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Abstract
In this paper we present some theoretical results on two forms of multi-point
crossover: n-point crossover and uniform crossover. This analysis extends
the work from De Jong’s thesis, which dealt with disruption of n-point
crossover on 2nd order hyperplanes. We present various extensions to this
theory, including 1) an analysis of the disruption of n-point crossover on kth
order hyperplanes; 2) the computation of tighter bounds on the disruption
caused by n-point crossover, by handling cases where parents share critical
allele values; and 3) an analysis of the disruption caused by uniform
crossover on kth order hyperplanes. The implications of these results on
implementation issues and performance are discussed, and several directions
for further research are suggested.
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1 Introduction

One of the unique aspects of the work involving genetic algorithms (GAs) is the
important role that recombination plays in the design and implementation of robust
adaptive systems. In most GAs, individuals are represented by fixed-length strings and
recombination is implemented by means of a crossover operator which operates on pairs
of individuals (parents) to produce new strings (offspring) by exchanging segments from
the parents’ strings. Traditionally, the number of crossover points (which determines
how many segments are exchanged) has been fixed at a very low constant value of 1 or
2. Support for this decision came from early work of both a theoretical and empirical



nature [Holland75, DeJong75].

However, there continue to be indications of an empirical nature that there are situations
in which having a higher number of crossover points is beneficial [Syswerda89,
Eschelman89]. Perhaps the most surprising result (from a traditional perspective) is the
effectiveness on some problems of uniform crossover, an operator which produces on the
average (L / 2) crossings on strings of length L [Syswerda89].

The motivation for this paper is to extend the theoretical analysis of the crossover
operator to include the multi-point variations and provide a better understanding of when
and how to exploit their power. Specifically, this paper will focus on two forms of
multi-point crossover: n-point crossover and uniform crossover.

2 Traditional Analysis

Holland provided the initial formal analysis of the behavior of GAs by characterizing
how they biased the makeup of new offspring in response to feedback on the fitness of
previously generated individuals. By focusing on hyperplane subspaces of L-
dimensional spaces (i.e., subspaces characterized by hyperplanes of the form "---a----b--
-c--"), Holland showed that the expected number of samples (individuals) allocated to a
particular kth order hyperplane Hk at time t  + 1 is given by:

m (Hk ,t +1) ≥ m (Hk ,t) * 
f
_

f (Hk)______ * (1 − Pmk  − PcPd(Hk) )

In this expression, f (Hk) is the average fitness of the current samples allocated to Hk, f
_

is
the average fitness of the current population, Pm is the probability of using the mutation
operator, Pc is the probability of using the crossover operator, and Pd(Hk) is the
probability that the crossover operator will be "disruptive" in the sense that the children
produced will not be members of the same subspace as their parents.

The usual interpretation of this result is that subspaces with higher than average payoffs
will be allocated exponentially more trials over time, while those subspaces with below
average payoffs will be allocated exponentially fewer trials. This assumes that there are
enough samples to provide reliable estimates of hyperplane fitness, and that the effects of
crossover and mutation are not too disruptive. Since mutation is typically run at a very
low rate (e.g., Pm = 0.001), it is generally ignored as a significant source of disruption.
However, crossover is usually applied at a very high rate (e.g., Pc ≥ 0.6). So,
considerable attention has been given to estimating Pd, the probability that a particular
application of crossover will be disruptive.

To simplify and clarify the analysis, it is generally assumed that individuals are
represented by fixed-length binary strings of length L, and that crossover points can
occur with equal probability between any two adjacent bits. For ease of presentation
these same assumptions will be made for the remainder of this paper. Generalizing the
results to non-binary fixed-length strings is quite straightforward. Relaxing the other
assumptions is more difficult.

Under these assumptions, Holland provided a simple and intuitive analysis of the
disruption of 1-point crossover: as long as the crossover point does not occur within the
defining boundaries of Hk (i.e., in between any of the k fixed defining positions), the
children produced from parents in Hk will also reside in Hk [Holland75]. Figure 1
represents this graphically for a 3rd order hyperplane. Note that d1 , d2 , and d3 represent
the 3 defining positions of the 3rd order hyperplane, while P1 and P2 indicate the two
parents.
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Figure 1: A 3rd Order Hyperplane

If crossover does occur inside the defining boundaries, disruption may or may not result.
Disruption will depend on where the crossover point occurs inside the defining
boundaries and on the alleles that the parents have in common on the k defining
positions. Hence, Pd can be bounded by the probability that the crossover point will fall
within the defining boundaries of Hk. Under the assumption of uniformly distributed
crossover points, this yields:

Pd(Hk) ≤ 
L −1

dl (Hk)_______

where dl (Hk) is the "defining length" of Hk, namely the distance between the first and
last of the k fixed defining positions of hyperplane Hk.

