sys-
temsis that it is difficult to find the correctlevel of granu-
larity. If thelevel of granularityis too coarse(e.g.,too many
simplifying assumptionshave beenmade),themodelis easy
to analyzebut lackspredictive ability. On theotherhand,if
the level of granularityis very fine (e.g.,all componentsof
thesystemarefaithfully modeled),themodelwill bepredic-
tive but is often computationallyintractable.The trick is to
find theright level of granularity.

Naturally, themodelingof evolutionaryalgorithms(EAs)
hasthe samedifficulty. Modelsof EAs tendto eitherfocus
onindividualcomponentsof thealgorithms,or onthedynam-
ics of the completealgorithms. In general,component-wise
modelstendto befairly simpleto analyze,but lackpredictive
accuracy. Completemodelsarenecessarilymorepredictive,
but arefrustratinglydifficult to analyze.

Onesolutionto thisdilemmais to find methodsfor aggre-
gatingcompletemodelsfor EAs – the aggregationremoves
unnecessarydetailfrom thecompletemodels,producingsim-
pler modelswith good predictive accuracy. Statisticalme-
chanicsmodelsof EAs areoneattemptto performjust such
anaggregation,by focusingoncertain“macro”quantitiesthat
arepredictablee.g.,see[9, 10]. Themacroquantitiesemerge
from the dynamicsat the microscopiclevel. Unfortunately,
in orderto apply thesemethods,the EAs mustbe modified
from thoseusedin practice. Furthermore,variousassump-
tions andprinciplesare invoked that aredifficult to justify.
Finally, agreatdealof humaneffort is involvedin developing
the models. Although the statisticalmechanicstechniqueis

quitepromising,it doesnot yet automaticallyaggregateEA
models.

In general,thetwo aspectsof EAsthatcreatethemostdif-
ficulty in their modeling(andin theaggregationof themod-
els) is the inclusion of recombinationand finite-population
effects.By removing recombinationandconsideringonly the
expected (infinite-population)behavior of anEA population,
modelingandaggregationbecomemuchsimpler. Section2
will show that for an infinite-populationEA with selection
andmutation(but with no recombination),a systemof

���
simultaneousequations(where

�
is thecardinalityof theal-

phabetand � is thelengthof theindividuals)canbeautomati-
callyaggregatedtoonly ����� equations,for aparticularprob-
lemclass.No erroris introducedby theaggregation.Further-
morethisclassof functionsincludescommonone-peakfunc-
tions,many of thetwo-peaktrapanddeceptivefunctionsthat
havebeenanalyzedin theEA community, andevenproblems
with highermultimodality. Theefficacy of thisautomaticag-
gregationis demonstratedandconfirmedvia comparisonof
thetheoreticalresultswith empiricalresults.

Unfortunately, applying this method of aggregation to
modelsof finite-populationEAs with recombinationappears
to be problematic. However, since finite-populationEAs
(with or without recombination)canbe modeledasMarkov
chainse.g., see[8], an alternative approachis to find gen-
eraltechniquesfor automaticallyaggregatingMarkov chains.
Section4 summarizesa novel techniquefor accomplishing
this form of aggregation [12]. The advantageof this tech-
niqueis thatit will work with arbitraryclassesof fitnessfunc-
tions. The disadvantageis that the aggregationis not error
free,althoughtheerroris oftennegligible.

2 AggregatingModelsof EAswith Selectionand
Mutation

A populationundergoingselectionandmutationcanbemod-
eledusing“equationsof motion” thatcomputethe expected
time evolution of theproportionsof thestrings(individuals)
in the population(equivalently this canbe consideredto be
theevolutionof aninfinite-sizepopulation).In general,since
this modelwill keeptrack of every possibleindividual, the
modelwill requirea systemof

���
simultaneousequations,

where� is thestringlengthand
�

is thecardinalityof theal-
phabet.Let �
	 and ��� bearbitrarystringsof length � in that
alphabet.Let theproportionof astring ��� attime 
 bedenoted
as����������� . Thentheexpectedtimeevolutionof thesystemcan
becomputedusingthefollowing equationsof motion:



����� ����������� � �"! ��� ! ������#%$ � 	'&# ����� ��� !)( ��� (1)

Equation1 first considersthe proportions ��� ! ����� of all
strings � 	 at time 
 . Theproportionsaremodifiedby fitness-
proportionalselection,where #%$ � 	)& is the fitnessof � 	 and# ����� is theaveragefitnessof thepopulationat time 
 .1 Finally��� !'( �"� computestheprobabilityof mutatingstring � 	 to string� � . Theresultis theexpectedproportionof string � � at time
��*� .2

The total systemis describedby
���

equations,one for
eachstring � � . Startingwith initial proportions����� ��+,� , the���

equationsareiteratedrepeatedlyto producetheexpected
time evolution of thesystem.Evenwith binary-stringrepre-
sentations(

� �.- ), having binarystringsof length � � �0/
will requireover 1000equations.Clearly this makesit hard
to dealwith realisticproblems.

It turnsout that a surprisingnumberof fitnessfunctions# canbe aggregatedin a fashionthat greatlysimplifies the
above model by reducingthe numberof equationsand the
numberof termsin theequations.To seethis, let thealpha-
betbe denotedas 1 andlet 24351 be oneof the

�
alleles.

Let 2 denoteall the otheralleles. It turnsout that for some
classesof problems(fitnessfunctions),only the numberof2 ’s in an individual matters.Thussetsof stringswith 672 ’s
form anequivalenceclass,andit sufficesto have only �8�9�
equations,sincetherecanbe anywherefrom zero to �*2 ’s
in a string. This is a dramaticreductionfrom the

� �
equa-

tions thatwould be requiredin thegeneralcase.Equation1
appearsasbefore:� � � ��������� � � � ! � �:! ����� #%$ �;	 &# ����� � �"! ( � � (2)

however, in thiscase� 	 refersto any stringwith <�2 ’s,and � �
refersto any stringwith 6�2 ’s. Thefitnessof any stringwith<�2 ’s is thesame,andis denotedas #%$ � 	'& . Theprobabilityof
mutatingany stringwith <=2 ’s to onewith 6>2 ’s is givenby��� !'( �"� .

Suppose6@?A< . This meanswe are increasing(or not
changing)the numberof 2 ’s. To accomplishthis, mutation
requiresthat 6>BC< more 2 ’s aremutatedto 2 ’s than 2 ’s are
mutatedto 2 ’s. Themutationprobabilitiesare:

��� !'( ��� �*D 	FEHG�	 ( ��I �,J�K0L + M <N4O M �PB8<N �Q6RB8< O5S (3)T K M T� B5� O K � � I 	 $ �UB T & 	 I K M �UB T� BV� O ��I � I K
1Thefocuson fitness-proportionalselection[5] is duesolelyto its math-

ematicalsimplicity. It would not be difficult to extend this work to other
selectionmechanisms.

2Mutation is definedas follows. An allele is picked for mutationwith
probability W . Thenthatalleleis changedto oneof theother XZY�[ alleles,
uniformly randomly.

Let N bethenumberof 2 ’s thataremutatedto 2 ’s. Since
thereare <\2 ’s in thecurrentstring,this meansthat <�B N 2 ’s
arenot mutatedto 2 ’s. This occurswith probability T K $ �]BT & 	 I K . Also, since N 2 ’s aremutatedto 2 ’s then N �^6>BC<2 ’s mustbemutatedto 2 ’s. Sincethereare �_B`< 2 ’s in the
currentstring,thismeansthat �aBR<"B N B]6
�7< � �aB N B]6 2 ’s
arenot mutatedto 2 ’s. Thisoccurswith probability $ T�b $ � B� &c& K � � I 	 $ ��B T�b $ � B9� &c& ��I K I � . The combinatorialsyield
thenumberof waysto chooseN 2 ’s out of the <\2 ’s, andthe
numberof ways to chooseN �56ZBd< 2 ’s out of the �9Bd<2 ’s. Clearly, it isn’t possibleto mutatemorethan <;2 ’s. ThusNfe < . Also, sinceit isn’t possibleto mutatemorethan �PBg<2 ’s, N �g6�Bg< e �PB8< , which indicatesthat Nfe �PB�6 . The
minimumof < and �PB�6 boundsthesummationcorrectly.

