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Abstract- This paper summarizestwo useful techniques
for aggregating theoretical models of evolutionary algo-
rithms (EAs). Aggregation removes unnecessarydetail
from the models, producing simpler models with good
predictiveaccuracy Thefirst aggregationtechniqueis ap-
plicable to “equation of motion” modelsof EAs that have
selectionand mutation, for a particular classof interest-
ing fitnessfunctions. This form of aggregationintr oduces
no error into the theoretical model. The secondaggre-
gation technique is more general — it can be applied to
arbitrary Mark ov chain modelsof dynamic systemssuch
as EAs with selection,mutation, and recombination. No
assumptionsare made about the fitness functions. This
form of aggregationintr oducesonly a small amount of er-
ror into the theoretical model.

1 Intr oduction

The standarddifficulty in modeling complex adaptve sys-
temsis thatit is difficult to find the correctlevel of granu-
larity. If thelevel of granularityis too coarsgle.g.,too mary

simplifying assumptiontiave beenmade) the modelis easy
to analyzebut lackspredictive ability. Onthe otherhand,if

the level of granularityis very fine (e.g.,all componentof

the systemarefaithfully modeled) the modelwill be predic-
tive but is often computationallyintractable. The trick is to

find theright level of granularity

Naturally the modelingof evolutionaryalgorithms(EAS)
hasthe samedifficulty. Modelsof EAs tendto eitherfocus
onindividualcomponentsf thealgorithmsor onthedynam-
ics of the completealgorithms. In general,component-wise
modelstendto befairly simpleto analyze put lack predictive
accurag. Completemodelsarenecessarilynore predictive,
but arefrustratinglydifficult to analyze.

Onesolutionto this dilemmais to find methodgor aggre-
gatingcompletemodelsfor EAs — the aggregationremoves
unnecessargetailfrom thecompletemodels producingsim-
pler modelswith good predictive accurag. Statisticalme-
chanicsmodelsof EAs are oneattemptto performjust such
anaggrejation,by focusingoncertain‘macro” quantitieghat
arepredictables.g.,se€]9, 10]. Themacroquantitiesemepge
from the dynamicsat the microscopiclevel. Unfortunately
in orderto apply thesemethodsthe EAs mustbe modified
from thoseusedin practice. Furthermore yariousassump-
tions and principlesare invoked that are difficult to justify.
Finally, agreatdealof humaneffort is involvedin developing
the models. Although the statisticalmechanicgechniqueis

quite promising,it doesnot yet automaticallyaggreateEA
models.

In generalthetwo aspect®f EAsthatcreatethe mostdif-
ficulty in their modeling(andin the aggreyationof the mod-
els) is the inclusion of recombinationand finite-population
effects.By removing recombinatiorandconsideringonly the
expected (infinite-population)behaior of anEA population,
modelingand aggreyationbecomemuchsimpler Section2
will shav that for an infinite-populationEA with selection
and mutation (but with no recombination) a systemof C*
simultaneougquationgwhere(C is the cardinalityof theal-
phabetindL is thelengthof theindividuals)canbeautomati-
cally aggrggatedo only L+1 equationsfor aparticulamprob-
lemclass.No erroris introducedoy theaggreyation.Further
morethis classof functionsincludescommonone-peakunc-
tions, mary of thetwo-peaktrapanddeceptve functionsthat
have beenanalyzedn the EA community andevenproblems
with highermultimodality Theefficagy of this automaticag-
gregationis demonstrateénd confirmedvia comparisorof
thetheoreticaresultswith empiricalresults.

Unfortunately applying this method of aggreation to
modelsof finite-populationEAs with recombinatiorappears
to be problematic. However, since finite-populationEAs
(with or without recombinationanbe modeledas Markov
chainse.g., see[8], an alternatve approachis to find gen-
eraltechniquegor automaticallyaggreyatingMarkov chains.
Section4 summarizesa novel techniquefor accomplishing
this form of aggreyation[12]. The adwantageof this tech-
niqueis thatit will work with arbitraryclasse®f fitnessfunc-
tions. The disadwantageis that the aggreyationis not error
free,althoughtheerroris oftennegligible.

