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Abstract

This paper investigates the limiting distributions for mutation and recombination.
The paper shows a tight link between standard schema theories of recombination
and the speed at which recombination operators drive a population to equilibrium.
A similar analysis is performed for mutation. Finally the paper characterizes how
a population undergoing recombination and mutation evolves.

1 INTRODUCTION

In a previous paper Booker (1992) showed how the theory of “recombination distributions”
can be used to analyze evolutionary algorithms (EAs). First, Booker re-examined Geiringer’s
Theorem (Geiringer 1944), which describes the equilibrium distribution of an arbitrary
population that is undergoing recombination. Booker suggested that “the most important
difference among recombination operators is the rate at which they converge to equilib-
rium”. Second, Booker used recombination distributions to re-examine analyses of schema
dynamics. In this paper we show that the two themes are tightly linked, in that traditional
schema analyses such as schema disruption and construction (Spears 2000) yield important
information concerning the speed at which recombination operators drive the population to
equilibrium. Rather than focus solely on the dynamics near equilibrium, however, we also
examine the transient behavior that occurs before equilibrium is reached.

This paper also investigates the equilibrium distribution of a population undergoing only
mutation, and demonstrates precisely (with a closed-form solution) how the mutation rate
1 affects the rate at which this distribution is reached. Again, we will focus both on the



transient and the equilibrium dynamics. Finally, this paper characterizes how a population
of chromosomes evolves under recombination and mutation. We discuss mutation first.

2 THE LIMITING DISTRIBUTION FOR MUTATION

This section will investigate the limiting distribution of a population of chromosomes un-
dergoing mutation, and will quantify how the mutation rate p affects the rate at which the
equilibrium is approached. Mutation will work on alphabets of cardinality C' in the following
fashion. An allele is picked for mutation with probability u. Then that allele is changed to
one of the other C' — 1 alleles, uniformly randomly.

Theorem 1 Let S be any string of L alleles: (a1, ...,ar). If a population is mutated repeat-
edly (without selection or recombination) then:
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where ps(t) is the expected proportion of string S in the population at time t and C is the
cardinality of the alphabet.

Theorem 1 states that a population undergoing only mutation approaches a “uniform”
equilibrium distribution in which all possible alleles are uniformly likely at all loci. Thus
all strings will become equally likely in the limit. Clearly, since the mutation rate u does
not appear, it does not affect the equilibrium distribution that is reached. Also, the initial
population will not affect the equilibrium distribution. However, both the mutation rate
and the initial population may affect the transient behavior, namely the rate at which the
distribution is approached. This will be explored further in the next two subsections.

2.1 A MARKOV CHAIN MODEL OF MUTATION

To explore the (non-)effect that the mutation rate and the initial population have on the
equilibrium distribution, the dynamics of a finite population of strings being mutated will
be modeled as follows. Consider a population of P individuals of length L, with cardinality
C. Since Geiringer’s Theorem for recombination (Geiringer 1944) (discussed in the next
section) focuses on loci, the emphasis will be on the L loci. However, since each locus will
be perturbed independently and identically by mutation, it is sufficient to consider only one
locus. Furthermore, since each of the alleles in the alphabet are treated the same way by
mutation, it is sufficient to focus on only one allele (all other alleles will behave identically).

Let the alphabet be denoted as A and a € A be one of the particular alleles. Let @ denote
all the other alleles. Then define a state to be the number of a’s at some locus and a time
step to be one generation in which all individuals have been considered for mutation. More
formally, let S; be a random variable that gives the number of a’s at some locus at time ¢.
S; can take on any of the P + 1 integer values from 0 to P at any time step t. Since this
process is memory-less, the transitions between states can be modeled with a Markov chain.
The probability of transitioning from state i to state j in one time step will be denoted as
P(S; = j | S¢—1 = i) = p;j. Thus, transitioning from i to j means moving from a state

with S;—1 =1 o’s and (P —4) @’s to a state with Sy = j o’s and (P — j) @’s.



When 0.0 < ¢ < 1.0 all p; ; entries are non-zero and the Markov chain is ergodic. Thus
there is a steady-state distribution describing the probability of being in each state after
a long period of time. By the definition of steady-state distribution, it can not depend on
the initial state of the system, hence the initial population will have no effect on the long-
term behavior of the system. The steady-state distribution reached by this Markov chain
model can be thought of as a sequence of P Bernoulli trials with success probability 1/C.
Thus the steady-state distribution can be described by the binomial distribution, giving the
probability m; of being in state i (i.e., the probability that ¢ a’s appear at a locus after a
long period of time):