Similarly, if <h?i6 , we aredecreasing(or not changing)
thenumberof 2 ’s. Thusoneneedsto mutate<%Bf6 more 2 ’s
to 2 ’s than 2 ’s to 2 ’s. Themutationprobabilitiesare:

� �"! ( � � �*D 	FEHG ��I 	 ( �,J�K0L + M <N �^<\B�6 O M �PB8<N O S (4)T K � 	 I � M T� BV� O K $ �UB T & � I K M �UB T� BC� O ��I 	 I K
Theexplanationis almostidenticalto before.Let N bethe

numberof 2 ’s thataremutatedto 2 ’s. Sincethereare �^BP<2 ’s in the currentstring, this meansthat �5B5<jB N 2 ’s are
not mutatedto 2 ’s. This occurswith probability $ T�b $ � B� &c& K $ �jB T�b $ � B`� &�& ��I 	 I K . Also, sinceN 2 ’saremutatedto2 ’s then N �d<=Bg6�2 ’s mustbe mutatedto 2 ’s. Sincethere
are <
2 ’s in thecurrentstring,thismeansthat <
B N B�<k�l6 �6mB N 2 ’sarenot mutatedto 2 ’s. Thisoccurswith probabilityT K � 	 I � $ �]B T & � I K . Thecombinatorialsyield thenumberof
waysto chooseN 2 ’soutof the �gBg< 2 ’s,andthenumberof
waysto chooseN �P<;Bl6n2 ’s outof the <
2 ’s. Clearly, it isn’t
possibleto mutatemorethan �aBR< 2 ’s. ThusNfe �oBR< . Also,
sinceit isn’t possibleto mutatemorethan <�2 ’s, N �p<qBo6 e < ,
which indicatesthat N4e 6 . The minimum of �dBV< and 6
boundsthesummationcorrectly.

In general,theseequationsarenot symmetric(��� !'( ���_r������ ( � ! ), and in the absenceof selectionthereis a tendency
for stringsto haveroughly � b � 2 ’s (e.g.,if weareusingbit-
strings,andthestringlengthis 100,mutationhasa tendency
to producestringswith roughly 50 0’s and 50 1’s). When/ts /lu T ui�vs / it is guaranteedthat ��� !'( ���7wx/ks / . Notealso
thatif < � 6 bothequationsgive thesamemutationprobabil-
ities,which providesa usefulcheckon thecorrectnessof the
aboveequations:

� �"! ( �"! �9D 	yEzGc	 ( ��I 	{J�K|L + M <N O M �PB8<N O ST K M T� BV� O K $ �UB T & 	 I K M �UB T� BV� O ��I 	 I K
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Figure1: Selectionandmutationmodeledwhen T � s /H/H~ . � takesonvalues0.00,0.01,0.05,and0.10.

As statedabove, for someproblems(fitnessfunctions)
only the numberof 2 ’s in an individual matters. At first
blush, this classof problemswould appearto be limited to
only unimodalfunctions(functionswith one “peak” in the
space).Thisis nottrue.For example,considerafamiliartwo-
peakproblemwhereindividualsin anEA arebinarystrings.
Traditionallyonepeakis at “111...111”while theotheris at
“000...000”. However, this problemreally monitorsonly the
numberof 1’s. Supposethereare � 1’s. If �Aw*� b - thefit-
nessis � , elsethefitnessis �ZBp� . Therearetwo peakswith
maximumfitness� . Many of thedeceptiveandtrapfunctions
investigatedby DebandGoldberg [1] fall into this class. In
fact,it is alsopossibleto createproblemswith anevenhigher
numberof peaks.For example,a problemmighthave a peak
where � � / , � � � b - , and � � � , thuscreatinga three-
peakproblemthat dependsonly on oneallele. Clearly this
techniquecanbeextendedto morethanthreepeaks.

