Adapting Crossover in Evolutionary
Algorithms

William M. Spears

Abstract

One of the issues in evolutionary algorithms (EAS) is the relative impor-
tance of two search operators. mutation and crossover. Genetic algo-
rithms (GAS) and genetic programming (GP) stress the role of crossover,
while evolutionary programming (EP) and evolution strategies (ESS)
stress the role of mutation. The existence of many different forms of
crossover further complicates the issue. Despite theoretical analysis, it
appears difficult to decide a priori which form of crossover to use, or even
if crossover should be used at all. One possible solution to this difficulty is
to have the EA be self-adaptive, i.e., to have the EA dynamically modify
which forms of crossover to use and how often to use them, as it solves a
problem. This paper describes an adaptive mechanism for controlling the
use of crossover in an EA and explores the behavior of this mechanism in
anumber of different situations. An improvement to the adaptive mechan-
ism is then presented. Surprisingly this improvement can also be used to
enhance performance in a non-adaptive EA.

1 INTRODUCTION

One of the issues in evolutionary algorithms (EAS) is the relative impor-
tance of two operators. mutation and crossover.! Two types of EAs, evo-
lutionary programming (EP) and evolution strategies (ESs), stress the role
of mutation. In the 1960s, Fogel et a. (1966) illustrated how mutation
and selection (EP) can be used to evolve finite state automata for a variety
of tasks. Simultaneously, in Europe, Rechenberg (1973) investigated a
similar algorithm (ESs) that again concentrates on mutation as the key
search operator. Sophisticated versions of these algorithms, with adaptive
mutation rates, have proven quite useful for function optimization tasks
(Back et al. 1991; Schwefel 1981). Recent studies confirm this view,
illustrating the effectiveness of mutation (Back and Schwefel 1993;
Schaffer et a. 1989).

In contrast, practitioners of genetic algorithms (GAs) and genetic pro-
gramming (GP) stress the role of crossover. In support of this,



experimental results have been presented that illustrate the effectiveness
of crossover (e.g., De Jong, 1975). More recently, Schaffer and Eshelman
(1991) empirically compare mutation and crossover, and conclude that
crossover can exploit epistasis that mutation alone cannot.

To further complicate the issue, many different forms of crossover exist.
Traditionally, GAs have relied upon one- and two-point crossover opera-
tors. But there are many situations in which having a higher number of
crossover points is beneficial (Syswerda 1989; Eshelman 1989). Perhaps
the most surprising result (from atraditional schema-based perspective) is
the effectiveness of uniform crossover, an operator that produces on the
average L / 2 crossings on strings of length L (Syswerda 1989; Spears and
De Jong 1991).

In addition to the empirical investigations, considerable effort has been
directed toward theoretical comparisons between different crossover
operators (e.g., De Jong and Spears 1992) and between mutation and
crossover (e.g., Spears 1992). But these theories are not sufficiently gen-
eral to predict when to use crossover, or what form of crossover to use.
For example, the theories do not consider population size, yet population
size can affect the relative utility of crossover operators (e.g., see De Jong
and Spears 1990).

Similarly, there is evidence to suggest that the relative utility of muta-
tion may be affected by population size. Mutation appears to be more
useful than crossover when the population size is small (Eshelman 1995;
Mathias 1995), while there is evidence that crossover can be more useful
than mutation when the population size is large (e.g., see Spears and
Anand 1991). Other factors, such as the representation, selection scheme,
and the fitness function itself may all have an effect on the relative utility
of crossover and mutation.

Current EA theory is inadequate for selecting which operators to use
before the EA is initiated. There are at least two possible approaches to
this problem. The first is to extend the current theories to take into
account all facets of the EA. There is preliminary work in this area (e.g.,
Nix and Vose 1990; De Jong et al. 1994), but the resulting mathematical
frameworks are computationally expensive to evaluate. The second
approach is to have an adaptive mechanism in which the EA selects the
operators it will use. This paper concentrates on self-adaptive
approaches, in which the EA itself selects search operators. Self-
adaptation is not without precedent; similar methods and concepts are
applied within the EP and ES algorithms to select optimal mutation
mechanisms (e.g., see Back et al. 1991; Saravanan and Fogel 1994).