This analysis has lead to considerable discussion of the "representational bias" built into
1-point crossover, namely that crossover is much more disruptive to hyperplanes whose
defining positions happen to be far apart. It also suggests a plausible role for inversion
operators capable of effecting a change of representation in which the defining lengths of
key hyperplanes are shortened.

De Jong [DeJong75] extended this analysis to n-point crossover by noting that no
disruption can occur if there are an even number of crossover points (including 0)
between each of the defining positions of a hyperplane. Hence, we have a bound for the
disruption of n-point crossover:

Pd( n,  Hk ) ≤ 1 − Pk,even( n,  Hk )

where Pk,even( n,  Hk ) is defined to be the probability that an even number of the n
crossover points will fall between each of the k defining positions of hyperplane Hk . De
Jong [DeJong75] provided an exact expression for Pk,even for the special case of 2nd
order hyperplanes (i.e., k  = 2):

P2,even( n,  L,  L1  ) = 
i = 0 
Σ
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P2,even( n,  L,  L1  ) is the probability that an even number of crossover points will fall
within the 2nd order hyperplane defined by L and L1 . Recall that L is the length of the
string, while L1 is the defining length of the hyperplane. The second term of the
summation is the probability of placing an even number of crossover points within the 2
defining points. The third term is the probability of placing the remaining crossover
points outside the 2 defining points. Finally, the combinatorial term �� 2i

n �� represents the

number of ways an even number of points can be drawn from the n crossover points.

The family of curves generated by P2,even provide considerable insight into the change in
disruptive effects on second order hyperplanes as the number of crossover points is
increased. Figure 2 plots the curves for binary strings of length L. Notice how the
curves fall into two distinct families depending on whether the number of crossover
points is even or odd. Since P2,even guarantees no disruption, we’re interested in
increasing P2,even whenever possible. By going to an even number of crossover points,
we can reduce the representational bias of crossover, but only at the expense of
increasing the disruption of the shorter definition length hyperplanes.
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Figure 2. n-point Crossover Disruption on 2nd Order Hyperplanes

If we interpret the area above a particular curve as measure of the cumulative disruption
potential of its associated crossover operator, then these curves suggest that 2-point
crossover is the best as far as minimizing disruption. These results together with early
empirical studies were the basis for using 2-point crossover in many of the implemented
systems. Since then, there have been several additional studies focusing on crossover.

Bridges and Goldberg [Bridges85] have extended Holland’s analysis of 1-point
crossover, deriving tighter bounds on the disruption by taking into account the properties
of the second parent and gains in samples in Hk due to disruption elsewhere.

Syswerda [Syswerda89] introduced a "uniform" crossover operator in which P0 specified
the probability that the allele of any position in an offspring was determined by using the



allele of the first parent, and 1 − P0 the probability of using the allele of the second
parent. He provided an initial analysis of the disruptive effects of uniform crossover for
the case of P0  = 0.5, and compared it with 1 and 2 point crossover. He presented some
provocative results suggesting that, in spite of higher disruption properties, uniform
crossover can exhibit better recombination behavior, which can improve empirical
performance.

Eschelman, Caruana, and Schaffer [Eschelman89] analyze crossover operators in terms
of "positional" and "distributional" biases, and present a set of empirical studies
suggesting that no n-point, shuffle, or uniform crossover operator is universally better
than the others.

These results and other empirical studies motivated us to attempt to clarify the effects of
multi-point crossover by extending the current analysis. In this paper we will present the
following extensions:

1) An analysis of the disruption of n-point crossover on kth order hyperplanes.

2) The computation of tighter bounds on the disruption caused by n-point crossover,
by examining the cases in which parents share common alleles on the hyperplane
defining positions.

3) An analysis of the disruption caused by uniform crossover on kth order
hyperplanes.

3 Crossover Disruption for Higher Order Hyperplanes

One possible explanation for the conflicting results on the merits of having more
crossover points is that De Jong’s analysis for the special case of 2nd order hyperplanes
simply does not extend to higher order hyperplanes. In this section we attempt to resolve
this issue by generalizing De Jong’s results to hyperplanes of arbitrary order.

As noted earlier, the disruption probability Pd( n,  Hk ) of n-point crossover on a kth
order hyperplane Hk can be conservatively bounded by 1 − Pk,even( n,  Hk ) where
Pk,even( n,  Hk ) is the probability that n-point crossover produces only an even number of
crossover points between each of the defining positions of Hk.