Of theunimodalfunctionsmentionedin theliterature,two
are especiallyof interest. The first is the classof “Royal
Road”functionsanalyzedin Nimwegenetal. [7]. TheRoyal
Roadfitnessfunctionconsiderseachindividual to consistof� contiguousblocks of � bits, and the fitnessof an indi-
vidual is simply thenumberof blocksthatconsistof � 1’s.
This is analogousto having an alphabetwhere

� ��-v� in
our model,where 2 is theallelecorrespondingto thebinary
stringequivalentof � 1’s. What is niceaboutthis observa-
tion is that it appearsasif many of theanalyticaltechniques
investigatedin Nimwegenet al. [7] for theRoyal Roadfunc-
tion could be directly appliedto the more generalclassof
problemsdefinedhere.

Thesecondfunction is from a widely studiedproblemin

thebiologicalcommunity[6]. For this functionthefitnessof
an individual is $ �UB`� &c� , where � is the distanceof the
individual from someoptimumand � is a selectionpressure
( /9u���u�� ). Thus the optimal individual hasfitness1.0
( � � / ), whereasnon-optimalindividualshave positive fit-
nesslessthan1.0.

Since the latter problemwas especiallydesignedto in-
vestigatethe effectsof mutationandselectionon evolution,
we useit asa testfunctionfor our mathematicalframework.
Themathematicalmodel(consistingof Equations2 – 4) was
comparedto the behavior of a standardEA (with recombi-
nationturnedoff) on the $ �UBP� & � function. Binary strings
of length64 wereinitialized to all 1’s (which is theoptimum
string),andthenthesystemwasallowedto evolve. Thepop-
ulation size of the EA was 1000. The averagenumberof
1’s in thestringswasmonitoredfor 1000generations.Since
binary stringsareusedthe distancemetric is Hammingdis-
tance. Figure1 graphsthe resultswhenthe mutationrate T
is 0.005astheselectionpressure� rangesfrom 0.00to 0.10.
Figure2 graphstheresultswhenthemutationrate T is 0.01
astheselectionpressure� rangesfrom 0.00to 0.10.Boththe
theoreticalandempiricalcurvesareplotted. Althoughthere
is somenoisedueto stochasticfluctuationsin theEA (theEA
wasonly run onceperproblem),theagreementbetweenthe
modelandtheexperimentsis quitegood.

When ��w�/ , selectionis active. Two observationsare
immediatelyobviousfrom thegraphs.Thefirst is thathigher
selectionpressurechangestheequilibriumdistributionof the
population,producingstringswith more1’s. The secondis
thathighermutationratesalsochangetheequilibriumdistri-
bution, producingstringswith less1’s. Both of theseresults
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Figure2: Selectionandmutationmodeledwhen T � s /k� . � takesonvalues0.00,0.01,0.05,and0.10.

areintuitively reasonable.
When � � / , selectionis not active. In this casethe

systemis alwaysdrivento thesameequilibriumdistribution
(50/501’s and0’s), but highermutationratesdrive it there
more quickly. The astutereaderwill note that the � � /
graphslook suspiciouslylike the graphsfor radioactive de-
cay in physics. Interestingly, this is a correctobservation!
Althoughit is beyondthescopeof thispaper, it canbeproven
thattheexpectedproportionof 1’s, � � ����� , in theindividualsis
governedby: � � ����� ��� I���� �����-

Thus B - T playsa role similar to thatof thedecayratein
radioactivedecay. Theinterestedreaderis urgedtoseeSpears
[11] for moredetails.

3 Aggregating Models of EAs with Selection,
Mutation, and Recombination

Theprevioussectiondescribeda modelof mutationandse-
lection in which equationsof motiongive the expectedpro-
portionof thestringsin thepopulationovertime. In theworst
casethis involves

���
simultaneousequations.However, we

have defineda classof fitnessfunctionsthat allows for an
error-free aggregationof the model that resultsin far fewer
equations.If a fitnessfunctiondependsonly on oneparticu-
lar allelein thealphabet,only �Q�*� equationsarerequired.