2 AggregatingModelsof EAswith Selectionand
Mutation

A populationundegoingselectiorandmutationcanbe mod-
eledusing“equationsof motion” that computethe expected

time evolution of the proportionsof the strings(individuals)
in the population(equivalently this canbe consideredo be
theevolution of aninfinite-sizepopulation).In generalsince
this modelwill keeptrack of every possibleindividual, the
modelwill requirea systemof C* simultaneousquations,
whereL is thestringlengthand( is the cardinalityof theal-

phabet.Let S; and.S; bearbitrarystringsof length L in that
alphabetLettheproportionof astring.S; attimet bedenoted
asps; (1), Thentheexpectedime evolution of thesystercan
be computedusingthefollowing equationsof motion:
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Equation 1 first considersthe proportionsps, ® of all
stringssS; attime ¢. The proportionsaremodifiedby fitness-
proportionalselection,where f(S;) is the fitnessof .S; and

T(t) is theaveragdfitnessof the populationattime . Finally
ps;,s; computesheprobabilityof mutatingstring S; to string
S;. Theresultis the expectedoproportionof string S; attime
t+ 1.2

The total systemis describedoy C* equations,one for
eachstring S;. Startingwith initial proportionsps; (), the
C! equationsareiteratedrepeatediyto producethe expected
time evolution of the system.Evenwith binary-stringrepre-
sentation§C = 2), having binary stringsof length L = 10
will requireover 1000equations.Clearly this makesit hard
to dealwith realisticproblems.

It turnsout that a surprisingnumberof fithessfunctions
f canbe aggr@atedin a fashionthat greatly simplifiesthe
abore model by reducingthe numberof equationsand the
numberof termsin the equations.To seethis, let the alpha-
betbe denotedas.A andlet « € A beoneof theC alleles.
Let @ denoteall the otheralleles. It turnsout thatfor some
classexf problems(fitnessfunctions),only the numberof
a’s in anindividual matters. Thussetsof stringswith j a’s
form anequialenceclass,andit suficesto haveonly L + 1
equationssincetherecanbe arywherefrom zeroto L «a's
in astring. This is a dramaticreductionfrom the C* equa-
tionsthatwould be requiredin the generalcase.Equationl
appearsasbefore:
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however, in this caseS; refersto ary stringwith ¢ a’s,andS);
refersto ary stringwith j o’s. Thefitnessof ary stringwith
i o’sisthesameandis denotedas f (.S;). Theprobability of
mutatingary stringwith i o’s to onewith j o’s is given by
PS;,S;-

Supposej > i. This meanswe are increasing(or not
changing)the numberof o’s. To accomplishthis, mutation
requiresthatj — ¢ morea’s aremutatedto o’s thana’'s are
mutatedio @’'s. The mutationprobabilitiesare:

= (2)(E ) e
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1Thefocuson fitness-proportionaelection5] is duesolelyto its math-
ematicalsimplicity. It would not be difficult to extend this work to other
selectioormechanisms.

2Mutationis definedasfollows. An alleleis picked for mutationwith

probability . Thenthatalleleis changedo oneof theotherC — 1 alleles,
uniformly randomly

min{i,L—j}
ps;.s; =

Let x bethenumberof o’s thataremutatedio @’s. Since
therearei o’'sin thecurrentstring,this meanghati — z a’s
arenot mutatedto @'s. This occurswith probability * (1 —
w)i~®. Also, sincexz o’s aremutatedto a’sthenz + j — i
a’s mustbe mutatedto o’s. Sincethereare L — i @’sin the
currentstring,thismeanghatL —i—x—j+i=L—x—ja's
arenot mutatedo «’s. Thisoccurswith probability (u/(C —
1))*+i={(1 — u/(C — 1))t—2=J. The combinatorialsyield
the numberof waysto chooser «’s out of thei o’s, andthe
numberof waysto choosez + j — i a's out of the L — ¢
a's. Clearly it isn't possibleto mutatemorethani a's. Thus
x < 1. Also, sinceit isn’t possibleto mutatemorethanLZ — i
a's,z + j—i < L—i,whichindicateghatz < L — j. The
minimumof ¢ andL — j boundsthe summatiorcorrectly

