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Abstract
Genetic algorithms rely on two genetic operators - crossover and
mutation. Although there exists a large body of conventional wisdom
concerning the roles of crossover and mutation, these roles have not
been captured in a theoretical fashion. For example, it has never been
theoretically shown that mutation is in some sense "less powerful" than
crossover or vice versa. This paper provides some answers to these
questions by theoretically demonstrating that there are some important
characteristics of each operator that are not captured by the other.

1 INTRODUCTION

One of the major issues in genetic algorithms (GAs) is the relative importance of two
genetic operators: mutation and crossover. In the 1960’s, L. Fogel et al. (1966)
illustrated how mutation and selection can be used to evolve finite state automatons for a
variety of tasks. Simultaneously, in Europe, Rechenberg (1973) investigated "evolution
strategies" that again concentrate on mutation as the key genetic operator. Sophisticated
versions of evolution strategies, with adaptive mutation rates, proved quite useful for
function optimization tasks (Baeck et al., 1991; Schwefel, 1977). Recent studies confirm
this view, illustrating the power of mutation (Schaffer et al., 1989). D. Fogel has
continued the earlier work of L. Fogel and makes an even stronger claim - that crossover
has no general advantage over mutation (Fogel & Atmar, 1990).



On the other hand, proponents of the Holland (1975) style of genetic algorithm believe
that crossover is the more powerful of the two operators. Considerable effort has been
spent in analyzing crossover and its effects on performance (e.g., De Jong, 1975; Spears
& De Jong, 1991; Vose & Liepins, 1991). In most of these analyses mutation is
considered to be a background operator and of secondary importance. To support these
views, experimental results have been presented, illustrating the power of crossover
(e.g., De Jong, 1975). Most recently, Schaffer & Eshelman (1991) empirically compare
mutation and crossover, and conclude that mutation alone is not always sufficient.

Unfortunately, empirical comparisons can often be disputed or may be misleading. For
example, Schaffer & Eshelman speculate that implementation and representation may
explain Fogel’s results. Similarly, it can be speculated that Schaffer & Eshelman did not
implement mutation reasonably (e.g., with an adaptive rate). To date, there has been no
theoretical justification to support either camp’s beliefs. It has never been theoretically
shown that crossover is in any sense more powerful than mutation, or that mutation is
more powerful than crossover. Similarly, no theoretical basis exists for supposing that
both operators are necessary and perform different roles within the GA.

In this paper we show that, in a general sense, both camps are correct, although we
dispute the stronger claim of Fogel and Atmar. We define two potential roles of any
genetic operator, disruption and construction, and consider how well mutation and
crossover perform these roles. Our results show that in terms of disruption, mutation is
more powerful than crossover, although it lacks crossover’s ability to preserve alleles
common to individuals. However, in terms of construction, crossover is more powerful
than mutation.

2 DISRUPTION THEORY

Holland provided the initial formal analysis of the behavior of GAs by showing how
they allocate trials in a near optimal way to competing low order hyperplanes if the
disruptive effects of the genetic operators is not too severe (Holland, 1975).
Considerable attention has been given to estimating the disruption rate of crossover, i.e.,
the probability that a particular application of crossover will be disruptive. As has been
pointed out, however, another important consideration is not just how often a sample will
be disrupted, but how it will be disrupted (Eshelman et al., 1989). In this section we will
first consider a theory of disruption rates for crossover, and show how we can compare
this with a disruption rate theory for mutation. We then briefly review both mutation and
crossover with respect to how they disrupt hyperplane samples.

2.1 DISRUPTION RATES

Holland’s initial analysis of the sampling disruption of 1-point crossover (Holland, 1975)
has been extended to n-point crossover and a parameterized (P0) uniform crossover (De
Jong, 1975; Syswerda, 1989; Spears & De Jong, 1991), where n is the number of
crossover points and P0 represents the probability of swapping alleles between two
parents. These results estimate the likelihood that the sampling of a kth-order
hyperplane (Hk) will be disrupted by a particular form of crossover.

For example, given a 3rd-order hyperplane (H3), one can compute the probability that an
application of n-point or uniform crossover will disrupt the sampling of that hyperplane.