Themainadvantageof thismodelandclassof problemsis
thattheexpectedbehavior of reasonablylargeproblems(i.e.,
problemsin high-dimensionalityspaces)canbetheoretically

evaluatedwith a small numberof simultaneousequations.
Anotheradvantageis that the modelcanbe easilyextended
to cover otherformsof selection(suchaslinear-rankingse-
lection),while still allowing aggregationto occur.

The lack of recombinationin the above modelneednot
be a drawback,sincein fact somevarietiesof evolutionary
algorithms,suchasevolutionaryprogramming[3, 4], do not
userecombination.3 However, if recombinationis required,
theequationsof motionbecomemorecomplex:� �y�����)�� � �9� �:� � �:� � �"! ��� � ����� ��� � ����� S (5)#%$ �;� &# ����� #%$ ��� &# ����� � � � �q� � � � ( � ! � �"! ( � �

Equation 5 first considersthe proportions(��� � ����� and��� � ����� ) of all pairsof strings � � and � � at time 
 . Thesepro-
portionsaremodifiedby fitness-proportionalselection,yield-
ing theprobability that � � and � � will bechosenfor recom-
bination. Recombinationof � � and � � will producean in-
dividual � 	 , which canbe mutatedinto string � � . The term� � �:� � �v� � ( �"! is the probability that the two strings � � and � �
will be recombinedto create� 	 , while ��� !�( ��� computesthe
probabilityof mutating�
	 into ��� . Thethird summationcon-
sidersall possiblestrings �
	 . Theresultis theexpectedpro-
portionof string ��� attime 
"�f� . Onceagain,thetotalsystem
is describedby

���
equations,onefor eachstring ��� . Starting

3Although a multiparentrecombinationoperatorwas proposedin [4],
limitations of computerhardware in the 1960’s did not allow for the im-
plementationof theoperator.



with initial proportions�����|��+,� , the
���

equationsareiterated
repeatedlyto producetheexpectedtimeevolutionof thesys-
tem. The probability of recombination,� � � �z� � � � ( � ! , canbe
derivedusingthe“staticschemaanalyses”in Spears[11], for
a varietyof recombinationoperators.

Unfortunately, the addition of recombinationinto the
model dramaticallyworsensthe complexity of eachof the���

equations.A similar difficulty canbeseenin Whitley’s
“executablemodel” [13], which is similar in spirit, although
it lacksmutation.Also, theadditionof recombinationmakes
aggregationmuchmoredifficult. For example,sincerecom-
binationis affectedby thelocationof allelesonanindividual,
monitoring the numberof someallele (as was doneabove
to aggregatethesystemwith selectionandmutation)will be
problematic.4

A drawback of the above modelsis the assumptionof
an infinite-size population,which doesnot capturefinite-
populationeffects.As wouldbeexpected,anassumptionof a
finite populationcomplicatesthemodelevenfurther, making
aggregationeven more necessary(and difficult). However,
sincefinite-populationEAs (with or without recombination)
canbemodeledasMarkov chainse.g.,see[8], analternative
approachis to find generalmethodsfor automaticallyaggre-
gatingMarkov chains.

4 AggregatingMark ov Chains

Many discretesystemscanbe describedby a Markov chain
modelin which eachstateof theMarkov modelis somedis-
cretestateof the dynamicalsystem. If thereare � states,
the Markov chain model is definedby an � S � matrix�

calledthe “one-stepprobability transitionmatrix,” where� $ <,��6 &�� � 	 ( � is theprobabilityof goingfrom state< to state6 in onestep.The 
 -step(transient)behavior of thesystemis
describedby the 
 ’ th power of

�
,
� � . Theentriesof

� � are
denotedas� �����	 ( � � � � $ <,�'6 & .

Nix andVose[8] defineaMarkov chainmodelof a finite-
populationEA with selection,mutation,andrecombination.
Eachstateof theMarkov modelis a particularpopulationof
the EA. As would be expected,the numberof statesgrows
enormouslyasthepopulationsize(or stringlength)increases.
Thusany techniquesthat areavailablefor automaticallyag-
gregatingMarkov chainscanimmediatelybeusedto aggre-
gatetheNix andVosemodel. We summarizethemethodof
Spears[12] in thissection.