- (1))~

Note that the steady-state distribution does not depend on the mutation rate p or the initial
population, although it does depend on the cardinality C. Now Theorem 1 states that the
equilibrium distribution is one in which all possible alleles are equally likely. This can be
proven by showing that the expected number of o’s at any locus of the population (at steady
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The Markov chain model will also yield the transient behavior of the system, if we fully
specify the one-step probability transition values p; ;. First, suppose j > ¢. This means
we are increasing (or not changing) the number of a’s. To accomplish the transition re-
quires that 7 — ¢ more @’s are mutated to a’s than a’s are mutated to @’s. The transition
probabilities are:

min{i,P—j}
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Let x be the number of o’s that are mutated to @’s. Since there are i a’s in the current state,
this means that i — 2 a’s are not mutated to @’s. This occurs with probability (1 —pu)i=2.
Also, since x a’s are mutated to @’s then z + j — ¢ @’s must be mutated to a’s. Since there
are P — i @’s in the current state, this means that P—i—x —j+¢= P —x — j a’s are not
mutated to a’s. This occurs with probability (u/(C — 1))*+7=%(1 — u/(C — 1))P=2=3. The
combinatorials yield the number of ways to choose x a’s out of the i a’s, and the number
of ways to choose z + j — i @’s out of the P — i @’s. Clearly, it isn’t possible to mutate
more than 7 o’s. Thus z < 4. Also, since it isn’t possible to mutate more than P — i @’s,
z+j —i < P —1i, which indicates that £ < P — j. The minimum of ¢ and P — j bounds the
summation correctly.

Similarly, if ¢ > j, we are decreasing (or not changing) the number of a’s. Thus one needs
to mutate ¢ — j more a’s to @’s than @’s to a’s. The transition probabilities are:

min{P—i,j}
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The explanation is almost identical to before. Let = be the number of @’s that are mutated
to a’s. Since there are P — ¢ @’s in the current state, this means that P — i — z @’s are not
mutated to a’s. This occurs with probability (u/(C' —1))%(1 —pu/(C —1))F~i=2. Also, since
x @’'s are mutated to a’s then x + i — j a’s must be mutated to @’s. Since there are i a’s in
the current state, this means that ¢ —z — ¢+ j = 7 — = a’s are not mutated to @’s. This
occurs with probability u®+i=J(1 — u)?~®. The combinatorials yield the number of ways to
choose z @’s out of the P — i @’s, and the number of ways to choose x + i — j a’s out of the
i a’s. Clearly, it isn’t possible to mutate more than P — i @’s. Thus z < P —i. Also, since
it isn’t possible to mutate more than ¢ a’s, x + ¢ — 7 < ¢, which indicates that x < j. The
minimum of P — ¢ and j bounds the summation correctly.

In general, these equations are not symmetric (p;,; # pj,i), since there is a distinct tendency
to move towards states with a 1/C mixture of o’s (the limiting distribution). We will not
make further use of these equations in this paper, but they are included for completeness.

2.2 THE RATE OF APPROACHING THE LIMITING DISTRIBUTION

The previous subsection showed that the mutation rate p and the initial population have no
effect on the limiting distribution that is reached by a population undergoing only mutation.
However, these factors do influence the transient behavior, namely, the rate at which that
limiting distribution is approached. This issue is investigated in this subsection. Rather
than use the Markov chain model, however, an alternative approach will be taken.

In order to model the rate at which the process approaches the limiting distribution, consider
an analogy with radioactive decay. In radioactive decay, nuclei disintegrate and thus change
state. In the world of binary strings (C' = 2) this would be analogous to having a sea of 1’s
mutate to 0’s, or with arbitrary C' this would be analogous to having a sea of a’s mutate
to @’s. In radioactive decay, nuclei can not change state back from @’s to a’s. However, for
mutation, states can continually change from a to @ and vice versa. This can be modeled
as follows. Let p,(t) be the expected proportion of a’s at time ¢. Then the expected time
evolution of the system, which is a classic birth-death process (Feller 1968), can be described
by a differential equation:®

Lol = patt) + () 0-pa®) = () - Cule)

The term p p,(t) represents a loss (death), which occurs if a is mutated. The other term
is a gain (birth), which occurs if an @ is successfully mutated to an «. At steady state the
differential equation must be equal to 0, and this is satisfied by p,(t) = 1/C, as would be
expected.

The general solution to the differential equation was found to be:

1 —Cpt

Pa(t) = % + (a(O) - 5) e

!Since the system is discrete in time, difference equations would seem more appropriate (e.g.,
for C = 2 see Equation (44) of Beyer (1998) with po(t) = Pum and po(t —1) = Pr). However,
in this case differential equations are easier to work with and are adequate approximations to the
behavior explored in this paper.




Theoretical
T

1 . .
0.01 Mutation ——
0.95 ¢ 0.03 Mutation - 1
0.9 L 0.05 Mutation ------ i
A 0.10 Mutation
o 085 H g
— 1|‘
5 0.8 i 4
< i
S 075 i g
g 07 1 R
& oesfll 1
06 1Y ]
055 1 % N 1
0.5 e !
0 50 100 150 200 250 300

Generations

Figure 1: Decay rate for mutation when C' = 2.

where —Cu/(C — 1) plays a role analogous to the decay rate in radioactive decay. This
solution indicates a number of important points. First, as expected, although p does not
change the limiting distribution, it does affect how fast it is approached. Also, the cardinality
C also affects that rate (as well as the limiting distribution itself). Finally, different initial
conditions will also affect the rate at which the limiting distribution is approached, but will
not affect the limiting distribution itself. For example, if p,(0) = 1/C then p,(t) = 1/C for
all ¢, as would be expected.

Assume that binary strings are being used (C' = 2) and o = 1. Also assume the population
is initially seeded only with 1’s. Then the solution to the differential equation is:

e 2t 4 1

pi(t) = — s (1)

which is very similar to the equation derived from physics for radioactive decay.

