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Abstract

One operator that is often used in evolution strategies, genetic algorithms, and
genetic programming is recombination, where material from two (or more) parents is
used to create new offspring. There are numerous ways to implement recombination.
This section will focus mainly on recombination operators that construct potentially
useful solutions to a problem from smaller components (often called “building
blocks”). Recombination operators that “blend” are discussed in section XXX. This
section gives an overview of some of the motivation, issues, theory, and heuristics
for “building block” recombination.

E1.3.1 General Background

Although Holland (1975) was not the first to suggest recombination in an evolutionary algorithm
(EA) (e.g. see Fraser 1957 or Fogel et al 1966), he was the first to place theoretical emphasis on this
operator. This emphasis stemmed from his work in adaptive systems, which resulted in the field
of genetic algorithms and genetic programming. According to Holland, an adaptive system must
persistently test and incorporate structural properties associated with better performance. The
object, of course, is to find new structures which have a high probability of improving performance
significantly.

Holland concentrated on schemata, which provide a basis for associating combinations of
attributes with potential for improving current performance. To see this, let us consider the schema
ACH#+#, defined over a fixed length chromosome of four genes, where each gene can take on one of
three alleles {A, B, C}. If “#” is defined to be a “don’t care” (i.e. wildcard) symbol, the schema
ACH#t4 represents all chromosomes that have an A for their first allele and a C for their second. Since
each of the “4” symbols can be filled in with any one of the three alleles, this schema represents 32
= 9 chromosomes.

Suppose every chromosome has a well-defined fitness value (also called “utility,” “payoff,” etc.).
Now suppose there is a population of P individuals, p of which are members of the above schema.
The “observed average fitness” of that schema is the average fitness of those p individuals in that
schema. It is important to note that these individuals will also be members of other schemata, thus
the population of P individuals contains instances of a large number of schemata (all of which have
some observed fitness). Holland (1975) stated that a good heuristic is to generate new instances of
those schemata whose observed fitness is higher than the average fitness of the whole population,
since instances of those schemata are likely to exhibit superior performance.

Suppose the schema AC## does in fact have a high observed fitness. The heuristic states
that new samples (instances) of that schema should be generated. Selection (reproduction) does
not produce new samples — but recombination can. The key aspect of recombination is that if
one recombines two individuals that start with AC, their offspring must also start with AC. Thus
one can retain what appears to be a promising building block (AC##), yet continue to test that
building block in new contexts.

As stated earlier, recombination can be implemented in many different ways. Some forms of
recombination are more appropriate for certain problems than are others. According to Booker
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(1992) it is thus useful to characterize the biases in recombination operators, recognize when these
biases are correct or incorrect (for a given problem or problem class), and recover from incorrect
biases when possible. The next two subsections summarize much of the work that has gone into
characterizing the biases of various recombination operators. Historically, most of the earlier
recombination operators were designed to work on low-level “universal” representations, such as
the fixed-length low cardinality representation shown above. In fact, most early genetic algorithms
used just simple bit-string representations. A whole suite of recombination operators evolved from
that level of representation. Subsection E1.3.2 focuses on such “bit-level” recombination operators.
Recent work has focused more on problem-class specific representations, with recombination
operators designed primarily for those representation. Subsection E1.3.3 focuses on the more
problem-class specific recombination operators.

Subsection E1.3.4 summarizes some of the mechanisms for recognizing when biases are correct
or incorrect, and recovering from incorrect biases when possible. The conclusion outlines some design
principles that are useful when creating new recombination operators. Ideally, one would like firm
and precise practical rules for choosing what form and rate of recombination to use on a particular
problem, however, such rules have been difficult to formulate. Thus this section concentrates more
on heuristics and design principles that have often proved useful.