Consideran example
�

matrix obtainedfrom a Markov
chainof threestates,wherethefirst stateis “VA”, thesecond
stateis “WVA” andthethird stateis “NC”:� ������ �%� �d�%� �n��%� � � ( � � � ( � � � (  �d�¡� � � ( � � � ( � � � (  �¢� �  £( � �  £( � �  ¤(  

¥�¦¦§ �
4However, Annie Wu (personalcommunication)hasshown that it may

bepossibleto estimatëq©�ª �v« ª �{¬®­ ª ! for the “one allele” equivalenceclass,
wherethetwo parentshave ¯ and °|± ’s andtheoffspringhas²:± ’s.

���� �%� �d�¡� �¢��¡� /ts´³ /ksy� /ts -�d�%� /ts µ /ks - /ts µ�¢� /tsF� /ks ¶ /ts ·
¥�¦¦§

Theentriesin the
�

matrix, ��	 ( � , representtheprobability
thatthesystemwill transitionto state6 in onetimestep,given
thatit is currentlyin state< . Thus,if a timestepis equivalent
to oneday, the probability of beingin NC tomorrow, given
thatthesystemis in WVA today, is 0.4.

Aggregationof Markov chainsis performedby continu-
ously aggregatingpairs of statesinto new individual com-
binedstates. Thus, the two issuesarehow to choosegood
pairsto aggregate,andhow to aggregateeachpair. We focus
onthelatterissuefirst,bycontinuingwith theaboveexample.

4.1 AggregatingPairs of States

SupposeWVA and NC have beenchosenfor aggregation,
creatinga new combinedstatethatrepresentsbeingin either
WVA or NC. Sincethis is a disjunctive situation,an appro-
priatelabelfor thenew combinedstateis “WVA ¸ NC”. The
probabilityof transitioningfrom VA into thenew aggregated
stateis simply the sum � � � �C� �   � /tsF�n�¹/ts -_� /ts ¶ . In
general,if states< and 6 areaggregated,thenew aggregated
stateis referredto asstate º|<�¸p6k» . Theprobabilityof tran-
sitioningfrom state¼ into theaggregatedstateis simply the
sum ��½ ( G�	F¾v�,J � � ½ ( 	 �`� ½ ( � . Statedanotherway, partof the
aggregationalgorithmis to sumcolumnsof probabilitynum-
bers.

However, transitionsfrom an aggregatedstateare more
complicatedto compute.For example,whatis theprobability
of transitioningfrom stateWVA ¸ NC into VA? In general,
the probability of transitioningfrom the aggregatedstateto
someotherstate(� Gc	{¾v�,J ( ½ ) mustlie somewherebetween��	 ( ½
and�t� ( ½ , dependingonhow muchtimeis spentin states< and6 . Thusa weightedaverageof row entriesin

�
is calledfor,

wherethe weightsreflectthe amountof time spentin states< and 6 . Unfortunately, anexactdeterminationof thesetimes
is impossibleto computein advance. However, it turnsout
thatwe canuseinformationfrom

�
to estimatethesetimes.

Define ¿ 	 to bethesumof theprobabilitynumbersin the < th
columnof

�
(we refer to this asthecolumn mass of state< ).

Spears[12] hasshownthat ¿ 	 and¿ � providegoodestimates
of therelative timespentin states< and6 .

Aggregationof two statescannow beexpressedsimplyas
follows. Let � denotethesetof all � states,andlet thenon-
emptysets� � �0sysFsF�À�;Á I � partition � suchthatone �
	 contains
the two chosenstates,while eachother �
	 is composedof
exactly onestate.Let ¿l	 denotethecolumnmassof state< .
Thentheaggregatedmatrix

�RÂ
is:� Â $ N �cÃ & � �Ä 	®Å �:Æ ¿ 	 �	�Å � Æ �� ¿ 	 ��£Å �"Ç � 	 ( � ¥§ (6)

This correspondsto takinga weightedaverageof thetwo
rowscorrespondingto thetwo chosenstates,while summing



Repeatuntil nonew aggregatedstatesarecreated
(a)For eachstate< in the È setof thecurrentaggregatedmodel

(i) Find themostsimilarstate6 in the È set.
(ii) If �%<'¿p<)ÉËÊHÌ�<)
'Ãv	 ( �nuVÍ , aggregatestates< and6 with Equation6.