Similarly, if ¢ > j, we aredecreasingor not changing)
thenumberof o's. Thusoneneedso mutatei — j morea’s
toa’'sthana’sto a's. Themutationprobabilitiesare:
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Theexplanationis almostidenticalto before.Let z bethe
numberof a’s thataremutatedto o’s. Sincethereare L — i
a@’'s in the currentstring, this meansthat L — i — x @'s are
not mutatedto «’s. This occurswith probability (u/(C' —
1))%(1—p/(C —1))L—i== Also, sincex a’s aremutatedo
a’'sthenx + 7 — j o’s mustbe mutatedto &’s. Sincethere
arei o’'sin thecurrentstring,thismeanghat: —xz — i+ j =
j—x o’sarenot mutatedo @’s. This occurswith probability
puTi3(1 — p)i—=. The combinatorialg/ield the numberof
waysto chooser &’s outof the L — i &’s, andthe numberof
waysto chooser + i — j o’soutof thei a’s. Clearly, it isn't
possibleo mutatemorethanL —¢ &’s. Thusz < L—i. Also,
sinceit isn’t possibleto mutatemorethani o’s,z +i —j < 1,
which indicatesthatz < j. Theminimumof L — i andj
boundsthe summatiorcorrectly

In general theseequationsare not symmetric(ps;,s; #
ps;,s;),» andin the absenceof selectionthereis a tendenyg
for stringsto haveroughly L/C o’s (e.qg.,if we areusingbit-
strings,andthe stringlengthis 100, mutationhasa tendeng
to producestringswith roughly 50 0’s and 50 1's). When
0.0 < p < 1.0 it is guaranteedhatps, s, > 0.0. Notealso
thatif ¢ = j bothequationgyive the samemutationprobabil-
ities, which providesa usefulcheckon the correctnessf the
above equations:

min{i,L—1}

(L))

bs;,s: =
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Figurel: Selectiorandmutationmodeledwheny

As statedabove, for some problems(fitnessfunctions)
only the numberof «’s in an individual matters. At first
blush, this classof problemswould appearto be limited to
only unimodalfunctions (functionswith one “peak” in the
space).Thisis nottrue. For example consideafamiliartwo-
peakproblemwhereindividualsin anEA arebinary strings.
Traditionally onepeakis at“111...111"while the otheris at
“000...000". However, this problemreally monitorsonly the
numberof 1's. Supposehereare N 1's. If N > L/2 thefit-
nesss N, elsethefitnessis . — N. Therearetwo peakswith
maximumfitnessL. Many of thedeceptve andtrapfunctions
investigatedby Deb andGoldbeqg [1] fall into this class. In
fact,it is alsopossibleto createproblemswith anevenhigher
numberof peaks.For example,a problemmight have a peak
whereN = 0, N = L/2,andN = L, thuscreatingathree-
peakproblemthat dependsonly on oneallele. Clearly this
techniquecanbe extendedto morethanthreepeaks.

Of theunimodalfunctionsmentionedn theliterature two
are especiallyof interest. The first is the classof “Royal
Road"functionsanalyzedn Nimwegenetal. [7]. TheRoyal
Roadfitnessfunction considerseachindividual to consistof
N contiguousblocks of K bits, and the fitnessof an indi-
vidual is simply the numberof blocksthat consistof K 1's.
This is analogoudo having an alphabetwhereC = 2% in
our model,whereq is the allele correspondingo the binary
string equivalentof K 1's. Whatis nice aboutthis obsena-
tion is thatit appearsasif mary of the analyticaltechniques
investigatedn Nimwegenetal. [7] for the Royal Roadfunc-
tion could be directly appliedto the more generalclassof
problemsdefinedhere.

The secondfunctionis from a widely studiedproblemin

= .005. S takesonvalues0.00,0.01,0.05,and0.10.

thebiologicalcommunity[6]. For thisfunctionthefitnessof
anindividual is (1 — $)", where M is the distanceof the
individual from someoptimumand S is a selectionpressure
(0 < S < 1). Thusthe optimal individual hasfitness1.0
(M = 0), whereason-optimalindividualshave positive fit-
nesdessthanl.0.