E1.3.2 Genotypic-level recombination

Theory

Holland (1975) provided one of the earliest analyses of a recombination operator, called 1-point
recombination. Suppose there are two parents: ABCD and AABC. Randomly select one point at
which to separate (“cut”) both parents. For example, suppose they are cut in the middle (AB|CD
and AA|BC). The offspring are created by swapping the tail (or head) portions to yield ABBC and
AACD. Holland analyzed 1-point recombination by examining the probability that various schemata
will be disrupted when undergoing recombination. For example, consider the two schemata AA##
and A##A. Each schema can be disrupted only if the “cut-point” falls between its two A’s. However,
this is much more likely to occur with the latter schema (A##A) than the former (AA##). In fact,
the probability of disrupting either schema is proportional to the distance between the A’s. Thus,
1-point recombination has the bias that it is much more likely to disrupt “long” schemata than
“short” schemata, where the length of a schema is the distance between the first and last “defining
position” (a non-wildcard).

De Jong (1975) extended this analysis to include so-called “n-point” recombination. In n-point
recombination n cut-points are randomly selected and the genetic material between cut-points is
swapped. For example, with 2-point recombination, suppose the two parents ABCD and AABC are
cut as follows: A|BC|D and A|AB|C. Then the two offspring are AABD and ABCC. De Jong noted
that 2-point (or n-point where n is even) recombination is less likely to disrupt “long” schemata
than 1-point (or n-point where n is odd) recombination.

Syswerda (1989) introduced a new form of recombination called “uniform” recombination.
Uniform recombination does not use “cut-points” but instead creates offspring by deciding, for
each allele of one parent, whether to swap that allele with the corresponding allele in the other
parent. That decision is made using a coin-flip (i.e. the swap is made 50% of the time). Syswerda
compared the probability of schema disruption for 1-point, 2-point, and uniform recombination.
Interestingly, while uniform recombination is somewhat more disruptive of schemata than 1-point
and 2-point, it does not have a length bias (i.e. the length of a schema does not affect the probability
of disruption). Also, Syswerda showed that the more disruptive nature of uniform recombination
can be viewed in another way — it is more likely to construct instances of new schemata than
1-point and 2-point recombination.

De Jong and Spears (1992) verified Syswerda’s results and introduced a parameterized version
of uniform recombination (where the probability of swapping could be other than 50%). Lowering
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the swap probability of uniform recombination allows one to lower disruption as much as desired,
while maintaining the lack of length bias. Finally, De Jong and Spears characterized recombination
in terms of two other measures: productivity and exploration power. The productivity of a
recombination operator is the probability that it will generate offspring that are different from
their parents. More disruptive recombination operators are more productive (and vice versa).
An operator is more explorative if it can reach a larger number of points in the space with one
application of the operator. Uniform recombination is the most “explorative” of the recombination
operators since, if the Hamming distance between two parents is h (i.e. h loci have different alleles),
uniform recombination can reach any of 2" points in one application of the operator. Moon and
Bui (1994) independently performed a similar analysis. Although mathematically equivalent, this
analysis emphasized “clusters” of defining positions within schemata, as opposed to lengths.

Eshelman et al (1989) considered other characterizations of recombination bias. They
introduced two biases, the positional and distributional bias. A recombination operator has
positional bias to the extent that the creation of any new schema by recombining existing schemata
is dependent upon the location of the alleles in the chromosome. This is similar to the length bias
introduced above. A recombination operator has distributional bias to the extent that the amount
of material that is expected to be exchanged is distributed around some value or values as opposed
to uniformly distributed ranging from 1 to L — 1 alleles (where the chromosome is composed of L
genes). For example, 1-point recombination has high positional and no distributional bias, while
2-point recombination has slightly lower positional bias and still no distributional bias. Uniform
recombination has no positional bias but high distributional bias because the amount of material
exchanged is binomially distributed. Later, Eshelman and Schaffer (1994) refined their earlier study
and introduced “recombinative” bias, which is related to their older distributional bias. They also
introduced “schema” bias, which is a generalization of their older positional bias.