It turns out to be easier mathematically to estimate the complement of disruption, the
likelihood that a hyperplane sample will survive crossover, which we denote as Ps. We
can also refer to the survival and disruption of individuals within a hyperplane Hk. If an
individual survives with respect to Hk, it remains within Hk. If an individual is disrupted
with respect to Hk , it is no longer within Hk . Finally, it should be noted that if each
application of crossover is independent, we can interpret Ps as the probabilistic survival
of an individual within a hyperplane Hk. For example, if N individuals are within some
Hk, we expect roughly N.Ps individuals to remain (survive) in Hk after crossover.

Figure 1 illustrates Ps for 3rd-order hyperplanes. For n-point crossover the probability
that a sample will survive depends on the order of the hyperplane, its defining length,
and the number of crossover points n. For uniform crossover the probability of survival
depends on the order of the hyperplane and the probability of swapping alleles, P0 .1 The
reader should note that uniform crossover is labelled as "P0 uniform" in Figure 1. For
example, ".1 uniform" indicates that P0  = 0.1.
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Figure 1: Crossover Survival, 3rd-Order, Peq = 0.5

These results are time dependent in the sense that they are affected by the degree to
which the population has converged. To see this, we need to define what we mean by
convergence. In our theory we denote Peq(d) to be the probability that two hyperplanes
will have the same allele at a particular defining position d (De Jong & Spears, 1992).
As a useful simplification we also denote Peq to be the average of the Peq(d)’s over all d.
Since we assume a bit level representation, Peq = 0.5 represents the condition when the
population is first randomly initialized and each allele has an equal probability of being a
1 or 0. When Peq is close to 1, the population is nearly converged and lacks diversity.
Figure 2 illustrates how crossover is affected by the convergence of the population. The
horizontal axis represents the convergence of the population (0.5 ≤ Peq ≤ 0.9). For the
sake of simplicity we illustrate only uniform crossover, where P0 ranges from 0.1 to 0.5
in increments of 0.1. These values are useful because the levels of disruption provided
__________________

1 See Spears & De Jong (1991) for more precise details.



by n-point crossover are roughly bounded by the disruption levels of uniform crossover
when 0.1 ≤ P0  ≤ 0.5 (see Figure 1). Note that disruption decreases as the diversity of the
population decreases.
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Figure 2: Crossover Survival as a Function of Convergence, 3rd-Order

In the previous paragraphs we provided a review of disruption rate theory for n-point and
P0 uniform crossover. Can we now provide a similar theory for mutation? At first blush
this would appear to be difficult, since crossover is a function of two individuals, while
the mutation of one individual is not affected by the mutation of another. More precisely,
how can Ps represent the probability of survival of one individual within a hyperplane
Hk, given that two individuals are involved in the crossover operation?

The answer lies in the (often hidden) assumption that crossover is used to create two
offspring, as opposed to one. Consider the situation where one parent individual is
within Hk, while the other parent individual is not. Then, after crossover, at most one
offspring will also be within Hk, and Ps represents the probability of that event.
Equivalently, if there are N individuals within Hk, there will be roughly N.Ps individuals
within Hk after crossover. Suppose, however, that both parents are in Hk . Then, after
crossover, both offspring are guaranteed to be in Hk. In this case Ps = 1 and N.Ps = N
individuals will survive crossover. If only one offspring were created, this analysis
would not be correct. In summary, the assumption that both offspring are created is
necessary to ensure that Ps correctly represents the independent survival of one
individual within a hyperplane.

Since, for crossover, Ps really represents the probability of one individual within a
hyperplane Hk surviving, we can compare this with a similar analysis for mutation. For
mutation we want Ps to represent the probability that an individual in Hk will survive
mutation. In this case, independence is trivial, since the mutation of one individual is
not affected by the mutation of another. Again, if there are N individuals within some
Hk, roughly N.Ps individuals will survive mutation. In this paper mutation is defined to
be the operator that probabilistically selects a bit and flips that bit (recall that we are
assuming a bit level representation). Again, suppose we have a 3rd-order hyperplane.
Then the probability that an individual within that hyperplane will survive mutation is



given by:

Ps(H 3) = (1 − Pm)3

where Pm is the probability of mutating an allele. In general, we have:

Ps(Hk) = (1 − Pm)k

for kth-order hyperplanes.

Given this analysis, we can now compare the disruptive effects of mutation with those of
crossover. Figure 3 illustrates this with mutation rates of 0.01, 0.1, and 0.5. The curves
for uniform crossover are the same as those in Figure 2.
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Figure 3: Survival Comparison, 3rd-Order

Figure 3 highlights several points. First, as expected, the disruptive effects of crossover
are time dependent, while those of mutation are time independent. Second, the highest
level of disruption for uniform crossover occurs when P0  = 0.5. More interestingly,
though, mutation can provide the same level of disruption as uniform crossover, if we
allow the mutation rate to vary as a function of Peq , k, and P0 .

