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Abstract. Evolutionary computation uses computational models of evolution-
ary processes as key elements in the design and implementation of computer-
based problem solving systems. In this paper we provide an overview of evolu-
tionary computation, and describe several evolutionary algorithms that are
currently of interest. Important similarities and differences are noted, which
lead to a discussion of important issues that need to be resolved, and items for
future research.

1 Introduction
Evolutionary computation uses computational models of evolutionary processes as
key elements in the design and implementation of computer-based problem solving
systems. There are a variety of evolutionary computational models that have been
proposed and studied which we will refer to as evolutionary algorithms. They share
a common conceptual base of simulating the evolution of individual structures via
processes of selection and reproduction. These processes depend on the perceived
performance (fitness) of the individual structures as defined by an environment.

More precisely, evolutionary algorithms maintain a population of structures
that evolve according to rules of selection and other operators, such as recombination
and mutation. Each individual in the population receives a measure of its fitness in
the environment. Selection focuses attention on high fitness individuals, thus
exploiting the available fitness information. Recombination and mutation perturb
those individuals, providing general heuristics for exploration. Although simplistic
from a biologist’s viewpoint, these algorithms are sufficiently complex to provide
robust and powerful adaptive search mechanisms.

Figure 1 outlines a typical evolutionary algorithm (EA). A population of indi-
vidual structures is initialized and then evolved from generation to generation by
repeated applications of evaluation, selection, recombination, and mutation. The
population size N is generally constant in an evolutionary algorithm, although there
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procedure EA; {
t = 0;
initialize population P(t);
evaluate P(t);
until (done) {

t = t + 1;
parent_selection P(t);
recombine P(t);
mutate P(t);
evaluate P(t);
survive P(t);

} }

Fig. 1. A typical evolutionary algorithm

is no a priori reason (other than convenience) to make this assumption. We will dis-
cuss the issue of a dynamic population size later in this paper.

An evolutionary algorithm typically initializes its population randomly,
although domain specific knowledge can also be used to bias the search. Evaluation
measures the fitness of each individual according to its worth in some environment.
Evaluation may be as simple as computing a fitness function or as complex as run-
ning an elaborate simulation. Selection is often performed in two steps, parent selec-
tion and survival. Parent selection decides who becomes parents and how many chil-
dren the parents have. Children are created via recombination, which exchanges
information between parents, and mutation, which further perturbs the children. The
children are then evaluated. Finally, the survival step decides who survives in the
population.

Let us illustrate an evolutionary algorithm with a simple example. Suppose an
automotive manufacturer wishes to design a new engine and fuel system in order to
maximize performance, reliability, and gas-mileage, while minimizing emissions.
Let us further suppose that an engine simulation unit can test various engines and
return a single value indicating the fitness score of the engine. However, the number
of possible engines is large and there is insufficient time to test them all. How would
one attack such a problem with an evolutionary algorithm?

First, we define each individual to represent a specific engine. For example,
suppose the cubic inch displacement (CID), fuel system, number of valves, cylinders,
and presence of turbo-charging are all engine variables. The initialization step would
create an initial population of possible engines. For the sake of simplicity, let us
assume a (very small) population of size four. Here is an example initial population:



__________________________________________________________
Individual CID Fuel System Turbo Valves Cylinders__________________________________________________________

1 350 4 Barrels Yes 16 8
2 250 Mech. Inject. No 12 6
3 150 Elect. Inject. Yes 12 4
4 200 2 Barrels No 8 4__________________________________________________________
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We now evaluate each individual with the engine simulator. Each individual
receives a fitness score (the higher the better):

_________________________________________________________________
Individual CID Fuel System Turbo Valves Cylinders Score_________________________________________________________________

1 350 4 Barrels Yes 16 8 50
2 250 Mech. Inject. No 12 6 100
3 150 Elect. Inject. Yes 12 4 300
4 200 2 Barrels No 8 4 150_________________________________________________________________
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Parent selection decides who has children and how many to have. For exam-
ple, we could decide that individual 3 deserves two children, because it is so much
better than the other individuals. Children are created through recombination and
mutation. As mentioned above, recombination exchanges information between indi-
viduals, while mutation perturbs individuals, thereby increasing diversity. For exam-
ple, recombination of individuals 3 and 4 could produce the two children:

_________________________________________________________
Individual CID Fuel System Turbo Valves Cylinders_________________________________________________________

3’ 200 Elect. Inject. Yes 8 4
4’ 150 2 Barrels No 12 4_________________________________________________________
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Note that the children are composed of elements of the two parents. Further
note that the number of cylinders must be four, because individuals 3 and 4 both had
four cylinders. Mutation might further perturb these children, yielding:

_________________________________________________________
Individual CID Fuel System Turbo Valves Cylinders_________________________________________________________

3’ 250 Elect. Inject. Yes 8 4
4’ 150 2 Barrels No 12 6_________________________________________________________
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We now evaluate the children, giving perhaps:



_________________________________________________________________
Individual CID Fuel System Turbo Valves Cylinders Score_________________________________________________________________

3’ 250 Elect. Inject. Yes 8 4 250
4’ 150 2 Barrels No 12 6 350_________________________________________________________________
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Finally we decide who will survive. In our constant population size example,
which is typical of most EAs, we need to select four individuals to survive. How this
is accomplished varies considerably in different EAs. If, for example, only the best
individuals survive, our population would become:

_________________________________________________________________
Individual CID Fuel System Turbo Valves Cylinders Score_________________________________________________________________

3 150 Elect. Inject. Yes 12 4 300
4 200 2 Barrels No 8 4 150
3’ 250 Elect. Inject. Yes 8 4 250
4’ 150 2 Barrels No 12 6 350_________________________________________________________________
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This cycle of evaluation, selection, recombination, mutation, and survival con-
tinues until some termination criterion is met.

This simple example serves to illustrate the flavor of an evolutionary algo-
rithm. It is important to point out that although the basic conceptual framework of all
EAs is similar, their particular implementations differ in many details. For example,
there are a wide variety of selection mechanisms. The representations of individuals
ranges from bit-strings to real-valued vectors, Lisp expressions, and neural networks.
Finally, the relative importance of mutation and crossover (recombination), as well
as their particular implementations, differs widely across evolutionary algorithms.

The remainder of this paper is organized into three sections. First, we will con-
tinue our introduction to evolutionary algorithms by describing at a high level a
variety of implementations. Second, we will discuss the issues underlying the
differences between the implementations, taking the opportunity to provide com-
parisons at a finer level of detail. Finally we will discuss how these issues might be
resolved and summarize recent work in this area. Our goal is to encourage increased
discussion, with the eventual hope for more powerful and robust evolutionary algo-
rithms.

2 Varieties of Evolutionary Algorithms
The origins of evolutionary algorithms can be traced to at least the 1950’s (e.g.,
Fraser, 1957; Box, 1957). For the sake of brevity we will not concentrate on this
early work but will discuss in some detail three methodologies that have emerged in
the last few decades: "evolutionary programming" (Fogel et al., 1966), "evolution
strategies" (Rechenberg, 1973), and "genetic algorithms" (Holland, 1975).



Although similar at the highest level, each of these varieties implements an
evolutionary algorithm in a different manner. The differences touch upon almost all
aspects of evolutionary algorithms, including the choices of representation for the
individual structures, types of selection mechanism used, forms of genetic operators,
and measures of performance. We will highlight the important differences (and simi-
larities) in the following sections, by examining some of the variety represented by
the current family of evolutionary algorithms.

These approaches in turn have inspired the development of additional evolu-
tionary algorithms such as "classifier systems" (Holland, 1986), the LS systems
(Smith, 1983), "adaptive operator" systems (Davis, 1989), GENITOR (Whitley,
1989), SAMUEL (Grefenstette, 1989), "genetic programming" (de Garis, 1990; Koza,
1991), "messy GAs" (Goldberg, 1991), and the CHC approach (Eshelman, 1991). We
will not attempt to survey this broad range of activities here. The interested reader is
encouraged to peruse the recent literature for more details (e.g., Belew and Booker,
1991; Fogel and Atmar, 1992; Whitley, 1992; Ma

..
nner and Manderick, 1992).