(b) For eachstate< in thenon-È setof thecurrentaggregatedmodel
(i) Find themostsimilarstate6 in thenon-È set.
(ii) If �%<'¿p<)ÉËÊHÌ�<)
'Ãv	 ( �nuVÍ , aggregatestates< and6 with Equation6.

Figure3: Theaggregationalgorithm.

the two correspondingcolumns. The otherentriesin the
�

matrix remainunchanged.It is importantto notethat
��Â

is
itself a Markov chain and hencecan directly replace

�
in

numericalcomputations.

4.2 ChoosingPairs of Statesto Aggregate

In general,aggregatinganarbitrarypairof statesin aMarkov
chainmaynot leadto goodaggregation.How thenarea pair
of stateschosenfor aggregation?Firstit is necessarytodefine
what is meantby perfect(error-free)aggregation. Thenit is
necessarytoestimatetheamountof errorthatis introducedby
aggregatinga givenpair of states.Pairsof statesarechosen
for aggregationif they yield little estimatederror.

As mentionedabove, analysisof 
 -steptransitionproba-
bilities (i.e., transient behavior of theMarkov chain)canbe
realizedby computing

� � . For large
�

matricesthis is com-
putationallyexpensive, and thus the goal is to aggregate

�
andto thenraise

��Â
to the 
 ’ th power. If theaggregationalgo-

rithm hasworkedwell thenthe 
 ’ th power of theaggregated
matrix
��Â

shouldbe(nearly)identicalto aggregatingthe 
 ’ th
powerof theunaggregatedmatrix

�
. Perfectaggregationhas

occurredif $ � � & Â � $ ��Â & � .
Given the definitionof perfectaggregation,it is possible

to estimatehow far theaggregationof any pairof states< and6 will deviatefrom perfection.Let ÎRÌ|Ì"Ï�Ì 	 ( � betheestimated
error introducedinto

�RÂ
by aggregatingstates< and 6 . It can

beshown that Î�Ì�Ì�Ï�Ì 	 ( � is:Î�Ì�Ì"Ï�Ì0	 ( � � $ � K�Ð Ñ 	 ( � $ N & Ð & $ �vÒ Ð 2¡	 ( � $ Ã & Ð &Ó� �%<'¿p<)É®ÊzÌ�<)
'Ãv	 ( �
where 2 	 ( � $ Ã & � � 	 ( Ò BÔ� � ( Ò and Ñ 	 ( � $ N & � $ ¿ 	 � K ( � B¿ � � K ( 	'& b $ ¿ 	 �`¿ ��& . Theexplanationandderivationof this
estimationis beyondthescopeof this paper, althoughit can
easilybe observedthat 2 	 ( � focuseson the < th and 6 th rows
of
�

, while Ñ 	 ( � focuseson the < th and 6 th columns.Pairsof
statesaresimilar if they will producelittle error. Detailscan
befoundin Spears[12].

4.3 AggregatingMark ov Chainsof EAs

The algorithmcannow be appliedto the Nix andVose[8]
Markov model. It is possibleto examine the accuracy of

the aggregatedMarkov chainsby using both
� � and $ �RÂ & �

to computetheprobabilitydistribution �;����� over thestatesat
time 
 . To performthesecomputations,

� � mustbecombined
with a setof initial conditionsconcerningtheEA at genera-
tion 0. The a priori probabilityof anEA beingin state< at
time0 is: � 	 ��+À� � Õ>Ö× 	 ( + Ö sFsFs × 	 ( Ø I � Ö�Ù �Ì;ÚtÛ (7)

wherethepopulationsizeis denotedas Õ and Ì � � � is the
total numberof differentindividuals.Thenotation× 	 ( Ò is the
numberof occurrencesof string Ã in the < th population.The
probability that theEA will be in a particularstate6 at time
 is �t�:����� � Ä 	 ��	)��+,�Ü��	 ( �:����� . TheprobabilitythattheEA will
bein a setof statesÈ at time 
 is ��Ý��y��� � Ä �£ÅHÝ �t�:����� .