This paper focuses on an adaptive mechanism for controlling the use of
crossover in an EA, while the EA is simultaneously solving a problem.
This mechanism chooses between two different forms of crossover (two-
point and uniform). Mutation is assumed to be used at some set rate and is
not adapted by the EA.



2 BACKGROUND

There have been two approaches to coupling adaptive mechanisms with
EAs, referred to as non-self-adaptive and self-adaptive. The non-self-
adaptive approach adapts the EA over the course of many runs (e.g., see
Grefenstette 1986). In contrast, the self-adaptive approach adapts the EA
as it solves a single specific problem once. This approach alows for the
simultaneous exploration of both the problem space and some space of
different EAs.

Both ES and EP incorporate self-adaptive mechanisms for selecting
optimal forms of mutation. Much less work has concentrated on the self-
adaptation of crossover; however, Schaffer and Morishima (1987) used a
self-adaptive approach that adjusted the points at which crossover is
alowed to cut and splice material. They accomplished this by appending
an additional L bits to L-bit individuals. These appended bits were used to
determine crossover points at each locus — a ‘1’ denoted a crossover
point, while a ‘0" indicated the lack of a crossover point. If two individu-
as had n distinct crossover points, this was analogous to using a particu-
lar instantiation of n-point crossover. Because their technique was self-
adaptive, the GA searched both the problem space and the space of n-
point crossover distributions.

Although Schaffer and Morishima reported superior online average per-
formance, their baseline comparison was a standard GA with one-point
crossover. Thus it is not clear whether the improvement stemmed from
the adaptive selection of crossover points, or the simple fact that (on the
average) their GA was using n-point crossover, where n > 1. As men-
tioned above, there are many situations in which having a higher number
of crossover points is beneficial, and this alone may explain the improved
results.

This work re-explores the use of extra bits to self-adapt crossover, but
instead of searching the large space of n-point crossover distributions, it
considers only two forms of crossover, two-point and uniform. Interest-
ingly, athough these two forms are very commonly used, they represent
extremes. Two-point crossover is the least disruptive of material, while
uniform crossover is the most disruptive (De Jong and Spears 1992).
Also, Booker (1992) has noted that, in terms of positional and distribu-
tional bias, both two-point and uniform crossover are considerably
different. Thus, it is natural to allow the GA to explore a relative mixture
of these two operators, the motivation being that different mixtures will
represent different intermediate search characteristics between the two
extremes.

3 IMPLEMENTATION

One obvious way for the GA to self-adapt its use of two-point and uni-
form crossover is to append one hit to the end of every individua in the
population. Suppose a ‘0’ refers to uniform crossover, and a ‘1’ to two-



point crossover. Then the last column of the population (i.e., the last bit of
every individual) is used to sample the space of operators. If it is better to
use uniform crossover, more ‘0's should appear in the last column as the
GA evolves. If it is better to use two-point crossover, more ‘1's should
appear. Because the approach is self-adaptive, crossover and mutation are
alowed to manipulate this extra column of bits.

There are two possible techniques for using these extra bits, referred to
as local and global adaptation. In local adaptation the last bit of each
individual is used to choose which crossover operator is performed on
that individual. For example, suppose two individuals are chosen for
crossover. The last bit of each individua is then examined. If the two bits
are'0’s, uniform crossover is performed. If the two bits are * 1's, two-point
crossover is performed. If the two bits are different, the crossover operator
is randomly chosen.

With local adaptation the choice of crossover operator is tied to a par-
ticular individual. With global adaptation the choice of crossover operator
isnot tied to a particular individual, but to the population as awhole. For
example, suppose the last column has 75% ‘0's, and 25% ‘1's. Then,
when crossover is performed on the population, uniform crossover will be
called 75% of the time, and two-point crossover will be called 25% of the
time.