Booker (1992) tied the earlier work together by characterizing recombination operators via their
recombination distributions, which describe the probability of all possible recombination events. The
recombination distributions were used to rederive the disruption analysis of De Jong and Spears
(1992) for n-point and parameterized uniform recombination, as well as to calculate precise values
for the distributional and positional biases of recombination. This reformulation allowed Booker
to detect a symmetry in the positional bias of n-point recombination around n = L / 2, which
corrected a prediction made by Eshelman et al (1989) that positional bias would continue to increase
as n gets larger.

Heuristics

The sampling arguments and the characterization of biases that has just been presented have
motivated a number of heuristics for how to use recombination and how to choose which
recombination to use.

Booker (1982) considered implementations of recombination from the perspective of trying to
improve overall performance. The motivation was that allele loss from the population could hurt
the sampling of co-adapted sets of alleles (schemata). In the earliest implementations of genetic
algorithms one offspring of a recombination event would be thrown away. This was a source of allele
loss, since, instead of transmitting all alleles from both parents to the next generation, only a subset
was transmitted. The hypothesis was that allele loss rates would be greatly decreased by saving
both offspring. That hypothesis was confirmed empirically. There was also some improvement in
online (average fitness of all samples) and offline (average fitness of the best samples) performance
on the De Jong (1975) test suite, although the offline improvement was negligible.

Booker (1987) also pointed out that, due to allele loss, recombination is less likely to produce
children different from their parents as a population evolves. This effectively reduces the sampling
of new schemata. To counteract this Booker suggested a more explorative version of recombination,
termed “reduced surrogate” recombination, that concentrates on those portions of a chromosome in
which the alleles of two parents are not the same. This ensures that a new sample is created. For
example, suppose two parents are ABCD and ADBC. Then if one uses 1-point recombination, and
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the cut-point occurs immediately after the A, the two offspring would be identical to the parents.
Reduced surrogate recombination would ensure that the cut-point was further to the right.

It has been much more difficult to come up with heuristics for choosing which recombination
operator to use in a given situation. Syswerda (1989), however, noted that one nice aspect of
uniform recombination is that, due to its lack of length bias, it is not affected by the presence of
irrelevant alleles in a representation. Nor is it affected by the position of the relevant alleles on the
chromosome. Thus, for those problems where little information is available concerning the relevance
of alleles or the length of building blocks, uniform recombination is a useful default.

De Jong and Spears (1990) tempered this view somewhat, by including interactions with
population size. Their heuristic was that disruption is most useful when the population size is small
or when the population is almost homogeneous. They argued that more disruptive recombination
operators (such as 0.5 uniform recombination, or n-point recombination where n is greater than two)
should be used when the population size is small relative to the problem size, and less disruptive
recombinations operators (such as 2-point, or uniform recombination with a swap probability less
than 50%) should be used when the population size is large relative to the problem size. De Jong
and Spears demonstrated this with a series of experiments in which the population size was varied.

Schaffer et al (1989) made a similar observation. They concentrated on the “recombination
rate,” which is the percentage of the population to undergo recombination. They observed that
high recombination rates are best with small populations, a broad range of recombination rates are
tolerated at the middle population sizes, and only low recombination rates are suggested for large
population sizes.

Finally, Eshelman and Schaffer (1994) have attempted to match the biases of recombination
operators with various problem classes and genetic algorithm behavior. They concluded with two
heuristics. The first was that high schema bias can lead to hitchhiking, where the EA exploits
spurious correlations between schemata that contribute to performance and other schemata that
do not. They recommended using a high recombinative bias and low schema bias recombination
to combat premature convergence (i.e., loss of genetic diversity) due to hitchhiking. The second
heuristic was that high recombinative bias can be detrimental in trap problems.

E1.3.3 Phenotypic-level recombination
Theory

Thus far the focus has been on fixed-length representations in which each gene can take on one
of a discrete set of alleles (values). Schemata were then defined, each of which represent a set
of chromosomes (the chromosomes that match alleles on the defining positions of the schema).
However, there are problems that do not match well to these representations. In these cases new
representations, recombination operators, and theories must be developed.