Let È representthe set of all statesthat containat least
onecopy of theoptimum(i.e., thesetof all populationsthat
haveatleastoneindividualwith theoptimumfunctionvalue).
TheMarkov modelis usedto compute� Ý �y��� , theprobability
of having at leastonecopy of theoptimumin thepopulation
at time 
 . The aggregationalgorithmcanthusbe evaluated
by usingboth

� � (groundtruth) and $ ��Â & � (the estimate)to
compute� Ý ����� for differentvaluesof 
 . The closerthe esti-
mateis to groundtruth, thebettertheaggregationalgorithm
is working.

Sincethegoalis to computeprobabilitiesinvolving states
containingthe optimum(the È set), È statesshouldnot be
aggregatedwith non-È states.Consequently, theaggregation
algorithmis run separatelyfor bothsetsof states.Thealgo-
rithm is shown in Figure3. Pairs of statesareaggregatedif
theirestimatederror(similarity) is lessthanthethresholdÍ .

Previousaggregationresults[12] havebeenwith matrices
with lessthan � � �0/H/v/ states.We now show novel results
with a matrix of � �Þ- / - µ states.The EA fitnessfunction
usedfor thisexperimentis a“Type1” deceptivefunction,andÕ �Ô- � .5

Thesettingof Í is crucialto thesuccessof theexperiment.
As in Spears[12] a valueof 0.15 yields goodaggregation.
ThiscanbeseenbeexaminingFigure4. Thevalues� Ý ����� are
computedfor 
 rangingfrom1to100generations,for boththe
aggregatedandunaggregatedMarkov chains,andgraphedas

5SeeDeJonget al. [2] for adefinitionof this searchspace.
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Figure4: ��Ý������ whereÍ is 0.0(noaggregation)and0.15(aggregation)for � �9- / - µ . Thefunctionis Type1 deceptive.

curves. Despitethe fact that 1917 of the 2024 stateswere
removed(about95%of thestates),theaggregatedresultsare
verycloseto groundtruth.

5 Discussion

Thestandarddifficulty in modelingEAs is in findingthecor-
rect level of granularity. If the level of granularity is too
coarsethemodelis easyto analyzebut lackspredictive abil-
ity. On theotherhand,if the level of granularityis very fine
themodelwill bepredictive but is oftencomputationallyin-
tractable.

A solutionto thisdifficulty is tofind methodsfor aggregat-
ing fine-granularitymodelsof EAs– theaggregationremoves
unnecessarydetailfrom themodels,producingsimplermod-
els with good predictive accuracy. This paperhasoutlined
two differentmethodsfor aggregation. The first methodis
effectivewith “equationof motion” modelsof EAs thathave
selectionandmutation. Systemsof

���
simultaneousequa-

tionscanbeautomaticallyaggregatedto only �n��� equations,
for aparticularclassof interestingfitnessfunctions.No error
is introducedby theaggregation.

The secondmethodrelies on the fact that EAs (with or
without recombination)can be modeledas Markov chains.
Thepapersummarizesanalgorithmfor automaticallyaggre-
gatingMarkov chains[12] andillustratesits effectivenesson
aMarkov chainmodelof anEA with 2024states.Theaggre-
gationis not error free,althoughtheerror producedis quite
small. The advantageof this algorithmis that it will work
with arbitraryclassesof fitnessfunctions.

Despitethe preliminarysuccessof thesemethods,there
is enormousroomfor improvement.Futurework will focus
on not only improving theexisting aggregationmethods,but
onidentifyingothermechanismsandopportunitiesfor further
aggregation.
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