Analyzing GAs Using Markov Models with

Semantically Ordered and Lumped States *
William M. Spears Kenneth A. De Jong
Code 5510 - AT Center Computer Science Department

Naval Research Laboratory George Mason University

Washington, DC 20375-5337 Fairfax, VA 22030
spears@aic.nrl.navy.mil kdejong@gmu.edu
Abstract

At the previous FOGA workshop, we presented some initial results on using Markov
models to analyze the transient behavior of genetic algorithms (GAs) being used
as function optimizers (GAFOs). In that paper, the states of the Markov model
were ordered via a simple and mathematically convenient lexicographic ordering
used initially by Nix and Vose. In this paper, we explore alternative orderings of
states based on interesting semantic properties such as average fitness, degree of
homogeneity, average attractive force, etc. We also explore lumping techniques
for reducing the size of the state space. Analysis of these reordered and lumped
Markov models provides new insights into the transient behavior of GAs in general
and GAFOs in particular.

1 INTRODUCTION

Considerable progress has been made in recent years regarding the use of Markov models to
analyze the behavior of evolutionary algorithms. In this paper, we extend and expand on the
results we presented in the previous FOGA workshop concerning the use of Markov models to
analyze the transient behavior of GAs being used for function optimization (De Jong, Spears
and Gordon, 1994). First, we abandon the mathematically convenient lexicographic ordering
of the states of the Markov models and explore alternative orderings of states which have
interesting semantic properties, and which provide new insight into the transient behavior

"To appear in the proceedings of the 1996 Foundations of Genetic Algorithms Workshop.

of GAFOs. In addition, we explore various lumping techniques for reducing the size of the
Markov models and evaluate the effects of lumping on model accuracy.

Our work continues to be based on the Nix and Vose Markov model (Nix and Vose, 1992) of
a simple GA using fixed-length binary strings, 1-point crossover, bit-flipping mutation, and
fitness proportional selection. If [is the length of the binary strings, then there are r = 2!
possible strings. If n is the population size, then the number of possible populations, N,
corresponding to the number of possible states is:

v=("7) g

The possible populations are described by the matrix Z, which is an N x r matrix. ! The
ith row ¢; =< 2,0, ..., 2i,r—1 > of Z is the incidence vector for the ith population. In other
words, z; 4, is the number of occurrences of string y in the ith population, where y is the
integer representation of the binary string. For example, suppose [= 2 and n = 2. Then
r =4, N = 10, and the Z matrix would be as shown in Table 1.

Table 1: The Z Matrix whenn =2 and | =2

Binary String
State | 00 01 10 11
P1 0 0 0 2
P2 0 0 1 1
P3 0 0 2 0
P4 0 1 0 1
P5 0 1 1 0
P6 0 2 0 0
P7 1 0 0 1
P8 1 0 1 0
P9 1 1 0 0
P10 | 2 0 0 0

Nix and Vose then define two mathematical operators, F' and M, where F' is determined
from the fitness function, and M depends on the mutation rate u, crossover rate x, and form
of crossover and mutation used. 2 With F and M defined, it is now possible to calculate
exact state transition probabilities @; j, which specify how likely it is that a simple GA in
state ¢ (the current population) will be in state j in the next generation:

[M (ﬁi)y]

! @)

r—1
Qij=n']]
y=0

As we showed in our previous paper (De Jong, Spears and Gordon, 1994), the resulting state
transition matrix) can be used in a variety of ways to gain important insights about the

25y

'For programming convenience we transpose the Z matrix of Nix and Vose (1992).
In their paper they assume a standard bit flipping mutation operator and a 1-point crossover
which produces a single offspring, although M can be generalized to other operators.

transient behavior of GAFOs. One of the techniques introduced was the idea of visualizing
the change in the distribution of probability mass of Q* as k increases. Figure 1 illustrates
one of these visualizations for the case of n = 3, [= 3, a mutation rate of u = 0.01, a
crossover rate of x = 1.0, and a ramp fitness function of f(y) = integer(y)+ 1. Since n =3
and [= 3, there are 120 states in this example.

(04 Q10 Q30

Figure 1: Q* for Ramp Function with = 0.01 and x = 1.0

The visualization of the probability mass distribution is achieved by mapping each entry
Q;,;, the probability of moving from state ¢ to state j in one generation, onto a gray scale
in which black represents low probability and white high probability. As k increases, the
emerging vertical lines in Q* represent the states (populations) at which the steady state
distribution will accumulate most of its probability mass.