De Jong’s formula for calculating P2,even can be generalized by noting that Pk,even can be
defined recursively in terms of Pk −1,even . To see this, consider how P3,even can be
calculated in terms of P2,even . Figure 3 illustrates the approach graphically.

The probability of n-point crossover generating only an even number of crossover points
between both d1−−d2 and d2−−d3 can be calculated by counting the number of ways an
even number of crossover points can fall in between d1−−d3 , and for each of these
possibilities requiring an even number to fall in d1−−d2 (a second order calculation
involving L1 and L2). More formally, we have:

P3,even( n,  L,  L1 , L2  ) =                                                                           
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Figure 3. Non-disruptive n-point Crossover

In general, we have:

Pk,even( n, L, L1 , . . . , Lk −1 ) =

i = 0
Σ

--.
2
n___ //0213

2i
n 45 678 L

L1___
9 :
; 2i <=> L

L − L1_______
? @
A n − 2i

Pk −1,even( 2i, L1 , . . . , Lk −1 )

Figures 4 and 5 illustrate Pk,even for hyperplanes of order 3 and 5. Each point on the
graph represents an average over all hyperplanes of a particular defining length. Note
that, apart from a skewing effect, the curves yield the same interpretation as De Jong’s
earlier curves for 2nd order hyperplanes: 2 point crossover minimizes disruption. So,
extending the analysis thus far does not help in understanding the potential benefits of
higher numbers of crossover points (seen in some empirical results).

4 Tighter Estimates on Disruption Probabilities

A second explanation for the conflicting results on the merits of a higher number of
crossover points is that the Pk,even curves are very weak bounds on Pd. It is possible that
Pd itself, if analyzable, would yield different results. In this section we attempt to
resolve this issue by providing tighter estimates on Pd.

The primary reason for the weakness of the Pk,even bound is that it ignores the fact that
many of the cases in which an odd number of crossover points fall between hyperplane
defining positions are not disruptive to the sampling process. This occurs whenever the
second parent happens to have identical alleles on the hyperplane defining positions
which are exchanged by "odd" crossovers. (Note that an "odd" crossover occurs when an
odd number of crossover points falls within 2 adjacent defining positions of the
hyperplane.) Figure 6 illustrates this in the simple case of 2nd order hyperplanes. Note
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Figure 4. Pk,even on 3rd Order Hyperplanes
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Figure 5. Pk,even on 5th Order Hyperplanes

that, in this figure, v 1 and v 2 represent the alleles (i.e., binary values) at those defining
positions. Of the 4 possible combinations of matches on the defining positions of H2 ,
only the first ( −v 1−−v 2−, −v

_
1−−v

_
2− ) actually results in a disruption.

Deriving an expression for the probability that both parents will share common alleles on
the defining positions of a particular hyperplane is difficult in general because of the
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Figure 6. Disruption in "Odd" Crossovers

complexity of the population dynamics. We can, however, get a feeling for the effects of
shared alleles on disruption by making the following simplifying assumption: the
probability Peq of two parents sharing an allele is constant across all loci.

With this assumption we can generalize Pk,even to Pk,s ( i.e., the probability of survival )
by including "odd" crossovers which are not disruptive. The generalization is still
recursive in form:

P2,s( n,  L,  L1  ) = 
i= 0 
Σ
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Notice that we are now summing over all crossover distributions (both even and odd),
but have added a "correction" factor C at the "bottom" of the recursion to sort out the
desired cases. C must be defined, then, for each path through the recursion. If each n is
even at every level in that path, then there are an even number of crossover points
between each of the defining positions. In this case, we define C to be 1, ensuring that all
the even cases are counted as before. Suppose, however, that n is odd at some level in a
path. Then there must be two adjacent defining positions that contain an odd number of
crossover points. If C were defined to be 0 when this situation occurred, we would have
exactly the same formulation as P2,even and Pk,even . However, we want to include those
cases where the alleles of the parents on the hyperplane defining positions match in such
a way that an "odd" crossover will not be disruptive. At the point where the recursion
"bottoms out", a particular distribution of crossover points is completely specified. This,
in turn enables one to identify how many of the given hyperplane’s defining positions are
being exchanged by this particular "odd" crossover. If both parents match on these
positions, no disruption occurs.



As we saw in Figure 6, this will be the case for 2nd order hyperplanes if the parents
match on either the first or the second or both defining positions. Hence, setting
C = Peq + Peq − (Peq)2 specifies the proportion of non-disruptive "odd" crossovers. If we
assume that Peq  = 0.5 for example, then C  = 0.75. This indicates that 75% of the "odd"
crossovers are non-disruptive, which agrees with the prior discussion for Figure 6.