Note that from a probabilistic viewpoint, local and globa adaptation
are roughly equivalent because the odds of firing a particular operator are
the same for a given generation. But they are not fully equivalent because
local adaptation ties operators to individuals, while globa adaptation
stresses the population as a whole. One motivation for using local adapta-
tion isthat it is reasonable to assume that different individuals are follow-
ing different trgjectories through the search space, requiring different
operators for each trajectory. Given the success of EP and ES using local
adaptation, and based on preliminary experiments not reported here
(showing superior results with local adaptation), local adaptation is used
in this paper.2

For the sake of brevity, the term 1bit adaptation will be used to refer to
the above mechanism where one "operator” bit is appended to every indi-
vidual. Pseudo-code of the implementation is as follows:

if (parentl[L+1] == parent2[L+1] == 1)
then two_point_crossover(parentl, parent2);
dseif (parentl[L+1] == parent2[L+1] == 0)
then uniform_crossover(parentl, parent2);
elseif (rand() < 0.5)
then two_point_crossover(parentl, parent2);
else uniform_crossover(parentl, parent2);

Parentl and parent2 are two individuals of length L + 1 chosen from the
population for crossover. The function rand() uniformly produces a real



number from 0.0 to 1.0, so that portion of the code randomly chooses
between two-point and uniform crossover.

Since the extra hit is used to determine which crossover to apply, this
mechanism should give greater reward to the crossover operator that pro-
duces superior offspring. Note that this mechanism alows the GA to
adjust the relative mixture of its use of the two crossover operators. For
example, the adaptive GA can use two-point crossover primarily, uniform
crossover primarily, or any mixture in between those extremes. But it can-
not reward a sequence of operators that cooperate to produce a good
offspring. Also, this mechanism cannot adjust the total number of cross-
over events, because either two-point crossover or uniform crossover is
aways fired. It is possible to alow a variation of 1bit adaptation, which
alows the GA to apply one, both, or neither crossover operator to one
individual. This allows both crossover operators to be rewarded for
cooperating with each other, which is not allowed in 1bit adaptation. The
details appear in Spears (1994).

4 EXPERIMENTS

De Jong and Spears (1990) define a class of problems called the N-Peak
problems, in which each problem has one optimal solution and N-1
suboptimal solutions. N ranges from one to six, which suffices to demon-
strate that the effectiveness of uniform and two-point crossover depend
both on the problem being solved, and the population size. The experi-
ments described here focus on the two extremes, the 1-Peak and 6-Peak
problems. The GA is run with population sizes of 100 and 1000.3

The 1-Peak and 6-Peak problems are 30-bit problems. Interestingly,
appending dummy bits to a problem can also change the effectiveness of
crossover operators (see Syswerda 1989; Spears and De Jong 1991). The
added bits do not affect the fitness of an individual, but they do affect the
performance of length dependent crossover operators (such as two-point
crossover). For this reason the GA was aso run on the 1-Peak and 6-Peak
problems where the number of dummy bits is 870, thus yielding 900-bit
problems. Each experiment is averaged over 100 independent runs and
GA performance is measured by the fitness of the best individual found so
far, at each generation (referred to as best-so-far curves in this paper).

For all the experiments, one operator bit is appended to each individual,
yielding 31- and 901-bit problems. When the GA is run with only two-
point or uniform crossover the operator bit is not used, although it is till
appended to each individual and subject to crossover and mutation. When
1bit adaptation is used, the operator bit controls (two-point and uniform)
Crossover.

It isimportant to understand why the additional operator bit is included
on each individual, for al experiments. One mativation isto minimize the
differences between the algorithms, providing for better controlled com-
parisons. But the more important motivation is that it allows for a basis of
comparison with the adaptive mechanism. After all, when the GA is



executed without self-adaptation, the column of operator bits will still
change because of various stochastic effects. The obvious solution is to
use the non-adaptive case as a control. Therefore, monitoring the column
of operator bits (when adaptation is not used) will act as a control that can
be used to determine whether the adaptive process is in fact changing
operator probabilities in some fashion that is different from the non-
adaptive case.