2.1 Evolutionary Programming

Evolutionary programming (EP), developed by Fogel et al. (1966) traditionally has
used representations that are tailored to the problem domain. For example, in real-
valued optimization problems, the individuals within the population are real-valued
vectors. Similarly, ordered lists are used for traveling salesman problems, and graphs
for applications with finite state machines. EP is often used as an optimizer, although
it arose from the desire to generate machine intelligence.

The outline of the evolutionary programming algorithm is shown in Figure 2.
After initialization, all N individuals are selected to be parents, and then are mutated,

procedure EP; {
t = 0;
initialize population P(t);
evaluate P(t);
until (done) {

t = t + 1;
parent_selection P(t);
mutate P(t);
evaluate P(t);
survive P(t);

} }

Fig. 2. The evolutionary programming algorithm



producing N children. These children are evaluated and N survivors are chosen from
the 2N individuals, using a probabilistic function based on fitness. In other words,
individuals with a greater fitness have a higher chance of survival. The form of
mutation is based on the representation used, and is often adaptive (see Section 3.2).
For example, when using a real-valued vector, each variable within an individual
may have an adaptive mutation rate that is normally distributed with a zero expecta-
tion. Recombination is not generally performed since the forms of mutation used are
quite flexible and can produce perturbations similar to recombination, if desired. As
discussed in a later section, one of the interesting and open issues is the extent to
which an EA is affected by its choice of the operators used to produce variability and
novelty in evolving populations.

2.2 Evolution Strategies

Evolution strategies (ESs) were independently developed by Rechenberg (1973),
with selection, mutation, and a population of size one. Schwefel (1981) introduced
recombination and populations with more than one individual, and provided a nice
comparison of ESs with more traditional optimization techniques. Due to initial
interest in hydrodynamic optimization problems, evolution strategies typically use
real-valued vector representations.

Figure 3 outlines a typical evolution strategy (ES). After initialization and
evaluation, individuals are selected uniformly randomly to be parents. In the standard
recombinative ES, pairs of parents produces children via recombination, which are
further perturbed via mutation. The number of children created is greater than N.
Survival is deterministic and is implemented in one of two ways. The first allows the

procedure ES; {
t = 0;
initialize population P(t);
evaluate P(t);
until (done) {

t = t + 1;
parent_selection P(t);
recombine P(t)
mutate P(t);
evaluate P(t);
survive P(t);

} }

Fig. 3. The evolution strategy algorithm



N best children to survive, and replaces the parents with these children. The second
allows the N best children and parents to survive. Like EP, considerable effort has
focused on adapting mutation as the algorithm runs by allowing each variable within
an individual to have an adaptive mutation rate that is normally distributed with a
zero expectation. Unlike EP, however, recombination does play an important role in
evolution strategies, especially in adapting mutation.

2.3 Genetic Algorithms

Genetic algorithms (GAs), developed by Holland (1975), have traditionally used a
more domain independent representation, namely, bit-strings. However, many recent
applications of GAs have focused on other representations, such as graphs (neural
networks), Lisp expressions, ordered lists, and real-valued vectors.

Figure 4 outlines a typical genetic algorithm (GA). After initialization parents
are selected according to a probabilistic function based on relative fitness. In other
words, those individuals with higher relative fitness are more likely to be selected as
parents. N children are created via recombination from the N parents. The N chil-
dren are mutated and survive, replacing the N parents in the population. It is interest-
ing to note that the relative emphasis on mutation and crossover is opposite to that in
EP. In a GA mutation flips bits with some small probability, and is often considered
to be a background operator. Recombination, on the other hand, is emphasized as the
primary search operator. GAs are often used as optimizers, although some research-
ers emphasize its general adaptive capabilities (De Jong, 1992).

procedure GA; {
t = 0;
initialize population P(t);
evaluate P(t);
until (done) {

t = t + 1;
parent_selection P(t);
recombine P(t)
mutate P(t);
evaluate P(t);
survive P(t);

} }

Fig. 4. The genetic algorithm



2.4 Variations on these Themes

These three approaches (EP, ESs, and GAs) have served to inspire an increasing
amount of research on and development of new forms of evolutionary algorithms for
use in specific problem solving contexts. A few of these are briefly described below,
selected primarily to give the reader a sense of the variety of directions being
explored.