In summary, then, we have introduced a disruption rate theory for mutation, and have
compared this theory with our disruption rate theory for crossover. This comparison
indicates that every level of disruption provided by crossover can be achieved with
mutation alone. In fact, the comparison further indicates that crossover can not achieve
the high levels of disruption that can be provided by mutation.

2.2 DISRUPTION DISTRIBUTIONS

Disruption rate theory estimates the likelihood that a genetic operator will disrupt a
hyperplane sample. Again, we can also interpret this as the likelihood that individuals
within a hyperplane will leave that hyperplane. It does not, however, indicate where
those individuals will go. In other words, disruption rate theory does not indicate the
distribution of disruptions, simply the likelihood that disruptions will occur.



Previous researchers (e.g., Eshelman et al., 1989) have discussed the exploratory power
of crossover operators, namely, the manner in which crossover disrupts individuals
within hyperplanes. For example, suppose we consider the crossover of individuals from
the two hyperplanes (the "#" denotes the "don’t care" symbol):

1: 1####1
2: 0####0.

Uniform crossover will produce individuals from "######", while 1-point crossover will
produce individuals from "1####0" and "0####1". In general, uniform crossover is more
"explorative" than 1-point crossover. Eshelman et al. (1989) and Booker (1992) provide
analyses of other biases in crossover operators.

What is the explorative power of mutation? Recall that our model of mutation assumes
that a bit is flipped if it is chosen for mutation. We do not disrupt an individual within
any hyperplane if the mutation rate is 0.0. If the mutation rate is 1.0, we always disrupt
the individual, and produce the complement of the individual. For a mutation rate of 0.5,
an individual will be disrupted with high probability, possibly creating any other
individual. In summary, we can control the amount of exploration that mutation
performs by adjusting the mutation rate. Mutation can provide any amount of
exploration that crossover can provide.

Let us now compare the type of exploration that crossover and mutation provide.
Suppose we consider individuals from the two hyperplanes:

1: 10####
2: 11####.

Crossover will only produce individuals from the hyperplane "1#####". The first "1" is
guaranteed because it is common to the first defining position of both hyperplanes.
Mutation, however, will not necessarily honor that guarantee, since it is a one individual
operator and does not determine the commonality of alleles. Crossover, then, preserves
alleles that are common to the individuals within the two hyperplanes (Radcliffe (1991)
refers to this as "respect"). Preservation limits the type of exploration that crossover can
perform. This limitation becomes more acute as the population loses diversity, since the
number of common alleles will increase.

In summary, disruption analysis is the traditional analysis for describing the behavior of
GAs in general, and crossover in particular. We have shown that mutation can provide
any level of disruption that crossover can provide. We have also considered the form of
disruption for both operators, by considering their exploratory power. Again, crossover
has no advantage over mutation in terms of the amount of exploration that can be
performed. They do differ, however, in the type of exploration. Crossover guarantees
preservation of common alleles, while mutation does not. Given this evidence, then, we
might suppose that there is some theoretical support for disputing Fogel’s claim that
crossover has no general advantage over mutation.2 In the next section we will consider
another potential difference between crossover and mutation.

__________________
2 We are not implying that mutation has no advantage over crossover, however.



3 CONSTRUCTION THEORY

In the traditional theory, crossover is analyzed as a disruptive operator. However, more
recently, Syswerda (1989) hypothesized that a more positive theory of crossover is
constructive in nature.3 For example, instead of calculating the probability that an
existing hyperplane sample will be disrupted, we now calculate the probability that an
individual within a hyperplane will be constructed from existing individuals within
lower order hyperplanes. Syswerda’s theory was extended by Spears & De Jong (1991)
to include n-point and P0 uniform crossover. This theory indicated that highly
disruptive crossover operators are also highly constructive. Unfortunately, however,
there was no theoretical evidence to indicate that mutation is not as constructive as
crossover. In this section we will show that an analysis of the constructive abilities of
mutation will provide us with that evidence.