Before the results are presented, a note on the style of presentation isin
order. For every run of every experiment, information pertaining to the
performance of the GA and the percentage of ‘1'sand ‘0's in the operator
column at every generation was monitored and saved. To compress this
information, the data were averaged and graphed. Due to space con-
straints it is impossible to present al of the results. As many graphs as
possible are included, along with accompanying tables of information in
which the data interpretation has already been performed. The complete
set of graphsis available in Spears (1994).

5 RESULTS

Figures 1 and 2 present the performance of each GA on each problem.
The fitness of the N-Peak problems ranges from 0.0 to 1.0, and maximiza-
tion is assumed. The x-axis represents the number of generations that
have elapsed, and the y-axis represents fithess. The monotonically
increasing performance curve represents the fitness y of the best indivi-
dual that has been seen by generation x. Table 1 summarizes the perfor-
mance of uniform and two-point crossover on each problem. Uniform
crossover is very effective with small population size, simpler problems,
and appended dummy bits, while two-point crossover is more effective
when the population size is larger and the problem is more difficult. 1bit
adaptation appears to perform very well, yielding results that are always
close to the best choice of crossover operator.

Although Figures 1 and 2 provide useful information about the perfor-
mance of the GA, they do not indicate that any form of self-adaptation
has occurred. To see evidence of self-adaptation it is necessary to con-
sider the column of operator bits. In all of the experiments, the GA popu-
lation is randomly initialized, including the operator bits. When the GA is
not run in a self-adaptive mode (i.e., the GA runs with two-point or uni-
form crossover in traditional fashion), the bits in the operator column will
still be perturbed by stochastic effects. But averaged over a large number
of runs, the column will have approximately 50% ‘1's (and ‘0's) at any
given time (this was confirmed experimentally). When the GA is self-
adaptive, evidence of adaptation can be seen if the percentages of ‘1's
and ‘0’s consistently differ from 50%.%

Figure 3 provides graphs of the percentage of 1's in the operator
column of the GA population, for each generation, averaged over 100
runs. If a curve stays near 50% it indicates no preference for either cross-
over operator. Curves above 50% indicate a preference for two-point
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Figure 1. Best-so-far curves for all problems when the GA population is 100. The y-axis
represents fitness, ranging from 0.0 to 1.0. The x-axis represents the number of elapsed
generations. The GA with 1bit adaptation performs well in comparison with the GA
using uniform crossover and the GA using two-point crossover.

crossover, while curves below 50% indicate a preference for uniform
crossover. For example, Figure 3 indicates that two-point crossover is
highly favored by the 900-bit 6-Peak problem, when the population is
1000. Table 2 provides a summary that indicates which crossover opera-
tor the adaptive mechanism chose to favor on each problem.

On the whole, 1hit adaptation favored the better crossover operator (see
Table 1). But on the 900-bit 6-Peak problem, 1bit adaptation favored the
less effective crossover operator. What is not clear is why the adaptive
mechanism was misled. Since, in general, adaptive mechanisms can be
misled by large stochastic effects, the variance in percentages of ‘1's and
‘0’s in the column of operator bits was computed (these results are not
shown in this paper, but are available in Spears 1994). One striking
feature of these results was the large variance of the column of operator
bits when the non-adaptive GA with two-point crossover is run on the
900-hit problems. In retrospect, this appears reasonable, since for these
particular problems the important information isin the first 30 bits. Under
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Figure 2. Best-so-far curves for al problems when the GA population is 1000. The y-axis
represents fitness, ranging from 0.0 to 1.0. The x-axis represents the number of elapsed
generations. The GA with 1bit adaptation performs well in comparison with the GA
using uniform crossover and the GA using two-point crossover.

Table 1. The operator that yielded the better best-so-far curves. This is determined by
noting which crossover (two-point or uniform) produced better performance curves in
Figures 1 and 2.