For example, a common task is the optimization of some real-valued function of real values. Of
course, it is possible to code these real values as bit-strings in which the degree of granularity is set by
choosing the appropriate number of bits. At this point conventional “schema” theory may be applied.
However, there are difficulties that arise using this representation. One is the presence of “Hamming
cliffs,” in which large changes in the binary encoding are required to make small changes to the
real values. The use of Gray codes does not totally remove this difficulty. Standard recombination
operators also can have the effect of producing children far removed (in the real-valued sense) from
their parents (see Schwefel 1995). An alternative representation is to simply use chromosomes that
are real-valued vectors. In this case a more natural recombination operator averages (blends) values
within two parent vectors to create a child vector. This has the nice property of creating children
that are near the parents. See Davis (1991), Wright (1991), Eshelman and Schaffer (1992), Schwefel
(1995), Peck and Dhawan (1995), Beyer (1995) and Arabas et al (1995) for other recombination
operators that are useful for real-valued vectors. One recombination operator of note is discrete
recombination, which is the analogue of uniform recombination on real-valued variables.

Recently, three theoretical studies analyzed the effect of recombination using real-valued
representations. Peck and Dhawan (1995) showed how various properties of recombination operators
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can influence the ability of the EA to converge to the global optima. Beyer (1995) concluded that an
important role of recombination in this context is genetic repair, diminishing the influence of harmful
mutations. Eshelman and Schaffer (1992) analyzed this particular representation by restricting the
parameters to be integer ranges. Their “interval-schemata” represent subranges. For example, if a
parameter has range [0, 2], it has the following interval-schemata: [0], [1], [2], [0, 1], [1, 2], and [0,
2]. The chromosomes (1 1 2) and (2 1 2) are instances of the interval-schema ([1, 2] [1] [2]). Long
interval-schemata are more general and correspond roughly to traditional schemata that contain
a large number of #s. Eshelman and Schaffer used “interval-schemata” to help them predict the
failure modes of various real-valued recombination operators.

Another class of important tasks involves permutation or ordering problems, in which the
ordering of alleles on the chromosome is of primary importance. A large number of recombination
operators have been suggested for these tasks, including partially mapped recombination (Goldberg
and Lingle 1985), order recombination (Davis 1985), cycle recombination (Oliver et al 1987), edge
recombination (Starkweather et al 1991) and the group recombination of Falkenauer (1994). Which
operators work best depend on the objective function.

A classic permutation problem is the Traveling Salesman Problem (TSP). Consider a TSP of
four cities {A, B, C, D}. It is important to note that there are only 4! possible chromosomes,
as opposed to 4* (e.g. the chromosome AABC is not valid). Also, note that schema ##BC does
not have the same meaning as before, since the alleles that can be used to fill in the #’s now
depend on the alleles in the defining positions (e.g. a B or a C can’t be used in this case). This
led Goldberg and Lingle (1985) to define o-schemata, in which the “don’t cares” are denoted with
!s. An example of an o-schema is "BC, which defines the subset of all orderings that have BC in
the third and fourth positions. For this example there are only two possible orderings, ADBC and
DABC. Goldberg considered this to be “absolute” o-schemata, since the absolute position of the
alleles 1s of importance. An alternative would be to stress the relative positions of the alleles. In this
case what is important about !"BC is that B and C are adjacent — !"BC, !BC!, and BC!! are now
equivalent o-schemata. One nice consequence of the invention of o-schemata is that a theory similar
to that of the more standard schema theory can be developed. The interested reader is encouraged
to see Oliver et al (1987) for a nice example of this, in which various recombination operators are
compared via an o-schemata analysis.

There has also been some work on recombination for finite state machines (Fogel et al
1966), variable length chromosomes (Smith 1980, De Jong et al 1993), chromosomes that are
Lisp expressions (Fujiki and Dickinson 1987, Koza 1994, and Rosca 1995), chromosomes that
represent strategies (i.e. rule sets) (Grefenstette et al 1990), and recombination for multi-dimensional
chromosomes (Kahng and Moon 1995). Some theory has recently been developed in these areas.
For example, Bui and Moon (1995) developed some theory on multi-dimensional recombination.
Also, Radcliffe (1991) generalized the notion of schemata to sets he refers to as “formae.”