Sincethe latter problemwas especiallydesignedto in-
vestigatethe effects of mutationand selectionon evolution,
we useit asatestfunctionfor our mathematicaframawork.
The mathematicamodel(consistingof Equations2 — 4) was
comparedo the behaior of a standardeA (with recombi-
nationturnedoff) onthe (1 — S)M function. Binary strings
of length64 wereinitialized to all 1’s (which is the optimum
string),andthenthe systemwasallowedto evolve. The pop-
ulation size of the EA was 1000. The averagenumberof
1'sin the stringswasmonitoredfor 1000generationsSince
binary stringsare usedthe distancemetricis Hammingdis-
tance. Figure 1 graphsthe resultswhenthe mutationrate
is 0.005asthe selectiormpressures rangesrom 0.00to 0.10.
Figure2 graphstheresultswhenthe mutationrate . is 0.01
astheselectiompressures rangesrom 0.00to 0.10.Boththe
theoreticalandempiricalcurvesare plotted. Althoughthere
is somenoisedueto stochastidluctuationdn the EA (theEA
wasonly run onceper problem),the agreemenbetweerthe
modelandthe experimentds quitegood.

When S > 0, selectionis active. Two obsenationsare
immediatelyobviousfrom the graphs.Thefirst is thathigher
selectionpressurehangeshe equilibriumdistribution of the
population,producingstringswith more1’s. The secondis
thathighermutationratesalsochangethe equilibriumdistri-
bution, producingstringswith less1’s. Both of theseresults
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Figure2: Selectiorandmutationmodeledvheny = .01. S takeson values0.00,0.01,0.05,and0.10.

areintuitively reasonable.

When § = 0, selectionis not active. In this casethe
systemis alwaysdrivento the sameequilibrium distribution
(50/501's and0’s), but higher mutationratesdrive it there
more quickly. The astutereaderwill notethatthe S =
graphslook suspiciousiylike the graphsfor radioactve de-
cay in physics. Interestingly this is a correctobsenation!
Althoughit is beyondthescopeof this paperit canbeproven
thatthe expectedproportionof 1's,p; (¥, in theindividualsis
governedby:

e 2t 4 1

b1 ® = D)

Thus—2u playsarole similar to that of the decayratein
radioactvedecay Theinterestedeadelis urgedto seeSpears
[11] for moredetails.

3 Aggregating Models of EAs with Selection,
Mutation, and Recombination

The previous sectiondescribeca modelof mutationandse-
lectionin which equationsf motion give the expectedpro-
portionof thestringsin thepopulationovertime. In theworst
casethis involvesC’ simultaneougquations.However, we
have defineda classof fithessfunctionsthat allows for an
errorfree aggreationof the modelthat resultsin far fewer
equations.If afitnessfunctiondependsnly on oneparticu-
lar allelein thealphabetpnly L + 1 equationsrerequired.
Themainadwantageof thismodelandclassof problemss
thatthe expectedbehaior of reasonablyargeproblemgi.e.,
problemsn high-dimensionalityspacesganbetheoretically

evaluatedwith a small numberof simultaneousequations.
Anotheradwantageis thatthe modelcanbe easily extended
to cover otherforms of selection(suchaslinearrankingse-
lection),while still allowing aggreyationto occut

The lack of recombinationin the abose modelneednot
be a drawvback, sincein fact somevarietiesof evolutionary
algorithms suchasevolutionaryprogrammind3, 4], do not
userecombinatior?. However, if recombinatioris required,
theequationof motionbecomemorecomple:

s = ZZZPS ps,
Sn S1 Si

f(Sh) f(S1)
7(’5) 7(’5)

Equation5 first considersthe proportions (ps, ) and
ps, ) of all pairsof stringsS;, andS; attime ¢. Thesepro-
portionsaremodifiedby fithess-proportionaelectionyield-
ing the probability that S}, and.S; will be choserfor recom-
bination. Recombinatiorof S;, and.S; will producean in-
dividual S;, which canbe mutatedinto string S;. Theterm
P(snx51),s: IS the probability thatthe two strings S, and S,
will be recombinedo createsS;, while ps, s, computeshe
probabilityof mutatingS; into S;. Thethird summatiorcon-
sidersall possiblestringsS;. Theresultis the expectedpro-
portionof string.S; attimet+ 1. Onceagain thetotal system
is describedby C equationspnefor eachstring ;. Starting

(®)

p(Sh xSl),Si pSi,Sj

3Although a multiparentrecombinationoperatorwas proposedin [4],
limitations of computerhardware in the 19605 did not allow for the im-
plementatiorof the operatar



with initial proportionsps; (), the CT equationsareiterated
repeatedlyto producethe expectedime evolution of the sys-
tem. The probability of recombinationp(s, xs,),s;, canbe
derivedusingthe“static schemanalysesin Spearg11], for
avarietyof recombinatioroperators.