Population 100 | Population 1000
1-Peak: 30-bit Neither Neither
1-Peak: 900-hit Uniform Uniform
6-Peak: 30-bit Neither Two-point
6-Peak: 900-hit Uniform Uniform

such conditions two-point crossover is unlikely to modify the first 30 bits,
providing poor sampling for testing the effectiveness of the operator. If
the important 30 bits had in fact been scattered relative uniformly
throughout the 900-bit string, this effect would be much less likely to
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Figure 3. The average percentage of 1'sin the operator column for all problems. 0.50
represents a 50/50 split in the use of uniform and two-point crossover. 1.0 represents sole
use of two-point, while 0.0 represents sole use of uniform.

Table 2. The operator 1bit adaptation chose. This was determined by noting whether the
percentage of ‘1's in Figure 3 was greater (indicating two-point) or less (indicating
uniform) than 0.50.

Population 100 | Population 1000
1-Peak: 30-bit Neither Neither
1-Peak: 900-bit Uniform Uniform
6-Peak: 30-bit Two-point Two-point
6-Peak: 900-bit Two-point Two-point

occur (for a discussion of this phenomenon, see Spears and De Jong
1991).

A Control Study

One of the problems with the results from Schaffer and Morishima (1987)
is that it is difficult to determine whether any performance improvements
were due to the adaptive mechanism, or due to the fact that their adaptive
GA simply used more crossover points. A similar problem is apparent in
the above results as well. This problem arises because there are really (at
least) two ways to view the adaptive mechanism. The first is from the
point of view of performance, which is the traditional view that produced
Table 1. The second view is quite different in that it ignores performance
and concentrates more on the adaptive mechanism itself. Table 2 stems
from the second point of view. Once given these two points of view, it is
natural to question how they causaly relate to each other. There may be
signs of performance improvement and there may be signs of interesting
adaptive behavior, but it is difficult to know if the adaptive behavior was
responsible for the performance improvement.



To address this, a further control study was run. Since 1bit adaptation
always performs the same number of crossover events for every genera-
tion, a reasonable control study was to also run the GA with both two-
point and uniform crossover, where the choice of operator was decided by
a 50/50 coin flip. This control GA fixed the average mixture of its use of
the two crossover operators to a 50/50 split. As mentioned before, 1bit
adaptation can adjust this mixture. By comparing the performance of this
control GA to the 1bit adaptive GA, the effect that the adaptive mechan-
ism had on performance can be determined.

The control GA was run on al the problems defined earlier in this
paper. Interestingly, the control GA performance was extremely close to
the performance of 1bit adaptation! Thus, for the problems addressed in
this paper, although 1bit adaptation does in fact adapt, much of the robust
performance stems from the simple fact that two crossover operators are
available to the GA. This raises the possibility that it is better to run an
EA with alarger set of search operators than is customary, even if the EA
is not self-adaptive.

6 OTHER MEASURESOF ADAPTATION

Given these results, it is perhaps tempting to discount the adaptive
mechanism in favor of simply adding more search operators to a standard
EA. This temptation (stemming from a performance point of view) may
be premature because this study has only addressed a small number of
problems. Furthermore, it is still interesting to temporarily drop the per-
formance perspective and to continue examining the adaptive mechanism
in more detail. This examination yields insights into how to improve the
adaptive mechanism and the EAs themselves.

The previous discussions have centered around the average percentage
of ‘I'sand ‘0O's in the column of operator bits. Unfortunately, this does
not necessarily describe the time evolution of the random process very
well because an infinite number of very different random processes may
yield the same average percentages. It isimportant to examine other sta-
tistical measures that stress the time evolution of the random process. For
example, consider one run of the GA, where the percentages of ‘1'sin an
operator column is monitored and the difference in the percentage of ‘1's
from generation to generation is calculated. One might naturally expect
an adaptive mechanism to change the percentage of ‘1's either more or
less quickly than the non-adaptive GA (on average).®

The difference measure, averaged over a dliding window of size 10
(generations), was computed for each run, in order to determine how the
measure changed over time. This was then averaged over the 100 runs.
Figure 4 illustrates the difference measure for one particular problem.
Note that 1bit adaptation produced greater changes in the percentage of
‘1I'sin the early generations. Table 3 summarizes the results for al the
test problems. The difference measure was applied to each problem to see
whether or not it provided confirmation that adaptation occurred. The



difference measure provides confirmation if the measure is substantially
different for the adaptive and non-adaptive GAs (asin Figure 4).