Figure 1 shows the decay curves derived via Equation 1 for different mutation rates. Al-
though p has no effect on the limiting distribution, increasing p clearly increases the rate at
which that distribution is approached. Although this result is quite intuitively obvious, the
key point is that we can now make quantitative statements as to how the initial conditions
and the mutation rate affect the speed of approaching equilibrium.

3 THE LIMITING DISTRIBUTION FOR RECOMBINATION

Geiringer’s Theorem (Geiringer 1944) describes the equilibrium distribution of an arbitrary
population that is undergoing recombination, but no selection or mutation. To understand
Geiringer’s Theorem, consider a population of ten strings of length four. In the initial
population, five of the strings are “AAAA” while the other five are “BBBB”. If these strings
are recombined repeatedly, eventually 2* strings will become equally likely in the population.
In equilibrium, the probability of a particular string will approach the product of the initial
probabilities of the individual alleles — thus asserting a condition of independence between
alleles. Geiringer’s Theorem can be stated as follows:

Theorem 2 Let S be any string of L alleles: (a1,...,ar). If a population is recombined



repeatedly (without selection or mutation) then:

L

Jlim ps(t) = [ ra.(0)
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where ps(t) is the expected proportion of string S in the population at time t and pq,,(0) is

the proportion of allele a at locus (position) i in the initial population.

Thus, the probability of string S is simply the product of the proportions of the individual
alleles in the initial (¢t = 0) population. The equilibrium distribution illustrated in Theorem 2
is referred to as “Robbins’ equilibrium” (Robbins 1918). Theorem 2 holds for all standard
recombination operators, such as n-point recombination and P, uniform recombination.? It
also holds for arbitrary cardinality alphabets. The key point is that recombination operators
do not change the distribution of alleles at any locus; they merely shuffle those alleles at
each locus.

3.1 OVERVIEW OF MARGINAL RECOMBINATION DISTRIBUTIONS

According to Booker (1992) and Christiansen (1989), the population dynamics of a pop-
ulation undergoing recombination (but no selection or mutation) is governed by marginal
recombination distributions. To briefly summarize, R 4(B) is “the marginal probability of
the recombination event in which one parent transmits the loci B C A and the other parent
transmits the loci in A\B” (Booker 1992). A and B are sets and A\ B represents set differ-
ence. For example, suppose one parent is zyz and the other is XYZ. Since there are three
loci, A = {1,2,3}. Let B ={1,2} and A\B = {3}. This means that the two alleles zy are
transmitted from the first parent, while the third allele Z is transmitted from the second
parent, producing an offspring zyZ. The marginal distribution is defined by the probabil-
ity terms R4(B), B C A. Clearly > gz- 4 Ra(B) = 1 and under Mendelian segregation,
Ra(B) = Ra(A\B). In terms of the more traditional schema analysis, the set A designates
the defining loci of a schema. Thus, the terms R 4(A4) = R4 (D) refer to the survival of the
schema, at the defining loci specified by A.

3.2 THE RATE AT WHICH ROBBINS’ EQUILIBRIUM IS APPROACHED

As stated earlier, Booker (1992) has suggested that the rate at which the population ap-
proaches Robbins’ equilibrium is the significant distinguishing characterization of different
recombination operators. According to Booker, “a useful quantity for studying this property
is the coefficient of linkage disequilibrium, which measures the deviation of current chromo-
some frequencies from their equilibrium levels”. Such an analysis has been performed by
Christiansen (1989), but given its roots in mathematical genetics the analysis is not explic-
itly tied to more conventional analyses in the EA community. The intuitive hypothesis is
that those recombination operators that are more disruptive should drive the population
to equilibrium more quickly (see Miihlenbein (1998) for empirical evidence to support this
hypothesis). Christiansen (1989) provides theoretical support for this hypothesis by stating
that the eigenvalues for convergence are given by the R 4(A) terms in the marginal distri-
butions. The smaller R 4(A) is, the more quickly equilibrium is reached, in the limit. Since

2Py is the probability of swapping alleles. See Stephens et al. (1998) for a recent related proof
of Geiringer’s Theorem, stemming from exact evolution equations.



disruption is the opposite of survival, the direct implication is that equilibrium is reached
more quickly when a recombination operator is more disruptive.

One very important caveat, however, is that this theoretical analysis holds only in the limit
of large time, or when the population is near equilibrium. As GA practitioners we are far
more interested in the short-term transient behavior of the population dynamics. Although
equilibrium behavior can be studied by use of the marginal probabilities R 4(A4), studying
the transient behavior requires all of the marginals R4(B),B C A. The primary goal of
this section is to tie the marginal probabilities to the more traditional schema analyses,
in order to analyze the complete (transient and equilibrium) behavior of a population un-
dergoing recombination. The focus will be on recombination operators that are commonly
used in the GA community: n-point recombination and Py uniform recombination. Several
related questions will be addressed. For example, lowering Py from 0.5 makes Py uniform
recombination less disruptive (R4 (A) increases). How do the remainder of the marginals
change? Can we compare n-point recombination and Py uniform recombination in terms
of the population dynamics? Finally, what can we say about the transient dynamics? Al-
though these questions can often only be answered in restricted situations the picture that
emerges is that traditional schema analyses such as schema disruption and construction
(Spears and De Jong 1998) do in fact yield important information concerning the dynamics
of a population undergoing recombination.