Unfortunately the addition of recombinationinto the
model dramaticallyworsensthe compleity of eachof the
CT equations.A similar difficulty canbe seenin Whitley's
“executablemodel”[13], which is similarin spirit, although
it lacksmutation.Also, the additionof recombinatiormakes
aggregjationmuchmoredifficult. For example,sincerecom-
binationis affectedby thelocationof allelesonanindividual,
monitoring the numberof someallele (as was doneabove
to aggreatethe systemwith selectionandmutation)will be
problematic?

A drawback of the abore modelsis the assumptionof
an infinite-size population, which doesnot capturefinite-
populationeffects.As would beexpectedanassumptiorof a
finite populationcomplicategshe modelevenfurther, making
aggrejation even more necessaryand difficult). However,
sincefinite-populationEAs (with or without recombination)
canbemodeledasMarkov chainse.g.,se€[8], analternatve
approachs to find generaimethodsfor automaticallyaggre-
gatingMarkov chains.

4 AggregatingMark ov Chains

Many discretesystemscanbe describedoy a Markov chain
modelin which eachstateof the Markov modelis somedis-
crete stateof the dynamicalsystem. If thereare N states,
the Markov chain model is definedby an N x N matrix
@ calledthe “one-stepprobability transitionmatrix;” where
Q(4,7) = ps,; is theprobability of goingfrom state; to state
j in onestep.Thet-step(transientbehaior of the systemis
describedoy the t'th power of Q, Q*. Theentriesof Q* are
denoteCHsz(’t]). = Qi(i, ).

Nix andVose[8] definea Markov chainmodelof afinite-
populationEA with selectionmutation,andrecombination.
Eachstateof the Markov modelis a particularpopulationof
the EA. As would be expected,the numberof statesgrows

enormouslhasthepopulationsize(or stringlength)increases.

Thusary techniqueghat are availablefor automaticallyag-
gregatingMarkov chainscanimmediatelybe usedto aggre-
gatethe Nix andVosemodel. We summarizehe methodof
Spearg12] in thissection.

Consideran example @ matrix obtainedfrom a Markov
chainof threestateswherethefirst stateis “VA”, thesecond
stateis “WVA" andthethird stateis “NC”:

| VA WVA NC

Q= VA P11 P12 P13 _
WVA P21 P22 P23
NC |p31 p32 P33

4However, Annie Wu (personakcommunicationhasshavn thatit may
be possibleto estimateps, x 5,),s; for the “one allele” equizalenceclass,
wherethetwo parentshave h andl o’'s andthe offspringhasi o's.

| VA WVA NC
VA [07 01 02
WVA |04 02 04
NC |01 03 06

Theentriesin the Q matrix, p; ;, representhe probability
thatthesystemwill transitionto statej in onetime step,given
thatit is currentlyin statei. Thus,if atime stepis equivalent
to oneday, the probability of beingin NC tomorraw, given
thatthe systemis in WVA today is 0.4.

Aggregationof Markov chainsis performedby continu-
ously aggrayating pairs of statesinto new individual com-
bined states. Thus, the two issuesare how to choosegood
pairsto aggreyate andhow to aggreyateeachpair. We focus
onthelatterissu€first, by continuingwith theabose example.

4.1 AggregatingPairs of States

SupposeWVA and NC have beenchosenfor aggreation,
creatinga new combinedstatethatrepresentdeingin either
WVA or NC. Sincethis is a disjunctive situation,an appro-
priatelabelfor thenew combinedstateis “WVA v NC”. The
probability of transitioningfrom VA into the new aggreated
stateis simply the sump;s + p13 = 0.1+ 0.2 = 0.3. In

generaljf statesi andj areaggreyated,the new aggreyated
stateis referredto asstate{: V j}. The probability of tran-
sitioning from statek into the aggreyatedstateis simply the
SUMpy fivj} = Pr,i + Pr,j- Statedanothemway, partof the
aggreationalgorithmis to sumcolumnsof probabilitynum-
bers.