0.0004 0.0004
0.0003 _| 1bit . 0.0003
Difference 1 5002 _| - 0.0002
0.0001 _| 0.0001
0 0
0 10 20 30 40
Generations

Figure 4. The difference measure on the 30-bit 6-Peak problem, when the population was
1000. Larger differences indicate that the column of operator bits changed more rapidly.
Note that 1bit adaptation made greater changes than the GA without self-adaptation
(using two-point or uniform aone).

Table 3. Table 2 indicated whether adaptation occurred. If adaptation occurred and the
difference measure indicated greater changes in the operator column for 1bit adaptation
(compared with the GA using two-point or uniform alone), confirmation was obtained.

Population 100 Population 1000

Adapted Confirmed | Adapted Confirmed
1-Peak: 30-bit No No No No
1-Peak: 900-bit Yes No Yes No
6-Peak: 30-hit Yes Yes Yes Yes
6-Peak: 900-bit Yes Yes Yes Yes

On the 30-bit 1-Peak problem, there was no sign of adaptation (see
Table 2) and the difference measure also did not show any signs of adap-
tation (see Table 3). On the 6-Peak problems the difference measure did
confirm that adaptation occurred. A lack of confirmation occurred with
the 900-bit 1-Peak problem. Again, the high variance of two-point cross-
over on the 900-bit problems may explain this effect. If the graphs from
which Table 3 was generated are examined, one interesting feature is that
when adaptation is occurring, the differences are greater in the early gen-
erations, relative to the non-adaptive GAs (see Figure 4). Thisis a reason-
able result, indicating that the adaptive GA is making large changes to the
operator column during the early generations due to feedback about the
relative worth of the two crossover operators. In general, the cases where
this behavior is not as noticeable are on the 900-bit problems.



7 IMPROVEMENTS

The previous section indicated that the difference measure can provide
useful confirmation of when adaptation occurs. This raises the intriguing
idea that if even more radical changes in the difference measure could be
produced, this might in fact reflect faster adaptation. One way to possibly
make more radical changes is to reward both crossover operators in a
more explicit fashion.

One feature of the current adaptive mechanism is that it rewards opera-
torsthat produce good offspring in a rather implicit fashion. For example,
there is no explicit fitness reward for generating an offspring that is much
better than a parent. Under the current mechanism, if both uniform and
two-point crossover generate offspring of fitness g, then fitness selection
will reward equally both operators because both offspring (with the
attached operator bits) are equaly likely to survive. But the fitness of the
parents is totally ignored. Thus, if in fact one crossover produced a bigger
change in fitness, perhaps the fitness reward should be based on that fact.
There is some hope that such a mechanism would help the adaptive pro-
cess, since the adaptive mechanism could increase the use of the operator
that produces the greatest increase in fithess.

A simple modification to the fithess function can alleviate this draw-
back. Suppose the fitness of a parent is f while the fitness of its offspring
isg. If we wish to reward a crossover operator for producing both a good
offspring and an offspring that is better than its parent, one obvious fitness
function is g + (g — f ), which rewards children that are both good and
better than their parents.® The non-adaptive and adaptive mechanisms
with this modification to the fitness function were tested on the same
problems as before. The population was fixed at 100 and the results are
averaged over 100 runs. Figure 5 gives the best-so-far curves.