Heuristics

Due to the prevalence of the traditional bit-string representation in GAs, less work has concentrated
on recombination operators for higher-level representations, and there are far fewer heuristics. The
most important heuristic is that recombination must identify and combine meaningful building
blocks of chromosomal material. Put another way, “recombination must take into account the
interaction among the genes when generating new instances” (Eshelman and Schaffer 1992). The
conclusion of this section provides some guidance in how to achieve this.

E1.3.4 Control of recombination parameters

As can be seen from the earlier discussion, there is very little theory or guidance on how to choose
a priori which recombination operator to use on a new problem. There is also very little guidance
on how to choose how often to apply recombination (often referred to as the “recombination
rate”). There have been three approaches to this problem, referred to as “static,” “predictive,”
and “adaptive” approaches.
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Static

The simplest approach is to assume that one particular recombination operator should be applied
at some static rate for all problems. The static rate is estimated from a set of empirical studies,
over a wide variety of problems, population sizes, and mutation rates. Three studies are of note.
De Jong (1975) studied the online and offline performance of a GA on the De Jong test suite and
recommended a recombination rate of 60% for 1-point recombination (i.e. 60% of the population
should undergo recombination). Grefenstette (1986) studied online performance of a GA on the De
Jong test suite and recommended that 1-point recombination be used at the higher rate of 95%. In
the most recent study, Eshelman et al (1989) studied the mean number of evaluations required to
find the global optimum on the De Jong test suite and recommended an intermediate rate of 70%
for 1-point recombination. Each of these settings for the recombination rate are associated with
particular settings for mutation rates and population sizes, so the interested reader is encouraged
to consult these references for more complete information.

Predictive techniques

In the static approach it is assumed that some fixed recombination rate (and recombination operator)
is reasonable for a large number of problems. However, this will not be true in general. The
“predictive” approaches are designed to predict the performance of recombination operators (i.e. to
recognize when the recombination bias is correct or incorrect for the problem at hand).

Manderick et al (1991) computed fitness correlation coefficients for different recombination
operators on various problems. Since they noticed a high correlation between operators with high
correlation coefficients and good GA performance their approach was to choose the recombination
operator with the highest correlation coefficient. The approach by Grefenstette (1995) was similar
in spirit to the Manderick et al approach. Grefenstette used a “virtual” GA to compute the past
performance of an operator as an estimate of the future performance of an operator. By running
the virtual GA with different recombination operators, Grefenstette estimated the performance of
those operators in a real GA.

Altenberg (1994) and Radcliffe (1994) have proposed different predictive measures. Altenberg
proposed using an alternative statistic referred to as the “transmission function in the fitness
domain.” Radcliffe proposed using the “fitness variance of formae” (generalized schemata). Thus
far all approaches have shown considerable promise.

Adaptive techniques

In both the static and predictive approaches the decision as to which recombination operator and
the rate at which it should be applied is fixed prior to actually running the EA. However, since these
approaches can make errors (i.e. choose non-optimal recombination operators or rates), a natural
solution is to make these choices adaptive. Adaptive approaches are designed to recognize when bias
is correct or incorrect, and recover from incorrect biases when possible. For the sake of exposition
adaptive approaches will be divided into “tag-based” or “rule-based.” As a general rule, tag-based
approaches attach extra information to a chromosome, which i1s both evolved by the EA and used
to control recombination. The rule-based approaches generally adapt recombination using control
mechanisms and data structures that are external to the EA.

One of the earliest tag-based approaches was by Rosenberg (1967). In this approach integers
z; ranging from zero to seven were attached onto each locus. The recombination site was chosen
from the probability distribution defined over these integers, p; = #;/>_ #;, where p; represented
the probability of a cross at site .