3.3 THE FRAMEWORK

The framework used in this section consists of a set of differential equations that describe
the expected time evolution of the strings in a population of finite size (equivalently this
can be considered to be the evolution of an infinite-size population). The treatment will
hold for hyperplanes (schemata) as well, so the term “hyperplane” and “string” can be used
interchangeably.

Consider having a population of strings. Each generation, pairs of strings (parents) are
repeatedly chosen uniformly randomly for recombination, producing offspring for the next
generation. Let S, S;, and S; be strings of length L (alternatively, they can be considered
to be hyperplanes of order L). Let pg, (t) be the proportion of string S; at time ¢. The time
evolution of S; will again involve terms of loss (death) and gain (birth). A loss will occur
if parent S; is recombined with another parent such that neither offspring is S;. A gain
will occur if two parents that are not S; are recombined to produce S;. Thus the following
differential equation can be written for each string S;:

dﬂ;—"t(t) = —lossg,(t) + gaing,(t)

The losses can occur if S; is recombined with another string S; such that S; and S; differ
by A(S;,S;) = k alleles, where k ranges from two to L. For example the string “AAAA”
can (potentially) be lost if recombined with “AABB” (where k = 2). If S; and S; differ by
one or zero alleles, there will be no change in the proportion of string S;. In general, the
expected loss for string .S; at time ¢ is:

losss,(t) = Y _ps,(t) ps,(Pa(Hy) where 2 < A(S;,S;) =k < L 2)
Sj



The product pg, (t) ps,(t) is the probability that S; will be recombined with S, and Py(H})
is the probability that neither offspring will be S;. Equivalently, Py(Hy) refers to the
probability of disrupting the kth-order hyperplane Hj defined by the k different alleles.
This is identical to the probability of disruption as defined by De Jong and Spears (1992).

Gains can occur if two strings Sj and S; of length L can be recombined to construct S;. It
is assumed that neither S, or S; is the same as S; at all defining positions (because then
there would be no gain) and that either Sj, or S; has the correct allele for S; at every locus.
Suppose that S, and S; differ at A(S,S;) = k alleles. Once again k¥ must range from
two to L. For example, the string “AAAA” can (potentially) be constructed from the two
strings “AABB” and “ABAA” (where k = 3). If S, and S; differ by one or zero alleles,
then either S or S; is equivalent to S; and there is no true construction (or gain).

Of the k differing alleles, m are at string S and n = k —m are at string S;. Thus what is
happening is that two non-overlapping, lower-order building blocks H,, and H, are being
constructed to form Hj, (and thus the string S;). In general, the expected gain for string S;
at time ¢ is:

gaing,(t) = Z ps, (t) ps; (t) Pe(Hy | Hp A Hy,)  where 2 < A(Sp,S;) =k <L (3)
Sh’sj

The product pg,(t) ps;(t) is the probability that S, will be recombined with S;, and
P.(Hy | Hn AHy) is the probability that an offspring will be S;. Equivalently, P, (Hy | Hm A
H,,) is the probability of constructing the kth-order hyperplane Hj, (and hence string S;)
from the two strings Sj and S; that contain the non-overlapping, lower-order building blocks
H,, and H,,. This is identical to the probability of construction as defined by Spears and
De Jong (1998).

If the cardinality of the alphabet is C' then there are C'* different strings. This results in a
system of C simultaneous first-order differential equations. What is important to note is
the explicit connection between Equations 2 — 3 and the more traditional schema theory for
recombination, as exemplified by the probability of disruption Pyq(H}) and the probability
of construction P.(Hy, | Hy A Hy,).

3.4 TRADITIONAL SCHEMA THEORY AND THE MARGINALS

We are now in a position to also explain the link between the traditional schema theory
and the marginal probabilities. Consider the prior example, where the recombination of
the parents zyz and XYZ produced an offspring zyZ. The other offspring produced is XYz.
This occurs if B = {1,2} and A\B = {3} or in the complementary situation where B = {3}
and A\B = {1,2}. Hence, as pointed out earlier, R4(B) = R4(A\B). However, this is
identical to the situation in which the third-order hyperplane H3 = zyZ is constructed from
the first-order hyperplane H; = ##Z and the second-order hyperplane Hy = zy#.3 If we
use | -| to denote the cardinality of a set, we can explicitly tie the probability of construction
with the marginal probabilities:

PC(H|A| | H|B|/\H\A\B|) = RA(B) + RA(A\B) = 2RA(B) (4)

3This assumes that the two lower-order hyperplanes differ at all 3 defining positions. In general,
they must differ at all k. Using the notation in Spears (2000), Peq = 0.



where a hyperplane of order k = |A| is being constructed from lower-order hyperplanes of
order m = |B| and order n = |A\ B|. Interestingly, Equation 4 allows us to correct an error in
Booker (1992), where he computes the marginal distribution for Py uniform recombination.
The marginal distribution should be:

Ra(B) = [PolBl(l—PO)lA\B‘ + P0|A\B|(1_p0)|3\ ]/ 2

Survival is a special form of construction in which one of the lower-order hyperplanes has
zero order. Since disruption is the opposite of survival we can write:

Pd(H|A|) =1 - PC(H|A| |H\(Z)\/\H|A\0|) =1 - 2RA(A)

As mentioned earlier, according to Christiansen (1989), the smaller R4(A) is, the more
quickly equilibrium is reached in the limit. We can now connect this result to the concepts
of disruption and construction in the framework given by Equations 2 — 3. If some hyperplane
is above the equilibrium proportion then the loss terms will be more important, as they drive
the hyperplane down to equilibrium. A decrease in R 4(A) indicates that a recombination
operator is more disruptive. This increases the loss terms and drives the hyperplane down
towards equilibrium more quickly. Likewise, if some hyperplane is below the equilibrium
proportion then the gain terms will be more important, as they drive the hyperplane up
towards equilibrium. Since marginals must sum to one, if R 4(A) decreases some (or all) of
the other marginals will increase to compensate. Thus, on the average a more disruptive
recombination operator will increase the P.(Hy | H, A Hy) terms and hence drive that
hyperplane to equilibrium more quickly.

However, as stated before, the caveat lies in the phrase “in the limit”. Although a reduction
in R4(A) increases the other marginals on the average, there are situations where some
marginals increase while others decrease. This can cause quite interesting transient behavior.
The major contributor to this phenomena appears to be the order of the hyperplane, which
we investigate in the following subsections.

3.5 SECOND-ORDER HYPERPLANES

We first consider the case of second-order hyperplanes, which are easiest to analyze. Consider
the situation where the cardinality of the alphabet C' = 2. In this situation there are four
hyperplanes of interest: (F#0#0%, #0# 14, #1404, #141#).* Then the four differential
equations describing the expected time evolution of these hyperplanes are:

dp(:l—(;(t) = —poo(t) p11(t) Pa(Hs) + poi(t) pro(t) P.(Hs | Hy A Hy)
dptc)llt ) _ —po1(t) p1o(t) Pi(Hs) + poo(t) pri(t) Pe(Hy | Hy A Hy)
dpii(;(t) = —po1(t) pro(t) Pa(Hz) + poo(t) pr1(t) Pe(Ho | Hy A Hy)
dpii—lt(t) = —poo(t) p11(t) Pa(Hz) + poi(t) pro(t) Pe(Hz | Hi A Hy)

4These four hyperplanes have been chosen arbitrarily for illustrative purposes. Also, we assume
a binary-string representation, although that isn’t necessary.
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Figure 2: The rate of approaching Robbins’ equilibrium for Hs = #1414, when L = 30.

Thus for this special case the loss and gain terms are controlled fully by one computation
of disruption and one computation of construction. If two recombination operators have
precisely the same disruption and construction behavior on second-order hyperplanes, the
system of differential equations will be the same, and the time evolution of the system will
be the same. This is true regardless of the initial conditions of the system.

For example, consider one-point recombination and Py uniform recombination. Suppose the
defining length of the second-order hyperplane is Ly. Then, Py(H;) = L1 /L for one-point
recombination, and Pq(Hs) = 2Py(1 — Fy) for uniform recombination. The computations
for P.(H2 | Hi A H1) equal Py(H>) for one-point and uniform recombination. Thus, one-
point recombination should act the same as uniform recombination when the defining length
Ly =2LRy(1 - Ry).

To illustrate this, an experiment was performed in which a population of binary strings
was initialized so that 50% of the strings were all 1’s, while 50% were all 0’s. The strings
were of length L = 30 and were repeatedly recombined, generation by generation, while
the percentage of the second-order hyperplane #1#14# was monitored. When Robbins’
equilibrium is reached the percentage of any of the four hyperplanes should be 25%. The
experiment was run with 0.1 and 0.5 uniform recombination. Under those settings of Py, the
theory indicates that one-point recombination should perform identically when the second-
order hyperplanes have defining length 5.4 and 15, respectively. Since an actual defining
length must be an integer, the hyperplanes of defining length 5 and 15 were monitored.

Figure 2 graphs the results.® As expected, the results show a perfect match when comparing
the evolution of Hs under 0.5 uniform recombination and one-point recombination when
Ly = 15 (the two curves coincide almost exactly on the graph). The agreement is almost
perfect when comparing 0.1 uniform recombination and one-point recombination when L; =
5, and the small amount of error is due to the fact that the defining length had to be
rounded to an integer. As an added comparison, the second-order hyperplanes of defining
length 25 were also monitored. In this situation one-point recombination should drive these

5These results (and all subsequent results) are averaged over 1000 independent runs, with the
same starting conditions. The population size was 50 and selection was uniform. 95% confidence
intervals are also shown.



hyperplanes to equilibrium even faster than 0.5 uniform recombination (because one-point
recombination is more disruptive in this situation). The graph confirms this observation.

It is important to note that the above analysis holds even for arbitrary cardinality alphabets
C, although it was demonstrated for C' = 2. The system of differential equations would have
more equations and terms as C' increases, but the computations would still only involve one
computation of Py(H>) and P.(H» | Hi AHy), and those computations would be precisely the
same. To see this, consider having C' = 3, with an alphabet of {0,1,2}. Then #04#0# can
be disrupted if recombined with #1#1#, #1#24, #2# 14, or #2#24#. The probability
of disruption is the same as it was above. Similarly it can be shown that the probability of
construction is the same as it was above.