One of the most active areas of application of evolutionary algorithms is in
solving complex function and combinatorial optimization problems. A variety of
features are typically added to EAs in this context to improve both the speed and the
precision of the results. Interested readers should review Davis’ work on real-valued
representations and adaptive operators (Davis, 1989), Whitley’s GENITOR system
incorporating ranking and "steady state" mechanisms (Whitley, 1989), Goldberg’s
"messy GAs", that involve adaptive representations (Goldberg, 1991), and
Eshelman’s high-powered CHC algorithm (Eshelman, 1991).

A second active area of application of EAs is in the design of robust rule learn-
ing systems. Holland’s (1986) classifier systems were some of the early examples,
followed by the LS systems of Smith (1983). More recent examples include the
SAMUEL system developed by Grefenstette (1989), the GABIL system of De Jong
and Spears (1991), and the GIL system of Janikow (1991). In each case, significant
adaptations to the basic EAs have been made in order to effectively represent, evalu-
ate, and evolve appropriate rule sets as defined by the environment.

One of the most fascinating recent developments is the use of EAs to evolve
more complex structures such as neural networks and Lisp code. This has been
dubbed "genetic programming", and is exemplified by the work of de Garis (1990),
Fujiko and Dickinson (1987), and Koza (1991). de Garis evolves weights in neural
networks, in an attempt to build complex behavior. Fujiko and Dickinson evolved
Lisp expressions to solve the Prisoner’s Dilemma. Koza also represents individuals
using Lisp expressions and has solved a large number of optimization and machine
learning tasks. One of the open questions here is precisely what changes to EAs need
to be made in order to efficiently evolve such complex structures.

3 Issues
In the previous section we highlighted the similarities and differences of the various
forms of evolutionary algorithms. The differences arise from a number of relevant
issues. In this section we will explore these issues briefly, and take the opportunity to
also define the algorithms above in greater detail.

3.1 Scaling, Selection and Fitness

Central to every evolutionary algorithm is the concept of fitness (i.e., evaluation). If
we assume, without loss of generality, that we wish to maximize fitness, then we
wish to concentrate search in those areas of higher fitness. This concentration of



effort, commonly referred to by the term exploitation, is the task of selection. Each
EA addresses this issue in a different manner.

Before we describe selection mechanisms further, it is also important to con-
sider the issue of scaling. Suppose one has two search spaces. The first is described
with a real-valued fitness function F. The second search space is described by a
fitness function G that is equivalent to Fp , where p is some constant. The relative
positions of peaks and valleys in the two search spaces correspond exactly. Only the
relative heights differ (i.e., the vertical scale is different). Should our EA search both
spaces in the same manner?

There is no right or wrong answer to this question, since it really depends on
our goals and the problems to be solved. If we believe that the EA should search the
two spaces in the same manner, then selection should only be based on the relative
ordering of fitnesses. ESs, for example, use precisely this method. Parent selection is
performed uniformly randomly, with no regard to fitness. Survival simply saves the
N best individuals, which is only based on the relative ordering of fitnesses. This
form of selection is often referred to as ranking selection, since only the rank of indi-
viduals is of importance. EP selection is similar to that of the ES algorithm. All indi-
viduals are selected to be parents. Each parent is mutated once, producing N chil-
dren. A probabilistic ranking mechanism chooses the N best individuals for survival,
from the union of the parents and children. Again, this is a selection mechanism
based on rank.