Suppose, then, that we wish to create a theory of construction for mutation. More
specifically, imagine that we wish to construct an individual within the 5th-order
hyperplane "11111###" from an individual within another 5th-order hyperplane
"11100###". This can be accomplished by mutating the 0’s, while not mutating the 1’s.
In general, suppose we wish to construct an individual within a kth-order hyperplane Hk
from an individual within another kth-order hyperplane Hs, when the two hyperplanes
match on m alleles and do not match on n alleles (i.e., k  = n + m). Then the probability
of construction (denoted as Pcon) is given by:

Pcon(Hk ,Hs) = (1 − Pm)m (Pm)n

In order to compare this with the constructive effects of crossover we again need to be
careful about our assumptions. In this case we wish to compute the probability that
crossover will construct an individual within a kth-order hyperplane from an individual
in another hyperplane with m correct and n incorrect alleles, given an arbitrary mate. As
an illustration, let us again imagine that we wish to construct an individual in the 5th-
order hyperplane "11111###" from an individual in "11100###", using crossover. The
individual in the hyperplane "11100###" will be crossed with an arbitrary individual
from one of the four following hyperplanes:

1: ###00###
2: ###01###
3: ###10###
4: ###11###.

Of these four situations, only the last can result in the construction of an individual in the
hyperplane "11111###". Each of these situations is not equally likely, unless Peq = 0.5.
For example, given the hyperplane "11100###" and the fact that Peq  = 0.8, we can
compute that an individual from "11100###" will be crossed with an individual from
hyperplane "###11##" with probability 0.04. In general, the probability that two
hyperplanes differ in n defining positions is:

d∈N
Π (1−Peq(d))

__________________
3 In prior work we refer to this as "recombination" theory. Since we wish to extend this theory to

mutation, the term "construction" seems more appropriate.



where N is the set of n defining positions.

We have now calculated the probability that a potentially successful recombination can
occur. However, since this does not guarantee success, we also need to determine the
probability that crossover will yield an individual within the hyperplane "11111###",
given individuals from:

1: 11100###
2: ###11###.

This can be done in a straightforward fashion by using the earlier recombination theory
of Spears & De Jong (1991), that deals with the construction of individuals within a
hyperplane from individuals within two non-overlapping lower order hyperplanes (see
the Appendix for details). In this theory, for example, it is possible to compute the
probability that an individual within "11111###" will be constructed from the crossover
of individuals from:

1: 111#####
2: ###11###.

This is a more general case of the above situation, in which an individual from
"11100###" is crossed with an individual from "###11###" (i.e., because the "#" is more
general than a "0"). Specifically, the two situations are identical if we state that
Peq(d) = 0 for the last two defining positions.4

In general, if we are interested in constructing an individual within a kth-order
hyperplane from an individual within a hyperplane that has n incorrect alleles, we first
need to compute the probability that some other individual contains the n correct alleles,
to ensure that a potentially successful recombination can occur. Given these two
individuals, we then compute the probability that construction will occur, by using a
specific case of the earlier recombination theory, where Peq(d) = 0 for those n defining
positions. In summary, we can use the earlier recombination theory to create a
construction theory for crossover that can be compared with the construction theory for
mutation.

Using these theories, we can compare mutation and crossover from the viewpoint of
construction. Figure 4 presents the comparison for 3rd-order hyperplanes, while Figure
5 presents the comparison for 8th-order hyperplanes. Mutation rates of 0.01, 0.1, and 0.5
are again compared with uniform crossover. Again, for the sake of simplicity, we
illustrate uniform crossover where P0 ranges from 0.1 to 0.5, because this roughly
bounds the levels of construction provided by n-point crossover. It is important to note
that a mutation rate of 0.5 yields the highest probability of construction. Due to
symmetry, mutation rates above 0.5 yield lower probabilities.

Figures 4 and 5 illustrate several interesting points. First, when the population is
diverse, mutation can not match the levels of construction that crossover can achieve. In
fact, for 3rd-order hyperplanes, crossover has higher constructive levels until the
population is 70% converged. Second, this advantage increases as the order of the
hyperplane increases. For example, with 8th-order hyperplanes, crossover has higher
__________________

4 Again, the theory allows one to define distinct Peq(d)’s for each defining position.
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constructive levels until the population is 80% converged.

Finally, note that it is impossible for mutation to simultaneously achieve high levels of
construction and survival. This would appear to be important, since one without the
other may not be extremely useful (i.e., it is nice if some of the constructions survive!).
High construction levels with mutation are accomplished at the expense of survival (see
0.5 mutation), while good survival is at the expense of construction (see 0.01 mutation).
In fact, crossover can simultaneously achieve higher levels of construction and survival
than any particular amount of mutation.