3.5.1 The Rate of Decay for Second-Order Hyperplanes

It is interesting to note that, as with mutation, the decay of the curves in Figure 2 appears
to be exponential in nature. This turns out to be true. To prove this, let us reconsider the
differential equation describing the change in the expected proportion of the second-order
hyperplane #1#1# at time t:

dpi1(t)
dt

—poo(t) p11(t) Pa(H2) + poi(t) pio(t) Po(H2 | Hi A Hy)

In this case we know that Pq(H2) = P.(Hz | H1 A Hy), so the equation can be simplified
to:

dpi1(t)
dt

= Py(H>)[ poi(t) pro(t) — poo(t) pr1(t) ] (5)

For the experiment leading to Figure 2 we also know that po1(t) = p1o(t) and poo(t) = p11(¢):

dp;—lt(t) = Pa(H2)[ poi(t) poi(t) — pui(t) pui(t) |

However, since poo(t) + po1 (t) + p1o(t) + p11(t) = 1 it is easy to show that pe1 (t) = 3 —p11(t).
With some simplification this leads to:

dpi1(t)
dt

= Pai) 7 = pu(®)]

Given the initial condition that pi; (0) = % the solution to the differential equation is:

1 + e—Pa(H2)t

p11(t) = poo(t) = 1

Similarly, it is easy to show that the proportions of the #0#1# and #1#0# hyperplanes
grow as follows (given the initial conditions that pg;(0) = p10(0) = 0):
1 _ e_Pd(H2)t

po1(t) = pio(t) = 1



3.5.2 The Rate of Approaching Equilibrium

It is also possible to derive a more general result concerning the rate at which equilibrium
is approached. To see this, consider Equation 5 again:

dp11(t)
dt

= Py(H2)[ poi(t) p1o(t) — poo(t) pr1(t) ]

Let 6(t) = po1(t) p1o(t) — poo(t) p11(t). Then it is very clear that:

dp11(1) dpoo (t) dpoi (t) dp1o(t)
50 = 0 0 - B = snm,

Since §(t) goes to zero as the proportions of all the second-order hyperplanes approach
equilibrium, we can consider d(t) to be a measure of linkage disequilibrium for second-order
hyperplanes. We can now write:

dé(t) dp1o(t) dpo (t) dp11(t) dpoo(t)
3 = pm(t)T + plO(t)T - poo(t)T - pu(t)T
This simplifies to:
d5(t) _ dpn(t) _
at = " OOFalh)
The solution to this is simply:
5(t) = —6(0)e FalH2)t (6)

where §(0) = po1(0) p10(0) — poo(0) p11(0).

3.5.3 Summary of Second-Order Hyperplane Results

These results explicitly link traditional schema theory with the rate at which Robbins’ equi-
librium is approached, for second-order hyperplanes. We have shown that for second-order
hyperplanes, the time evolution of two different recombination operators can be compared
simply by comparing their disruptive and constructive behavior. Two recombination oper-
ators will drive a second-order hyperplane to Robbins’ equilibrium at the same rate if their
disruptive and constructive behavior are the same. It was also shown that §(t), a measure
of linkage disequilibrium for second-order hyperplanes, exponentially decays towards zero
with the probability of disruption Pyq(H2) being the rate of decay.

Unfortunately, similar results are harder to determine for higher-order hyperplanes, al-
though some interesting results can be shown for Py uniform recombination, as shown in
the following subsections.

3.6 UNIFORM RECOMBINATION AND LOW-ORDER HYPERPLANES

For Py uniform recombination the loss and gain terms of Equations 2 — 3 are especially easy
to compute. As stated earlier, losses can occur if an Lth-order hyperplane S; is recombined
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Figure 3: The probability of construction P.(Hy | Hn A Hy) for Py uniform recombination
on second-order (m = 1, n = 1), third-order (m = 1, n = 2), and fourth-order hyperplanes
(m =1, n =3 and m = 2, n = 2). The probability of construction monotonically decreases
as Py is decreased/increased from 0.5.

with an Lth-order hyperplane S; such that S; and S; differ by k alleles, where k ranges
from two to L. But, according to De Jong and Spears (1992) this occurs with probability:

PiHy) =1 - RBF — 1-P)* 2<k<L

It can be shown that this is a unimodal function with a maximum at 0.5. Thus, the key point
is that when the time evolution of the population undergoing recombination is expressed
with C'L differential equations, the effect of increasing or decreasing Py from 0.5 reduces
all of the loss terms in the differential equations, regardless of the order of the hyperplane.
This slows the rate at which the equilibrium is approached.

Gains will occur if two hyperplanes S;, and S; of order L can be recombined to construct
S;. Again, suppose that Sj and S; differ at £ alleles, where k ranges from two to L. Of the
k differing alleles, m are at hyperplane S, and n = k — m are at hyperplane S;. Then the
probability of construction is:

Pc(Hk | Hm/\Hn) = Pom(]. —Po)" + Pon(]. —Po)m 2<k<L,0<m<k

This has zero slope at Py = 0.5. The question now is under what conditions of n and m
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Figure 4: The rate of approaching Robbins’ equilibrium for the fourth-order hyperplanes
Hy = #1#14#1#14# (left) and Hy = #0#1#1#1# (right).

will Py = 0.5 represent a global (and the only) maximum. It is easy to show by counter-
example that Py = 0.5 is not a global maximum for arbitrary m and n (e.g., m = 1 and
n = 4). However, there are various cases where Py = 0.5 is a global maximum - namely
whenm=1landn=1,m=1andn =2, m =1 and n = 3, and when m =2 and n = 2
(and the symmetric cases where m and n are interchanged). See Figure 3 for graphs of the
probability of construction, as Py changes.