Schaffer and Morishima (1987) had a similar approach, by adjusting the points at which
recombination was allowed to cut and splice material. They accomplished this by appending an
additional L bits to L-bit individuals. These appended bits were used to determine “cut-points”
for each locus (a ‘1’ denoted a cut-point while a ‘0’ indicated the lack of a cut-point). If two
individuals had n distinct cut-points, this was analogous to using a particular instantiation of n-
point recombination.
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Levenick (1995) also had a similar approach. Recombination was implemented by replicating
two parents from one end to the other by iterating the following algorithm:

(1) Copy one bit from parentl to child1l

(2) Copy one bit from parent2 to child2

(3) With some base probability P, perform a recombination:
swap the roles of the children (so subsequent bits come
from the other parent)

Levenick inserted a meta-bit before each bit of the individual. If the meta-bit was ‘1’ in both
parents recombination occurred with probability Pj, else recombination occurred with a reduced
probability P.. The effect was that the probability of recombination could be reduced from a
maximum of P, to a minimum of P,. Levenick claimed that this method improved performance in
those cases where the population did not converge too rapidly.

Arabas et al (1995) experimented with adaptive recombination in an evolution strategy.
Each chromosome consisted of L real-valued parameters combined with an additional L control
parameters. In a standard evolution strategy these extra control parameters are used to adapt
mutation. In this particular study the control parameters were also used to adapt recombination,
by concentrating offspring around particular parents. Empirical results on four classes of functions
were encouraging.

Angeline (1996) evolved Lisp expressions, and associated a recombination probability with
each node in the Lisp expressions. These probabilities evolved and controlled the application of
recombination. Angeline investigated two different adaptive mechanisms based on this approach
and reported that the adaptive mechanisms outperformed standard recombination on three test
problems.

Spears (1995) used a simple approach in which one extra tag-bit was appended to every
individual. The tag-bits were used to control the use of 2-point and uniform recombination in
the following manner:

if (parent1[L + 1] = parent2[L + 1] = 1)
then two-point-recombination(parent1, parent2)
else if (parent1[L + 1] = parent2[L + 1] = 0)
then uniform-recombination(parentl, parent2)
else if (rand(0,1) < 0.5)
then two-point-recombination(parentl, parent2)
else uniform-recombination(parentl, parent2)

Spears compared this adaptive approach on a number of different problems and population
sizes, and found that the adaptive approach always had a performance intermediate between the
best and worst of the two single recombination operators.

Rule-based approaches use auxiliary data structures and statistics to control recombination.
The simplest of these approaches use hand-coded rules that associate various statistics with changes
in the recombination rate. For example, Wilson (1986) examined the application of GAs to classifier
systems and defined an entropy measure over the population. If the change in entropy was sufficiently
positive or negative, the probability of recombination was decreased or increased respectively. The
idea was to introduce more variation by increasing the recombination rate whenever the previous
variation had been “absorbed.” Booker (1987) considered the performance of genetic algorithms
in function optimization and measured the percentage of the current population that produced
offspring. Every percentage change in that measure was countered with an equal and opposite
percentage change in the recombination rate.
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Srinivas and Patnaik (1994) considered measures of fitness performance and used those measures
to estimate the distribution of the population. They increased the probability of recombination (P;)
and the probability of mutation (P,,) when the population was stuck at local optima and decreased
the probabilities when the population was scattered in the solution space. They also considered the
need to preserve “good”’ solutions of the population and attempted this by having lower values of
P, and P, for high fitness solutions and higher values of P, and P,, for low fitness solutions.

Hong et al (1995) had a number of different schemes for adapting the use of multiple
recombination operators. The first scheme was defined by the following rule: If both parents were
generated via the same recombination operator, apply that recombination operator, else randomly
select (with a coin flip) which operator to use. This first scheme was very similar to that of Spears
(1995) but does not use tag-bits. Their second scheme was the opposite of the first: If both parents
were generated via the same recombination operator, apply some other recombination operator, else
randomly select (with a coin flip) which operator to use. Their third scheme used a measure called
an “occupancy rate,” which was the number of individuals in a population that were generated by
a particular recombination (divided by the population size). For k recombination operators, their
third scheme tried to balance the occupancy rate of each recombination operator around 1/k. In
their experiments the second and third schemes outperformed the first (although this was not true
when they tried uniform and 2-point recombination).