This same observation is true for kth order hyperplanes. If an "odd" crossover results in
m of the k defining positions being exchanged, no disruption will occur if: 1) the parents
match on all m positions being exchanged, or 2) if they match on all k  − m positions not
being exchanged, or 3) they match on all k defining positions. Hence, the general form
of the correction is:

C   =   Peq
m + Peq

k −m − Peq
k

Figure 7 illustrates this for one particular "odd" crossover on 4th order hyperplanes.

P1:

P2:

Figure 7. Non-disruptive "Odd" Crossover on 4th Order Hyperplanes

In this case,

C   =   Peq
2  + Peq

2  − Peq
4

If Peq = 0.5, then C = (7 / 16) reflects the proportion of cases in which this particular
crossover will not be disruptive.

Figures 8 and 9 show the effects of counting the non-disruptive "odd" crossovers. Figure
8 assumes a value of Peq  = 0.5, which is likely to hold in the early generations when
matches are least likely. Figure 9 assumes a value of Peq  = 0.75 to get a feeling of the
effect as the population becomes more homogeneous. Note that in both cases, the
amount of expected disruption has been significantly reduced and the relative difference
in disruption among different numbers of crossover points is reduced as well. At the
same time, note that the curves for the various number of crossover points have held
their relative position with respect to one another.

These results help explain the fact that in some empirical studies little or no difference in
effect is seen by varying the number of crossover points between, say, 1 and 16. It does
not appear to explain why in some situations more crossover points and, in particular,
uniform crossover seems to perform significantly better.
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Figure 9. Pk,s on 3rd Order Hyperplanes with Peq = 0.75

5 Analyzing Uniform Crossover

Syswerda [Syswerda89] defined a family of "uniform" crossover operators which is a
variant of a notion that has been informally experimented with in the past: to produce
offspring by randomly selecting at each loci the allele of one of the parents. By defining
P0 to be the probability of using the first parent’s allele, offspring can be produced by



flipping a P0 biased coin at each position. (Other informal studies viewed the process as
a random walk and defined P0 as the probability of switching over to the other parent.
The two views are equivalent if and only if P0  = 0.5.)

A good way of relating uniform crossover to the more traditional n-point crossover is to
think of uniform crossover as generating a mask of 0s and 1s, indicating which parent’s
allele is to be used at each position. As we scan the mask from left to right, a switch
from 0 to 1 or from 1 to 0 represents a crossover point. For example, the mask 0011100
defines a 2-point crossover operation. If P0  = 0.5, all masks are equally likely. If we
examine the n-point crossover operations defined by this set of masks, we see
immediately that they are binomially distributed around ((L −1) / 2). For example, the
set of all 4-bit masks defines:

2 0-point crosses
6 1-point crosses
6 2-point crosses
2 3-point crosses

If P0  ≠ 0.5, the masks are no longer uniformly distributed, but contain on the average
longer runs of 0s or 1s. From the point of view of n-point crossover, the effect is to skew
the binomial distribution toward 0.

We are now in a position to analyze the disruption properties of uniform crossover in the
same manner as the analysis of n-point crossover in the preceding sections. We note that
the notion of an even number of crossover points between the defining positions of
hyperplane Hk corresponds to masks which have either all 0s or all 1s on the defining
positions of Hk. Hence, the corresponding conservative bound on the disruption of
uniform crossover is given by:

Pd(Hk) ≤ 1 − Pk,even(Hk)

where

Pk,even(Hk) = (P0)k  + (1−P0)k

If P0  = 0.5 for example, then

Pk,even(Hk) = (
2
1__)k −1

for all hyperplanes of order k. Notice that, unlike the traditional n-point crossover, there
is no representational bias with uniform crossover in the sense that all hyperplanes of
order k are equally disrupted regardless of how long or short their defining lengths are.