Since we are interested in kth-order hyperplanes (where kK = m + n), we have shown that
for low-order hyperplanes (kK < 5), construction is at a maximum when Py = 0.5 and
construction decreases as Py decreases or increases from 0.5.

Thus, consider the time evolution of the hyperplanes in a population that are undergoing
recombination, as modeled with the above differential equations. What we have shown is
that if the hyperplanes have low order (k < 5), the effect of increasing or decreasing Py from
0.5 reduces all of the gain terms in the differential equations. Put in terms of the marginal
probabilities we have shown that, for Py uniform recombination on low-order hyperplanes
(k < 5), increasing R4 (A) (moving Py from 0.5) will decrease all of the other marginals
Ra(B), ® C B C A. Given this, we can expect that reducing or increasing Py from 0.5
should monotonically decrease the rate at which the equilibrium is approached, even during
the transient behavior of the system.

To illustrate this, an experiment was performed in which a population of binary strings was
initialized so that 50% of the strings were all 1’s, while 50% were all 0’s. The strings were
of length L = 30 and were repeatedly recombined, generation by generation, while the per-
centages of the fourth-order hyperplanes #1#1#1#1# and #0#1# 1414 were monitored.
When Robbins’ equilibrium is reached the percentage of any of the fourth-order hyperplanes
should be 6.25%. The experiment was run with uniform recombination, with Py ranging
from 0.1 to 0.5 (higher values were ignored due to symmetry).

Figure 4 graphs the results. One can see that as F, increases to 0.5, the rate at which
Robbins’ equilibrium is approached also increases, as expected. This holds even throughout
the transient dynamics of the system.
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Figure 5: The probability of construction P.(Hy | Hn A Hy) for Py uniform recombination,
on eighth-order hyperplanes. The probability of construction does not always monotonically
decrease as Py is decreased/increased from 0.5.

3.7 UNIFORM RECOMBINATION AND HIGH-ORDER HYPERPLANES

It is natural to wonder how this extends to higher-order hyperplanes. Unfortunately, as
pointed out above, there will be situations (of m and n) where Py = 0.5 does not represent
a global maximum for construction. However, it is easy to prove that when m = n once
again construction decreases as Py decreases or increases from 0.5. It appears as if this also
holds for those situations where m and n are roughly equal (i.e., both are roughly k/2),
but eventually fails when m and n are sufficiently different (either m or n is close to 1).
Figure 5 illustrates this for eighth-order hyperplanes. Although construction is maximized
at Py = 0.5 when m = 4 and n = 4, this certainly isn’t true when m =1 and n = 7. In fact,
in that case construction is maximized when Fy is roughly 0.13.

Put in terms of the marginal probabilities we have shown that, for Py uniform recombination
on higher-order hyperplanes (k > 4), increasing R 4(A) (moving Py from 0.5) will decrease
some (but not all) of the other marginals R4(B), ) C B C A. Given this, we can expect
that reducing or increasing Py from 0.5 should not necessarily monotonically decrease the
rate at which the equilibrium is approached, during the transient behavior of the system.

To illustrate this, an experiment was performed in which a population of binary strings
was initialized so that 50% of the strings were all 1’s, while 50% were all 0’s. The
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Figure 6: The rate of approaching Robbins’ equilibrium for the eighth-order hyperplanes
Hg = #1#1#1#1#1#1#141# (left) and Hg = #0#1#1#1# 14141414 (right).

strings were of length L = 30 and were repeatedly recombined, generation by genera-
tion, while the percentages of the eighth-order hyperplanes #1#1#1#1#1#14#14#14# and
FHOH#LH#1H#1#14#1#1#1# were monitored. When Robbins’ equilibrium is reached the per-
centage of any of the eighth-order hyperplanes should be approximately 0.39%. The exper-
iment was run with uniform recombination, with Py ranging from 0.1 to 0.5 (higher values
were ignored due to symmetry).

Figure 6 graphs the results, which are quite striking. Although the proportion of the hyper-
plane #1#1#1#1#1#1#14#1# decays smoothly towards its equilibrium proportion, this
is certainly not true for the hyperplane #0#1#1#1#1#1#1#14. Although Py = 0.5 uni-
form recombination does provide the fastest convergence in the limit of large time, as would
be expected, it is also clear that Py = 0.1 provides much larger changes in the proportions
during the early transient behavior. In fact, for all values of Py the change in the proportion
of this hyperplane is so large that it temporarily overshoots the equilibrium proportion!

In summary, for higher-order hyperplanes, one can see that as Py increases to 0.5, the rate
at which Robbins’ equilibrium is approached also increases, in the limit. However, this
does not necessarily hold throughout the transient dynamics of the system. In fact, we
have shown an example in which a less disruptive recombination operator provides more
substantive changes in the early transient behavior.