4 SUMMARY AND DISCUSSION

These results provide a theoretical justification for Holland’s belief that the role of
crossover is to construct high order building blocks (hyperplanes) from low order
building blocks. Mutation can not perform the role as well as crossover. Clearly, the role
of crossover is construction and, in this case, crossover provides an advantage over
mutation. In terms of disruption, mutation can provide higher levels of disruption and
exploration, but at the expense of preserving alleles common to particular defining
positions.

The disruption and construction theories presented here all concentrate on hyperplane
(building block) analysis. Since the concept of a building block is often central to
genetic algorithm research, it is important to connect our work with other relevant
findings. First, this work does not assume a condition referred to as the Static Building
Block Hypothesis. Next, we tie our work to the exploration and exploitation tradeoff,
and indicate that our findings are consistent with experimental results. We conclude
with the observation that our current distinction between crossover and mutation may
not be necessary.

4.1 BUILDING BLOCKS

Since a role of crossover is construction, we would expect crossover to be useful on
problems that have appropriate building blocks. What exactly is an appropriate building
block? One possible answer lies in the following hypothesis (Grefenstette, 1992a):

The Static Building Block Hypothesis (SBBH): Given any short, low order
hyperplane partition, a GA is expected to converge to the hyperplane with
the best static average fitness.

This hypothesis is often used as a base for theoretical and experimental work in genetic
algorithms and implies that appropriate building blocks should have the highest average
fitness. Unfortunately, as Grefenstette (1992a) indicates, the hypothesis is flawed in that
a genetic algorithm is unlikely to determine the actual average fitness of a hyperplane,
because the sampling of hyperplanes is biased. Although construction theory is
concerned with the building of higher order hyperplanes from lower order hyperplanes,
we do not make use of the SBBH. Rather, construction theory is consistent with what
we will call the DBBH:

The Dynamic Building Block Hypothesis (DBBH): Given any short 5, low
order hyperplane partition, a GA is expected to converge to the hyperplane
with the best dynamic (observed) average fitness.

In other words, a GA estimates the static average fitness from a dynamic biased
sampling. As can be expected, the observed average fitness of a hyperplane can be quite
different from its actual average fitness, implying that the GA may not converge to the
hyperplane with the best static average fitness. Crossover, then, constructs higher order
hyperplanes from lower order hyperplanes that have higher observed average fitness.
These higher order hyperplanes may or may not bias search appropriately. Crossover
works well with problems that have building blocks conducive to the creation of higher
order building blocks that bias search correctly (see Vose & Liepins (1991) for a
__________________

5 Actually, length is irrelevant for uniform crossover.



theoretical treatment of the relationship between crossover and building blocks).
Although the appropriateness of building blocks is dynamic, and not well understood,
some progress has been made in understanding the underlying issues. In the next section
we outline some of the recent work. This work helps us to understand the roles of
crossover and mutation in genetic algorithm search.

4.2 EXPLOITATION VS EXPLORATION

The issue concerning the relative importance of mutation and crossover can be viewed at
a higher level. Mutation serves to create random diversity in the population, while
crossover serves as an accelerator that promotes emergent behavior from components.
The meta-issue, then, is the relative importance of diversity and construction. For the
GA community, this is also related to the balance between exploration and exploitation.
This meta-issue is the key to the difference in philosophy between Holland and Fogel.
Specifically, Fogel et al. question the importance of recombination. They do not believe
that natural selection selects individual traits (or, presumably, combinations of traits).
Recombination is considered to be a third order factor, since it does not appear to occur
frequently in nature (Atmar, 1992).

Of course, this does not necessarily imply that recombination is not useful for problems
we wish to solve. Atmar is correct to remind us that "uncritical advocacy of a particular
phenomenon" promotes "a blindness in perspective that is very difficult to dispel"
(Atmar, 1992). Neither mutation nor crossover should be uncritically advocated or
dismissed. Each operator plays a different role in the search process. A priori, it is
difficult to specify the relative importance of each operator, for each problem. The
appropriate balance of exploration and exploitation required for good performance
depends on the amount of diversity in the population, the style of genetic algorithm used,
and the purpose for which it is used.