Although the results were similar to the earlier results, there are some
important differences. First, the modified fitness function helped the adap-
tive mechanism on the performance (best-so-far) curves. Second, the
column percentage results (not shown here) indicate that when the adap-
tive mechanism was choosing the better (from a performance point of
view) crossover operator, it did so more quickly than in the earlier results.
It still chose the worse operator on the 900-bit 6-Peak problem, but in this
case the choice was more tentative (i.e., the percentage of ‘1's deviated
less from the 50% baseling). Once again, however, a comparison with the
control GA indicated that much of the performance gains occur because
the GA has the use of both crossover operators.

What is most surprising, however, is the change in best-so-far perfor-
mance of the non-adaptive GAs. Although the modification to the fitness
function was inspired from the work with the adaptive mechanisms, both
the (non-adaptive) GA with two-point crossover and the (non-adaptive)
GA with uniform crossover show dramatically improved results (compare
Figures 1 and 5) on every problem. This result indicates that it may very
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Figure 5. Best-so-far curves for all problems when the GA population is 100 and the
fitness function isg + (g - f). The y-axis represents fitness, ranging from 0.0 to 1.0.
The x-axis represents the number of elapsed generations. The modified fitness function
improved all of the performance curves.

well be beneficial to reward individuals in an EA based on both their
fitness and their improvement.

8 DISCUSSION

This paper presents a simple adaptive mechanism that allows the GA to
choose between uniform and two-point crossover, as a problem is being
solved. With 1bit adaptation, one bit is appended to every individual, and
this bit controls which operator fires. This mechanism is simple, elegant,
and will work with almost any conceivable style of evolutionary algo-
rithm.

The results in this paper indicate, in general, that 1bit adaptation
appears to generate good performance results. But much of the perfor-
mance stems from simply having two crossover operators at the GA's
disposal. This raises the intriguing notion that it may often be beneficial
for an EA to have a larger set of search operators than is customarily
used.

One difficulty with investigating adaptive mechanisms is in how to



compare them. Clearly performance measurements (such as best-so-far
curves) provide a useful measure, yet do not indicate much about the
underlying process. This paper introduced a measure that indicated more
about the underlying process, namely the difference measure. Thisled to
an attempt to reward good crossover operators more explicitly, by making
a modification to the fitness function. This modification rewarded indivi-
duals that were both good and that were better than their parents.
Although this modification was inspired by the study of the adaptive
mechanism, it also resulted in superior performance for the non-adaptive
GAs, and suggested that it may often be beneficial to reward individuals
in an EA based on both their fitness and their improvement.

Despite the interesting (and possibly quite valuable) insights that have
risen from the study of 1bit adaptation, it is clear that this particular adap-
tive method has not shown itself to be extremely useful from a perfor-
mance point of view. It is not clear whether this is due to the mechanism
itself, or due to the test problems investigated in this paper. Clearly the
900-hit problems posed some sampling difficulties, since two-point cross-
over was unlikely to modify the important 30 bits of an individual. But in
some sense these problems seem pathological and clearly it is necessary
to test this adaptive mechanism on many other problems of interest.
Finally, it is necessary to compare this adaptive mechanism to the rela-
tively recent fuzzy logic adaptive technique of Lee and Takagi (1993), as
well as the method by White and Oppacher (1994) that uses automata.

Footnotes

1. There are conflicting definitions for the term evolutionary algorithm.
The use here is consistent with Spears et al. (1993).

2. It should be noted, however, that Syswerda (1992) reports good results
using aglobal technique, where he uses mutation to simulate crossover.

3. This is a standard generational GA (caled GAC), with stochastic
universal selection, a mutation rate of 0.1%, and a crossover rate of 60%.
GAC isavailable from { www,ftp} .aic.nrl.navy.mil.

4. At this time this determination is made from the graphs. A statistical
determination will be made in the near future.

5. Other measures are considered in Spears (1994) but the difference
measure was the most useful.

6. A good individual is one that has a higher chance for survival, relative
to the rest of the population. Under EA fithess schemes this is generally
an individual with higher than average fitness (if maximizing). Also, it
would be interesting to weight the two components of this modified
fitness function (which could also be subject to self-adaptation).
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