The GA community has also advocated ranking for some situations, but by and
large many members believe that F and G should be searched differently. Fitness
proportional selection is the probabilistic selection mechanism of the traditional GA.
Parent selection is performed based on how fit an individual is with respect to the
population average. For example, an individual with fitness twice the population
average will tend to have twice as many children as average individuals. Survival,
though, is not based on fitness, since the parents are automatically replaced by the
children.

One problem with this latter approach is that, as the search continues, more and
more individuals receive fitnesses with small relative differences. This lessens the
selection pressure, slowing the progress of the search. This effect, often referred to as
"lacking the killer instinct", can be compensated somewhat by scaling mechanisms,
that attempt to magnify relative differences as the search progresses. A number of
scaling mechanisms exists, but their description is beyond the scope of this paper.
The interested reader is urged to refer to Grefenstette and Baker (1989) for an inves-
tigation into the relationships between fitness, scaling, and selection.

3.2 Mutation and Adaptation

As mentioned earlier, selection serves to focus search into areas of high fitness. Of
course, if selection were the only genetic operator, the population would never have
any individuals other than those introduced in the initial population. Other genetic



operators perturb these individuals, providing exploration in nearby areas. Although
a number of operators are possible, we will concentrate on the two predominant
operators, namely, mutation and recombination.

The importance of mutation in EAs varies widely. Koza (1991) does not use
mutation at all. GAs typically use mutation as a simple background operator, to
ensure that a particular bit value is not lost forever. Using our previous example,
suppose every member of our engine population had four cylinders. Then mutation
can reintroduce six and eight cylinder engines. Recall that GAs traditionally work on
bit-strings. Under these conditions, mutation in GAs typically flips bits with a very
low probability (e.g., 1 bit out of 1000).

Mutation is far more important in ESs and EP. Instead of a global mutation
rate, mutation probability distributions can be maintained for every variable of every
individual. Thus, each variable can be mutated according to a different probability
distribution. More importantly, ESs and EP encode the probability distributions as
extra information within each individual, and allow this information to evolve as
well. What is achieved is the self-adaptation of mutation parameters, while the space
is being searched. Again, full details of this are beyond the scope of this paper. The
interested reader is encouraged to read Ba

..
ck et al. (1991), Ba

..
ck and Schwefel

(1993), and Fogel (1992).

3.3 Recombination and Adaptation

Recombination is the other predominant genetic operator. Recombination merges
variables from two parents to produce offspring that have variables from both
parents. Like mutation, the relative importance of recombination in various EAs
varies widely. EP does not make use of recombination. Koza (1991) only uses
recombination to form new Lisp expressions.

ESs and GAs use both recombination and mutation. There are a number of
recombination methods for ESs, all of which assume that the individuals are com-
posed of real-valued variables. Either the values are exchanged (as in our "engine"
example above), or they are averaged. For example, a four cylinder parent could
recombine with an eight cylinder parent to produce a six cylinder child. Finally, the
ES community has also considered multi-parent versions of these operators.
Although the ES community places more emphasis on mutation, and does not adap-
tively modify crossover, they also feel crossover is essential for the proper adaptation
of the mutation parameters.

The GA community places primary emphasis on crossover, and a number of
recombination operators are widely used. Again, for the sake of brevity, we will only
discuss the most popular, namely, one-point, multi-point and uniform recombination.
One-point recombination inserts a cut-point within the two parents (e.g., between the
3rd and 4th variables, or bits). Then the information before the cut-point is swapped
between the two parents. Multi-point recombination is a generalization of this idea,
introducing a higher number of cut-points. Information is then swapped between



pairs of cut-points. Uniform crossover, however, does not use cut-points, but simply
uses a global parameter to indicate the likelihood that each variable should be
exchanged between two parents. Considerable experimental and theoretical work
has investigated the differences between these forms of recombination. Spears and
De Jong (1992), Booker (1992), and Vose and Liepins (1991) provide theoretical
comparisons.