Eshelman and Schaffer (1994) provided a switching mechanism to decide between two
recombination operators that often perform well, HUX (a variant of uniform crossover where exactly
half of the differing bits are swapped at random) and SHX (a version of 1-point recombination in
which the positional bias has been removed). Their GA uses restarts — when the population is
(nearly) converged the converged population is partially or fully randomized and seeded with one
copy of the best individual found so far (the “elite” individual). During any convergence period
between restarts (including the period leading up to the first restart), either HUX or SHX is used
but not both. HUX is always used during the first two convergences. Subsequently, three rules are
used for switching recombination operators:

(1) SHX is used for the next convergence, if during the prior convergence no individual is found
that is as good as the elite individual

(2) HUX is used for the next convergence, if during the prior convergence no individual is found
that is better than the elite individual, but at least one individual is found that is as good
as the elite individual

(3) No change in the operator is made, if during the prior convergence, a new best individual is
found (which will replace the old elite individual)

These methods had fairly simple rules and data structures. However, more complicated
techniques have been attempted. Davis (1989) provided an elaborate bookkeeping method to reward
recombination operators that produced good offspring or set the stage for this production. When
a new individual was added to the population, a pointer was established to its parent or parents,
and a pointer was established to the operator that created the new individual. If the new individual
was better than the current best member of the population, the amount it was better was stored as
its “local delta.” Local deltas were passed back to parents to produce “inherited deltas.” “Derived
deltas” were the sum of local and inherited deltas. Finally, the “operator delta” was the sum of the
derived deltas of the individuals it produced, divided by the number of individuals produced. These
operator deltas were used to update the probability that the operator would be fired.

White and Oppacher (1994) used finite state automatons to identify groups of bits that should
be kept together during recombination (an extension of uniform recombination). The basic idea was
to learn from previous recombination operations in order to minimize the probability that highly fit
schemata will be disrupted in future recombination operations. The basic bit-string representation
was augmented at each bit position with an automaton. Each state of the automaton mapped
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to a probability of recombination for that bit-string location — roughly, given N states, then
the probability p; associated with state ¢ was i/N. Some of the heuristics used for updating the
automaton state were:

(1) If the offspring fitness > the fitness of the father(mother)
then reward those bits that came from the father(mother)

(2) If the offspring fitness < the fitness of the father(mother)
then penalize those bits that came from the father(mother)

There were other rules to handle offspring of equal fitness. A reward implied that the automaton
moved from state ¢ to state ¢ + 1, and a penalty implied that the automaton moved from state 7 to
state 7 — 1.

Julstrom (1995) used an “operator tree” to fire recombination more often if it produced children
of superior fitness. With each individual was an operator tree — a record of the operators that
generated the individual and its ancestors. If a new individual had fitness higher than the current
population median fitness, the individual’s operator tree was scanned to compute the credit due
to recombination (and mutation). A queue recorded the credit information for the most recent
individuals. This information was used to calculate the probability of recombination (and mutation).

Finally, Lee and Takagi (1993) evolved fuzzy rules for GAs. The fuzzy rules had three input
variables based on fitness measures:

—_
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= average fitness / best fitness
= worst fitness / average fitness
= change in fitness

N @8

The rules had three possible outputs dealing with population size, recombination rate, and
mutation rate. All of the variables could take on three values {small, medium, big}, with the
semantics of those values determined by membership functions. The rules were evaluated by running
the GA on the De Jong test suite and different rules were obtained for online and offline performance.
They obtained 51 rules in the fuzzy rulebase. Of those, 18 were associated with recombination. An
example was: If (z is small) and (y is small) and (z is small) then the change in recombination rate
is small.