As before, we can get a tighter estimate of Pd if we include non-disruptive "odd"
crossovers. For uniform crossover this corresponds to those masks which are not either
all 0s or all 1s on the hyperplane defining positions, but are non-disruptive because the
parents share common alleles on those particular positions. More formally, we have

Pk,s(Hk) = Pk,even(Hk)+
i = 1 
Σ

 k −1 bc
i
k de   (P0)i   (1 − P0)k −i  (Peq

i + Peq
k −i  − Peq

k)

where Peq is the probability of matching alleles, as before. Note that the last term in the
expression is identical to the correction C defined earlier for the n-point crossover
analysis. If the above is rewritten more concisely, Pk,s can be expressed in a form similar
to that derived for the n-point analysis:



Pk,s(Hk) = 
i= 0 
Σ
 k fg

i
k hi   (P0)i   (1 − P0)k −i  (Peq

i  + Peq
k −i − Peq

k)

Figure 10 illustrates the relationship between uniform crossover and n-point crossover
for 3rd order hyperplanes. Note that, as expected, uniform crossover does not minimize
disruption but, at the cost of higher disruption, removes any representational bias. This
helps to explain why uniform crossover can yield performance improvements in some
cases. Consider situations in which the critical low order hyperplanes happen to be
widely separated in a particular representation. Uniform crossover significantly reduces
the disruption pressure on these critical hyperplanes at the expense of more disruption on
the adjacent (but non-critical) low order hyperplanes. However, in the reverse situations
in which the representation happens to place critical positions close together, 1 and 2
point crossover is more effective.
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Figure 10. Disruption of Uniform Crossover

6 Is Disruption Always Bad?

So far, the analysis of crossover has focused on its potential for sampling disruption with
the implication that disruption is bad. Sampling disruption is important for
understanding the effects of crossover when populations are diverse (typically early in
the evolutionary process). However, when a population becomes quite homogeneous,
another factor becomes important: whether the offspring produced by crossover will be
different than their parents in some way (thus generating a new sample) or just clones.
This property of crossover has been dubbed "crossover productivity" and is easy to
measure. Figure 11 illustrates how significantly the "productivity" of 2-point crossover
can drop off as evolution proceeds. The horizontal axis indicates the number of
generations the GA has run (i.e., we use a generational GA). The vertical axis indicates
the number of crossovers, at each generation, that produced offspring different from their
parents. Since Pc = .6, and the population size is 100, the maximum productivity is 60.
The problem examined, HC11, is a boolean satisfiability problem explained in



[Spears90]. The problem has 55 binary variables, and has one unique solution with a
fitness of 1.0.†
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Figure 11. Productivity of 2-point & Uniform Crossover

If we try to formally compute the probability that the offspring will be different than their
parents, the computation is precisely the same as the previous disruption computations.
To see this, consider two parents whose alleles differ on only 4 loci. In order for
crossover to produce new offspring, some but not all of those alleles must be exchanged.
The probability of this occurring is just Pd(H4). In other words, those operators that are
more disruptive are also more likely to create new individuals from parents with nearly
identical genetic material.

This observation helps explain some of the other experimental results in which higher
crossover rates performed better. Figure 12 is an example of one such result. Again, the
horizontal axis represents generations. The vertical axis represents the best individual
seen. Notice that 2-point crossover converges more quickly, but to a lower plateau than
uniform crossover which converges more slowly to a better solution.

This suggests two additional directions for research. First, note that it may be possible to
have the best of both worlds by modifying 2-point crossover to be less likely to produce
clones. This can be achieved in a brute force way by repeated calls to crossover until
non-clones are produced, or in more sophisticated ways such as Booker’s reduced
surrogate approach [Booker85]. Figure 13 illustrates the effect of the brute force
technique on one particular example. Notice that this change has little effect during the
early generations when children are most likely to be different anyway. However, the
increased "productivity" in the later stages slows the early convergence seen before.

__________________

† All experimental results are averaged over at least 10 independent runs.
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Figure 12. Productivity-related Performance of 2-point & Uniform Crossover
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Figure 13. 2-point Crossover Augmented to Increase Productivity

The second direction for future research is the obvious interaction of multi-point
crossover and population size. Smaller population sizes tend to converge faster to levels
of homogeneity which reduce crossover productivity. With larger population sizes the
effects appear to be much less dramatic. This suggests a way to understand the role of
multi-point crossover. With small populations, more disruptive crossover operators such



as uniform or n-point (n >> 2) may yield better results because they help overcome the
limited information capacity of smaller populations and the tendency for more
homogeneity. However, with larger populations, less disruptive crossover operators (2-
point) are more likely to work better, as suggested by Holland’s original analysis.

7 Conclusions and Further Work

The extensions to the analysis of n-point and uniform crossover presented in this paper
provide additional insight into the role and effective use of these operators. At the same
time, this analysis has suggested some directions for further research. The authors are
currently involved in extending the results presented here to include the interacting
effects of population size and crossover productivity. The view we are taking is that
there is very little likelihood of finding globally correct answers to questions such as the
choice of population size and crossover operators. Our goal is to understand these
interactions well enough so that GAs can be designed to be self-selecting with respect to
such decisions.
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