However, transitionsfrom an aggreyatedstateare more
complicatedo compute For example whatis the probability
of transitioningfrom stateWVA Vv NC into VA? In general,
the probability of transitioningfrom the aggreyatedstateto
someotherstate(py;y ;},x) Mustlie somavherebetweerp;
andp;, x, dependingn how muchtimeis spentin stateg and
j. Thusaweightedaverageof row entriesin ) is calledfor,
wherethe weightsreflectthe amountof time spentin states
1 andyj. Unfortunately anexactdeterminatiorof thesetimes
is impossibleto computein adwance. However, it turnsout
thatwe canuseinformationfrom @) to estimatehesetimes.
Definem; to bethesumof theprobabilitynumbersn theith
columnof @ (we referto this asthe column mass of states).
Spear¢12] hasshovnthatm; andm; providegoodestimates
of therelative time spentin states andj.

Aggregationof two statescannow beexpressedimply as
follows. Let S denotethe setof all N statesandlet the non-
emptysetsS;, ..., Sy_1 partitionS suchthatoneS; contains
the two chosenstates,while eachother S; is composedf
exactly onestate.Let m; denotethe columnmassof state;.
Thentheaggreatedmatrix Q' is:

1
ﬁ Z m; Z Di,j (6)
i€S: e, JESy

Q'(z,y) =

This correspondso taking a weightedaverageof the two
rows correspondingo thetwo choserstateswhile summing



Repeauntil no new aggreatedstatesarecreated
(a) For eachstatei in the J setof the currentaggreyatedmodel
(i) Findthe mostsimilar statej in the J set.
(i) If Similarity; ; < €, aggreyatestates andj with Equation.
(b) For eachstate; in thenon-J setof the currentaggreyatedmodel
(i) Findthe mostsimilar statej in thenon-J set.
(i) If Similarity; ; < €, aggr@atestates andj with Equation6.

Figure3: Theaggreationalgorithm.

the two correspondingolumns. The otherentriesin the @)
matrix remainunchanged.lt is importantto notethat )’ is
itself a Markov chain and hencecan directly replace( in
numericalcomputations.

4.2 ChoosingPairs of Statesto Aggregate

In generalaggreyatinganarbitrarypair of statesn aMarkov
chainmaynotleadto goodaggreyation.How thenarea pair
of statexhoserfor aggreyation?Firstit is necessarto define
whatis meantby perfect(errorfree) aggreyation. Thenit is
necessarto estimateheamounif errorthatis introducedy
aggrejatinga given pair of states.Pairs of statesarechosen
for aggreyationif they yield little estimatederror.

As mentionedabore, analysisof ¢-steptransitionproba-
bilities (i.e., transient behaior of the Markov chain)canbe
realizedby computingQ?. For large Q matricesthisis com-
putationallyexpensve, andthusthe goal is to aggreyateQ
andto thenraise@’ to thet'th power. If theaggreyationalgo-
rithm hasworkedwell thenthe ¢'th power of the aggrejated
matrix @' shouldbe (nearly)identicalto aggreatingthe¢'th
power of theunaggrgatedmatrix . Perfectaggreyationhas
occurredf (Q')' = (Q")".

Giventhe definition of perfectaggreyation,it is possible
to estimateéhow fartheaggreyationof ary pair of states and
J will deviatefrom perfection.Let Error; ; betheestimated
errorintroducednto Q' by aggreyatingstates andj. It can
beshavn that Error; ; is:

Errori; = (O 1B @D laiw)]) = Similarity; ;
z Yy

where ai;(y) = piy — pjy and B (z) = (mipa; —
m;pa,i)/(m; +my). Theexplanationandderivation of this
estimationis beyondthe scopeof this paper althoughit can
easilybe obseredthata; ; focuseson theith and jth rows
of @, while ; ; focuseson theith andjth columns.Pairs of
statesaresimilar if they will producelittle error. Detailscan
befoundin Spearg12].