In summary, the fixed recombination rate approaches are probably the least successful, but
provide reasonable guesses for parameter settings. They also are reasonable settings for the initial
stages of the predictive and adaptive approaches. The predictive approaches have had success and
appear very promising. The adaptive approaches also have had some success. However, as Spears
(1995) indicated, a common difficulty in the evaluation of the adaptive approaches has been the
lack of adequate control studies. Thus, although the approaches may show signs of adaptation, it
is not clear that adaptation is the cause of performance improvement.

E1.3.5 Discussion

The successful application of recombination (or any other operator) involves a close link with the
operator, the representation, and the objective function. This has been outlined by Peck and
Dhawan (1995), who emphasized similarity — one needs to exploit similarities between previous high
performance samples; and those similar samples must often enough have similar objective function
values for the algorithm to be effective. Goldberg (1989) and Falkenauer (1994) made a similar
point when they refer to “meaningful building blocks.” This has led people to outline various issues
that must be considered when designing a representation and appropriate recombination operators.

De Jong (1985) outlined several important issues with respect to representation. First, “near-
by-ness” should be preserved, in which small changes in a parameter value should come about from
small changes in the representation for that value. Thus, binary encodings of real-valued parameters
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are problematic, since Hamming cliffs separate parameters that are near in the real-valued space and
standard recombination operators can produce children far removed (in the real-valued sense) from
their parents. Second, it is generally better to have context insensitive representations, in which the
legal values for a parameter do not depend on the values of other parameters. Finally, it is generally
better to have context insensitive interpretations of the parameters, in which the interpretation
of some parameter value does not depend on the values of the other parameters. These last two
concerns often arise in permutation or ordering problems, in which the values of the left-most
parameters influence both the legal values and the interpretation of those values for the right-most
parameters. For example, the encoding of the TSP problem presented earlier is context sensitive,
and standard recombination operators can produce invalid offspring when using the representation.
An alternative representation could be one in which the first parameter specifies which of the N
cities should be visited first. Having deleted that city from the list of cities, the second parameter
always takes on a value in the range 1 ... N — 1, specifying by position on the list which of the
remaining cities is to be visited second, and so on. For example, suppose there are four cities {A,
B, C, D}. The representation of the tour BCAD is (2 2 1 1) because city B is the second city in the
list {A, B, C, D}, C is the second city in the list {A, C, D}, A is the first city in the list {C, D} and
D is the first city in the list {D}. This representation is context insensitive and recombination of
two tours always yields a valid tour. However, it has a context sensitive interpretation, since gene
values to the right of a recombination “cut-point” specify different subtours in the parent and the

child.

Radcliffe (1991) outlined three design principles for recombination. First, recombination
operators should be “respectful.” Respect occurs if crossing two instances of any forma (a
generalization of schema) must produce another instance of that forma. For example, if both
parents have blue eyes then all their children must have blue eyes. This principle holds for any
standard recombination on bit-strings. Second, recombination should “properly assort” formae.
This occurs if, given instances of two compatible formae, it must be possible to cross them to
produce a child which is an instance of both formae. For example, if one parent has blue eyes and
the other has brown hair, it must be possible to recombine them to produce a child with blue eyes
and brown hair. This principle is similar to what others called “exploratory power” — e.g. uniform
recombination can reach all points in the subspace defined by the differing bits (in one application),
while n-point recombination cannot. Thus n-point recombination does not properly assort, while
uniform recombination does. Finally, recombination should “strictly transmit.” Strict transmission
occurs if every allele in the child comes from one parent or another. For example, if one parent
has blue eyes and the other has brown eyes, the child must have blue or brown eyes. All standard
recombination operators for bit-strings strictly transmit genes.

All of this indicates that the creation and successful application of recombination operators is
not “cut-and-dried,” nor a trivial pursuit. Considerable effort and thought is required. However, if
one uses the guidelines suggested above as a first-cut, success is more likely.
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