4 THE LIMITING DISTRIBUTION FOR MUTATION AND
RECOMBINATION

The previous sections have considered mutation and recombination in isolation. A popula-
tion undergoing recombination approaches Robbins’ equilibrium, while a population under-
going mutation approaches a uniform equilibrium. What happens when both mutation and
recombination act on a population? The answer is very simple. In general, Robbins’ equi-
librium is not the same as the uniform equilibrium; hence the population can not approach
both distributions in the long term. In fact, in the long term, the uniform equilibrium
prevails and we can state a similar theorem for mutation and recombination.



Initial Population

No Mutation

High Mutation Rate

Robbins’ Equilibrium

Low Mutation Rate

Uniform Equilibrium

Figure 7: Pictorial representation of the action of mutation and recombination on the initial
population

Theorem 3 Let S be any string of L alleles: (a1, ...,ar). If a population is mutated and
recombined repeatedly (without selection) then:

L
) 1
fmrs®) = 115
=

where ps(t) is the expected proportion of string S in the population at time t and C is the
cardinality of the alphabet.

This is intuitively obvious. Recombination can not change the distribution of alleles at any
locus — it merely shuffles alleles. Mutation, however, actually changes that distribution.
Thus, the picture that arises is that a population that undergoes recombination and mu-
tation attempts to approach a Robbins’ equilibrium that is itself approaching the uniform
equilibrium. Put another way, Robbins’ equilibrium depends on the distribution of alleles in
the initial population. This distribution is continually changed by mutation, until the uni-
form equilibrium distribution is reached. In that particular situation Robbins’ equilibrium
is the same as the uniform equilibrium distribution. Thus the effect of mutation is to move
Robbins’ equilibrium to the uniform equilibrium distribution. The speed of that movement
will depend on the mutation rate p (the greater that y is the faster the movement). This is
displayed pictorially in Figure 7.

5 SUMMARY

This paper investigated the limiting distributions of recombination and mutation, focusing
not only on the dynamics near equilibrium, but also on the transient dynamics before
equilibrium is reached. A population undergoing mutation approaches a uniform equilibrium
in which every string is equally likely. The mutation rate  and the initial population have no



effect on that limiting distribution, but they do affect the transient behavior. The transient
behavior was examined via a differential equation model of this process (which is analogous
to radioactive decay in physics). This allowed us to make quantitative statements as to how
the initial population, the cardinality C' of the alphabet, and the mutation rate u affect the
speed at which the equilibrium is approached.

We then investigated recombination. A population undergoing only recombination will
approach Robbins’ equilibrium. Geiringer’s Theorem indicates that this equilibrium distri-
bution depends only on the distribution of alleles in the initial population. The form of
recombination and the cardinality are irrelevant. The paper then attempted to characterize
the transient behavior of the system, by developing a differential equation model of the
population. Using this, it is possible to show that the probability of disruption (Py) and the
probability of construction (P.) of schemata are crucial to the time evolution of the system.
These probabilities can be obtained from traditional schema analyses. We also provide the
connection between the traditional schema analyses and an alternative framework based on
marginal recombination distributions R 4(B) (Booker 1992). Survival (the opposite of dis-
ruption) is given by R 4(A) while construction is given by the remaining marginals R 4(B),
0 c BCA.

The analysis supports the theoretical result by Christiansen (1989) that, in the limit, more
disruptive recombination operators (higher values of Py or lower values of R 4(A)) drive the
population to equilibrium more quickly. However, we also show that the transient behavior
can be subtle and can not be captured this simply. Instead the transient behavior depends
on the whole probability distribution R4(B), B C A (and hence on the values of F).

The major contributor to interesting transient behavior appears to be the order of the hyper-
plane. We first examined second-order hyperplanes. By comparing one-point recombination
and Py uniform recombination directly on second-order hyperplanes, we were able to derive
a relationship showing when one-point recombination and uniform recombination both drive
hyperplanes towards equilibrium at the same speed. We were also able to show that the
linkage disequilibrium for second-order hyperplanes exponentially decays towards zero, with
the probability of disruption Py being the rate of decay. In these situations a more dis-
ruptive recombination operator drives hyperplanes towards equilibrium more quickly, even
during the transient dynamics.

We then examined Py uniform recombination on hyperplanes of order k£ > 2. When k£ < 5 it
is possible to show that when recombination becomes less disruptive (Ra(A) increases), all
of the remaining marginals R4(B) (§ C B C A) decrease. Due to this, once again a more
disruptive recombination operator drives hyperplanes towards equilibrium more quickly,
even during the transient dynamics. However, when k > 4 the situation becomes much
more interesting. In these situations some remaining marginals will decrease while others
increase. This leads to behavior in which less disruptive recombination operators can in
fact provide larger changes in hyperplane proportions, during the transient phase. These
results are important because, due to the action of selection on a real GA population, the
transient behavior of a population undergoing recombination is all that really matters.

Finally, we investigated the joint behavior of a population undergoing both mutation and
recombination. We showed that, in a sense, the behavior of mutation takes priority, in that
mutation actually moves Robbins’ equilibrium until it is the same as the uniform equilibrium
(i.e., all strings being equally likely).
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