Despite the emphasis on recombination within the GA community, interest in
mutation has increased recently, partly due to the influence of the ES and EP com-
munities. Schaffer and Eshelman (1991) have experimentally shown that mutation is
a powerful search operator in its own right, while still maintaining the usefulness of
crossover in certain situations. Spears (1992a) agrees with this view, and has theoret-
ically shown some of the strengths and weakness of mutation and recombination. It
is important to realize that recombination and mutation provide different search
biases, which may or may not be appropriate for the task at hand. Since a priori
appropriateness may be hard to determine, the key to more robust EA systems prob-
ably lies in the adaptive selection of such genetic operators. Unfortunately, very lit-
tle has been done in the way of adaptive recombination. Schaffer and Morishima
(1987) have experimented with punctuation-marks that indicate where good cut-
points may exist. Davis (1989) has experimented with adapting the rate at which
recombination is applied, given performance feedback. Finally, Spears (1992b) has
shown that it is feasible for the GA to choose between two forms of recombination.
Clearly, however, this is an area for further research.

3.4 Representation

Of course, any genetic operator such as mutation and recombination must be defined
with a particular individual representation in mind. Again, the EA community differs
widely in the representations used. Traditionally, GAs use bit strings. In theory, this
representation makes the GA more problem independent, because once a bit string
representation is found, standard bit-level mutation and recombination can often be
used. We can also see this as a more genotypic level of representation, since the indi-
vidual is in some sense encoded in the bit string. Recently, however, the GA com-
munity has investigated more phenotypic representations, including vectors of real
values (Davis, 1989), ordered lists (Whitley et al., 1989), neural networks (Harp et.
al, 1991), and Lisp expressions (Koza, 1991). For each of these representations, spe-
cial mutation and recombination operators are introduced. The EP and ES communi-
ties are similar in this regard. The ES and EP communities focus on real-valued vec-
tor representations, although the EP community has also used ordered list and finite
state automata representations, as suggested by the domain of the problem.

Although much has been done experimentally, very little has been said theoret-
ically that helps one choose good representations, nor that explains what it means to
have a good representation. Also, very little has been done in the way of adaptive
representations, with the exception of messy GAs (Goldberg, 1991), Argot (Shaefer,
1987), the dynamic parameter encoding (DPE) scheme of Schraudolph and Belew



(1992), and the Delta coding of Whitley et al. (1991). Messy GAs, Argot, DPE, and
Delta coding all attempt to manipulate the granularity of the representation, thus
focusing search at the appropriate level. Despite some initial success in this area, it
is clear that much more work needs to be done.

3.5 Adaptive EAs

Despite some work on adapting representation, mutation, and recombination within
evolutionary algorithms, very little has been accomplished with respect to the adap-
tation of population sizes and selection mechanisms. One way to characterize selec-
tion is by the strength of the selection mechanism. Strong selection refers to a selec-
tion mechanism that concentrates quickly on the best individuals, while weaker
selection mechanisms allow poor individuals to survive (and produce children) for a
longer period of time. Similarly, the population can be thought of as having a certain
carrying capacity, which refers to the amount of information that the population can
usefully maintain. A small population has less carrying capacity, which is usually
adequate for simple problems. Larger populations, with larger carrying capacities,
are often better for more difficult problems. Although some work has attempted to
characterize good population sizes (Goldberg, 1989a), more theory is needed. In lieu
of theory, then, perhaps the evolutionary algorithm can adapt both selection pressure
and the population size dynamically, as it solves problems.

3.6 Performance Measures, EA-Hardness, and Evolvability

Of course, one can not refer to adaptation without having a performance goal in
mind. EP and ES usually have optimization for a goal. In other words, they are typi-
cally most interested in finding the best solution as quickly as possible. The GA
community has often taken a similar stance, although there is also some concern that
such a stance can be somewhat misleading. De Jong (1992) reminds us that GAs are
not function optimizers per se, although they can be used as such. There is very little
theory indicating how well GAs will perform optimization tasks. Instead, theory
concentrates on what is referred to as accumulated payoff. The difference can be
illustrated by considering financial investment planning over a period of time (e.g.,
you play the stock market). Instead of trying to find the best stock, you are trying to
maximize your returns as the various stocks are sampled. Clearly the two goals are
somewhat different, and maximizing the return may or may not also be a good heuris-
tic for finding the best stock. This difference in emphasis clearly has implications for
how an EA practitioner can (and should) measure performance, which will have
further implications for how adaptation should be accomplished.