For example, although GAs are often used as optimizers, our current understanding is
that they attempt to maximize accumulated payoff (Holland, 1975). In this sense, they
are greedy and should not necessarily be expected to find optimal solutions. Crossover
can enhance this effect. Fogel and Atmar (1990) report that although the mean behavior
of a GA with crossover outperformed the mean behavior of a GA without crossover
(albeit insignificantly), they regard the winner to be the algorithm that found superior
individual solutions. The GA without crossover had a much higher variance and found
superior solutions in 6 of 10 trials. This effect has also been noted by Spears and Anand
(1991), although they found that the results were dependent on population size. This
indicates, then, that the GA practitioner should be clear about his or her goals. If
optimality is sought, crossover may be deleterious. If the maximization of accumulated
payoff is sought, mutation may be insufficient.

Similarly, greater disruption is more important for steady state genetic algorithms, since
they suffer a higher allele loss than do their generational counterparts (De Jong & Sarma,
1992). It is also more important in non-stationary environments, where the optimal
solution changes over time (Grefenstette, 1992b). We can conclude, then, that mutation
will play an important role in these situations. Figures 4 and 5 support these ideas by
suggesting that mutation becomes more important relative to crossover as the population
loses diversity. Experiments with adaptive operator probabilities (Davis, 1989) support
this analysis.



Crossover, however, will play an important role when construction and survival are
required for good performance. This occurs when the population is diverse and
problems consist of appropriate building blocks. Recent work suggests that fitness
correlation (Lipsitch, 1991; Manderick et al., 1991) and epistasis (Schaffer & Eshelman,
1991; Davidor, 1990) provide useful measures for determining the usefulness of
crossover. For example, crossover appears to work well with functions that are highly
correlated or have mild epistasis.

4.3 WHAT IS MUTATION?

Although our discussion of mutation and crossover stresses the differences between the
two operators, it is also important to note that mutation can be greatly modified,
minimizing those differences. The reason that crossover can exhibit high simultaneous
levels of preservation, survival, and construction is that crossover shares information
between fit individuals. Mutation, on the other hand, is often implemented with a
parameter that is constant during genetic algorithm search. No information is shared
when mutation is implemented in this fashion.

It is possible to implement mutation with a parameter that is adapted during genetic
algorithm search. Population statistics, such as population convergence, are often used
to adapt the mutation rate (Davis, 1989). The European community (e.g., Baeck et al.,
1991) go further, and explicitly adjust the mutation of each parameter, for every
chromosome. One can easily imagine, then, a situation in which these mutation rates are
based on finer grained population statistics, such as column convergence (De Jong,
1975). At this point, information can be communicated in a fashion similar to that of
crossover. For example, we could measure the allele loss for each defining position and
only mutate at defining positions with small allele loss, thus preserving common alleles.
This would give mutation a disruption distribution more similar to that of crossover (see
Section 2.2). At what point do we no longer call this mutation?

This leads us to the realization that standard mutation and crossover are simply two
forms of a more general exploration operator, that can perturb alleles based on any
available information (e.g., see Syswerda, 1992). It is not clear that the current
distinction between crossover and mutation is necessary, or even desirable, although it
may be convenient. The creation of more general operators, however, may lead to more
robust biases. For example, it may be possible to implement one general operator that
can specialize to mutation, crossover, or any variation in between. In our future work we
intend to investigate this alternative.
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Appendix6

Summary of the Survival Analysis
For n-point crossover, Ps is expressed in the order dependent form (Pk,s):

P2,s( n,  L,  L1  ) = 
i= 0 
Σ
 n  ��

i
n ������  

L

L1___ 

� 	

 i ��  L

L − L1_______ 

� �
� n  − i

Cs

and

Pk,s( n,  L,  L1 , . . . ,  Lk−1  ) =                                                             

                          
i = 0 
Σ
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L − L1_______ 

� �
 n  − i

Pk −1,s( i,  L1 , . . . ,  Lk−1  ) 

Note that the survival of a kth-order hyperplane under n-point crossover is recursively
defined in terms of the survival of lower order hyperplanes. L refers to the length of the
individuals. The L1

 . . . Lk−1 refer to the defining lengths between the defining positions
of the kth-order hyperplane. The effect of the recursion and summation is to consider
every possible placement of n crossover points within the kth-order hyperplane. The
correction factor Cs computes the probability that the hyperplane will survive, based on
that placement of crossover points.