4.3 AggregatingMark ov Chains of EAs

The algorithm cannow be appliedto the Nix and Vose[8]
Markov model. It is possibleto examinethe accurag of

the aggrejatedMarkov chainsby using both Q* and (Q)’

to computethe probability distribution p®) over the statesat
timet. To performthesecomputations)? mustbe combined
with a setof initial conditionsconcerninghe EA at genera-
tion 0. Thea priori probability of an EA beingin statei at

time0is:
P! 11*
1 1 [_] @)

Z23,00---R4,r—1- | T

Di © =

wherethe populationsizeis denotedas P andr = C* is the
total numberof differentindividuals. The notationz; ,, is the
numberof occurrencesf stringy in theith population.The
probabilitythatthe EA will bein a particularstatej attime
tisp;® =3, pi'® p; ;¥ Theprobabilitythatthe EA will
bein asetof states/ attimet isp, () = 3., p;®.

Let J representhe setof all statesthat containat least
onecopy of the optimum(i.e., the setof all populationghat
have atleastoneindividualwith theoptimumfunctionvalue).
The Markov modelis usedto computep;®, the probability
of having atleastonecopy of the optimumin the population
attime t. The aggregationalgorithm canthusbe evaluated
by usingboth Q¢ (groundtruth) and (Q’)* (the estimate)o
computep () for differentvaluesof ¢t. The closerthe esti-
mateis to groundtruth, the betterthe aggreyationalgorithm
is working.

Sincethegoalis to computeprobabilitiesinvolving states
containingthe optimum (the J set), J statesshouldnot be
aggreyatedwith non-J states.Consequentlythe aggreation
algorithmis run separatelyfor both setsof states.Thealgo-
rithm is shavn in Figure3. Pairs of statesare aggreyatedif
their estimatecerror (similarity) is lessthanthe thresholde.

Previousaggreationresults[12] have beenwith matrices
with lessthan N = 1000 states.We now shav novel results
with a matrix of N = 2024 states.The EA fitnessfunction
usedfor thisexperimentis a“Type1” deceptve function,and
pP=215

Thesettingof ¢ is crucialto thesuccessf theexperiment.
As in Spearq12] a value of 0.15yields good aggreation.
This canbeseerbeexaminingFigure4. Thevaluesp ;) are
computedor ¢ rangingfrom 1 to 100generationgfor boththe
aggreyatedandunaggrgatedMarkov chains,andgraphedas

5SeeDe Jongetal. [2] for adefinitionof this searctspace.
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Figure4: p,;® wheree is 0.0 (no aggreyation)and0.15(aggreation)for N = 2024. Thefunctionis Type 1 deceptie.

curves. Despitethe fact that 1917 of the 2024 stateswere
removed(about95% of the states)theaggreyatedresultsare
very closeto groundtruth.

5 Discussion

Thestandardlifficulty in modelingEAsis in findingthecor-
rect level of granularity If the level of granularityis too
coarsethemodelis easyto analyzebut lackspredictive abil-
ity. Ontheotherhand,if thelevel of granularityis very fine
the modelwill be predictive but is often computationallyin-
tractable.

A solutionto thisdifficulty is to find methodgor aggreyat-
ing fine-granularitymodelsof EAs—theaggregationremoves
unnecessargletail from the models producingsimplermod-
els with good predictive accurag. This paperhasoutlined
two different methodsfor aggreyation. The first methodis
effective with “equationof motion” modelsof EAs thathave
selectionand mutation. Systemsof C'* simultaneougqua-
tionscanbeautomaticallyaggreyatedo only L+1 equations,
for a particularclassof interestingitnessfunctions.No error
is introducedby theaggreyation.

The secondmethodrelies on the fact that EAs (with or
without recombination)can be modeledas Markov chains.
The papersummarizegnalgorithmfor automaticallyaggre-
gatingMarkov chaing[12] andillustratesits effectivenessn
aMarkov chainmodelof anEA with 2024statesTheaggre-
gationis not error free, althoughthe error produceds quite
small. The advantageof this algorithmis that it will work
with arbitraryclasse®f fitnessfunctions.

Despitethe preliminary succesof thesemethods,there
is enormougoom for improvement. Futurework will focus
on notonly improving the existing aggrejationmethods put
onidentifyingothermechanismandopportunitiegor further
aggreation.
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