This difference also colors much of the discussion concerning the issue of
problem difficulty. The GA community refers to hard problems as GA-Hard. Since
we are now in the broader context of EAs, let us refer to hard problems as EA-Hard.
Often, a problem is considered difficult if the EA can not find the optimum. Although
this is a quite reasonable definition, difficult problems are often constructed by taking



advantage of the EA in such a way that selection deliberately leads the search away
from the optimum. Such problems are called deceptive (Goldberg, 1989b). From a
function optimization point of view, the problem is indeed deceptive. However, the
EA may nonetheless maximize accumulated payoff. Should we call a deceptive
problem EA-Hard? The answer obviously depends on our goals.

It is clear, then, that problem difficulty is a function of the problem, the goal,
and the algorithm used to solve that problem. Although deceptiveness is one possibil-
ity, other measures of problem difficulty are needed.† One possibility is fitness corre-
lation, which appears to be a measure of EA-Hardness that places less emphasis on
optimality (Manderick et al., 1991). Fitness correlation measures the correlation
between the fitness of children and their parents. Manderick et al. found a strong
relationship between GA performance and the strength of the correlations. Similarly,
Lipsitch (1991) has also proposed examining fitness correlations. Another possibility
is problem modality. Those problems that have many suboptimal solutions will, in
general, be more difficult to search. Finally, this issue is also very related to a con-
cern of de Garis, which he refers to as evolvability. de Garis notes that often his sys-
tems do not evolve at all, namely, that fitness does not increase over time. The rea-
sons for this are not clear and remain an important research topic.

3.7 Distributed EAs

Because of the inherent natural parallelism within an EA, much recent work has con-
centrated on the implementation of EAs on parallel machines. Typically either one
processor holds one individual (in SIMD machines), or a subpopulation (in MIMD
machines). Clearly, such implementations hold promise of execution time decreases.
More interestingly, though, for the topic of this paper, are the evolutionary effects
that can be naturally illustrated with parallel machines, namely, speciation, nicheing,
and punctuated equilibria. Belew and Booker (1991) contain many examples of the
most current work in this area.

4 Current Trends
With a better understanding of the similarities and differences between various
implementations of EAs, the community has begun to concentrate on generalizing
results initially shown only for specific EAs. For example, Grefenstette and Baker
(1989) illustrate that many features of EAs do not change when certain properties of
selection and scaling are assumed. They also indicate when the features change, if
the properties are not met. Although this work is preliminary, it helps explain why a
wide variety of EAs have all met with success. Ba

..
ck is also investigating the

differences between GAs and ESs and is attempting to merge the best features of each
in order to have a more robust EA.
____________________________________

† For an analysis of deception, see Grefenstette (1992).



As we understand better the strengths and weaknesses of our current evolution-
ary models, it is also important to revisit the biological and evolutionary literature for
new insights and inspirations for enhancements. Booker (1992) has recently pointed
out the connections with GA recombination theory to the more general theory of
population genetics recombination distributions. Mu

..
hlenbein (1993) has concen-

trated on EAs that are modeled after breeding practices. In the EP community,
Atmar (1992) highlights some errors common to evolutionary theory and the EA
community.

5 Summary
We have attempted to provide a brief overview of the field of evolutionary computa-
tion by describing three classes of evolutionary algorithms which have served to
define and shape the field. By highlighting their similarities and differences, we have
identified a number of important issues that suggest directions for future research.

With the rapid growth of the field, there is a particularly pressing need to
extend existing and developing new analysis tools which allow us to better under-
stand and evaluate the emerging varieties of EAs and their applications. We hope
this paper will serve as a catalyst for such activities.
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