For the ease of presentation we denote K to be the set of k defining positions, while X
denotes a subset of K. Suppose that crossover results in a subset X of defining positions
being exchanged. Then the hyperplane will survive if: 1) the parents match on the
subset X, or 2) if they match on the subset K  − X, or 3) they match on the set K. Hence,
the general form of the correction is:

Cs   =   
d∈X
ΠPeq(d) + 

d∈K −X
Π Peq(d) − 

d∈K
ΠPeq(d)

where Peq(d) is the probability that two parents have the same alleles on a particular
defining position d.

For parameterized uniform crossover, Ps is also expressed in an order dependent form
(Pk,s):

Pk,s(Hk) =

I⊆K
Σ (P0) | I |   (1 − P0) | K −I | !"

d∈I
ΠPeq(d) + 

d∈K −I
Π Peq(d) − 

d∈K
ΠPeq(d) #$

where I is a subset of K, and P0 is the probability of swapping two parents’ alleles at
each defining position. A graphical representation of these equations has been shown
previously in Figure 1.

Recombination (Construction) Analysis for N-Point Crossover
In our definition of survival, it is possible for a hyperplane to survive in either child.
Recombination can be considered a restricted form of survival, in which two lower order
__________________

6 This Appendix is a compendium of crossover theory from De Jong & Spears (1992).



hyperplanes survive to form a higher order hyperplane. The difference is that the two
lower order hyperplanes (each of which exists in a different parent) must survive in the
same individual, in order for recombination to occur.

In the remaining discussion we will consider the creation of a kth-order hyperplane from
two hyperplanes of order m and n. We will restrict the situation such that the two lower
order hyperplanes are non-overlapping, and k  = m + n. Each lower order hyperplane is
in a different parent. We denote the probability that the kth-order hyperplane will be
recombined from the two hyperplanes as Pk,r.

An analysis of recombination under n-point crossover is simple if one considers the
correction factor Cs defined earlier for the survival analysis. Recall that recombination
will occur if both lower order hyperplanes survive in the same individual. If an n-point
crossover results in a subset X of the k defining positions surviving in the same
individual, then recombination will occur if: 1) the parents match on the subset X, or 2)
if they match on the subset K  − X, or 3) they match on the set K. Hence, the general
form of the recombination correction Cr is:

Cr   =   
d∈X
ΠPeq(d) + 

d∈K −X
Π Peq(d) − 

d∈K
ΠPeq(d)

Note the similarity in description with the survival correction factor Cs (the only
difference is in how X is defined). In other words, given a kth-order hyperplane, and two
hyperplanes of order n and m, Pk,r is simply Pk,s with the correction factor redefined as
above.

Recombination (Construction) Analysis for Uniform Crossover
The analysis of recombination under uniform crossover also involves the analysis of the
original survival equation. Note that, due to the independence of the operator (each
allele is swapped with probability P0), the survival equation can be divided into three
parts. The first part expresses the probability that a hyperplane will survive in the
original string:

Pk,s,orig(Hk) =
I⊆K
Σ   (P0) | I |   (1 − P0) | K −I |   

d∈K  − I
Π Peq(d)

The second part expresses the probability that a hyperplane will survive in the other
string:

Pk,s,other(Hk) =
I⊆K
Σ   (P0) | I |   (1 − P0) | K −I |   

d∈I
ΠPeq(d)

The final part expresses the probability that a hyperplane will exist in both strings:

Pk,s,both (Hk) =
I⊆K
Σ   (P0) | I |   (1 − P0) | K −I |   

d∈K
ΠPeq(d) =  

d∈K
ΠPeq(d)

Then:

Pk,s(Hk) = Pk,s,orig(Hk) + Pk,s,other(Hk) − Pk,s,both(Hk)

Note, however, that this formulation allows us to express recombination under uniform
crossover. Again, assuming the recombination of two non-overlapping hyperplanes of
order n and m into a hyperplane of order k:



Pk,r(Hk) = Pm,s,orig(Hm) Pn,s,other(Hn) +

Pm,s,other(Hm) Pn,s,orig(Hn) −

Pm,s,both (Hm) Pn,s,both(Hn)

This equation reflects the decomposition of recombination into two independent survival
events. The first term is the probability that Hm will survive on the original string, while
Hn switches (i.e., both hyperplanes survive on one parent). The second term is the
probability that both hyperplanes survive on the other parent. The third term reflects the
joint probability that both hyperplanes survive on both strings, and must be subtracted.
It should also be noted that the third term is equivalent to

d∈K
ΠPeq(d).