2 SEMANTICALLY ORDERED STATES

One of the surprising features brought out with these visualizations is how quickly the
probability mass shifts left to a relatively small number of states. However, because the @
matrix uses the lexicographic ordering of the states generated by the Z matrix, it is not
easy to get a sense of the characteristics of this set of emerging high probability states.

To remedy this, we have explored a variety of alternative orderings of the states based on
interesting semantic properties of the underlying populations they represent such as average
fitness, presence of the global optimum, and degree of homogeneity. In this section, results
are presented which provide additional insight into the transient behavior of GAFOs, and
which tie in nicely with other recent mathematical results such as (Vose, 1995).

2.1 ORDERING STATES BY AVERAGE FITNESS

Perhaps the most intuitive hypothesis as to the character of this emerging set of high prob-
ability states is that they correspond to states (populations) with high average fitness. Our
visualization technique makes it easy to test this hypothesis by calculating the average fit-
ness of each population in the Z matrix, and then reordering the states of the () matrix in
decreasing order of fitness (left to right and top to bottom). If this hypothesis is correct, we
should see a strong shift of probability mass to the left into states with the highest average
fitness. Figure 2 illustrates the effects of this reordering for the same model used in Figure 1.

Although there is clear visual evidence of a shift of probability mass to the left, the trend

Q10 Q30

Figure 2: Q¥ with States in Decreasing Order of Average Fitness

does not seem as strong as the one observed in Figure 1 using the lexicographic ordering,
suggesting that high average fitness is not a dominant property of these emerging high
probability states.

An alternative hypothesis is that these emerging states contain a large number of copies of
the global optimum. Sorting the states on this basis produces a somewhat different ordering,
but yields only minor differences in the visualizations, indicating that it is also not a strong
predictor of these emerging states.

Since we have the Q¥ data available, it is possible to identify and track the specific states that
are accumulating significant amounts of probability mass. This is illustrated in Figure 3.

04—
]
03] —
Prob Mass 0.2

Figure 3: Probability Mass Curves Associated with Figure 2

Each curve in Figure 3 represents the total probability mass in a column of Q¥ as a function
of k, the number of generations. The z-axis is depicted using a log scale in order to focus
on the transient behavior. Viewed in this way one can see very clearly the emergence of
a few dominant high probability states already by generation 2 and these states maintain
that dominance for large values of k. Since there are 120 states in this example, it can be
seen that the vast majority of states have low probability mass.

The state accumulating the most probability mass is the one representing the population
consisting entirely of duplicate copies of the most fit individual. The second most dominant
state consists entirely of duplicate copies of the second most fit individual. The third state
contains only copies of the third most fit individual, and so on. So, in this particular case,
the emerging states are best described as homogeneous populations of highly fit individuals

i

that act as “basins of attraction” in which mutation is the only source of variation.

2.2 ORDERING BASED ON HAMMING DISTANCE

To test this hypothesis further, we used the average Hamming distance between all pairs of
individuals in a population as a measure of homogeneity, and ordered the states by increasing
average Hamming distance (decreasing homogeneity). If this hypothesis is correct, then we
should see a strong shift to the left in our visualizations over a broad range of models.
Figure 4 illustrates the results for the ramp function.

QM Q10 Q30

Figure 4: Q* with States in Increasing Order of Average Hamming Distance

As one can see, the results are quite striking and show a very strong correlation between
homogeneity and accumulating probability mass.

2.3 ORDERING STATES BY PROBABILITY MASS

One of the striking features of Figure 3 is how early these attracting states emerge. This
suggests that the original state transition matrix () contains evidence of these states. One
way of interpreting the total probability mass of column j in @);; is that it provides a
measure of the attractive force of state j. That is, given a GA in any arbitrary state i, the
total probability mass in column j represents how strongly a GA is “pulled” into state j.
Intuitively, columns with more probability mass are states defining basins of attraction.

(04 Q10 Q30

Figure 5: Q* with States in Decreasing Order of Probability Mass

Given a particular) matrix, it is quite straightforward to compute the column mass and

to reorder the states in descending order of probability mass. Figure 5 illustrates this for
the ramp function used in the previous examples.

Again, the results are quite striking. There is very strong correlation between the initial
attracting states and those which persist and strengthen.

2.4 A QUANTITATIVE ANALYSIS OF THE ORDERING RESULTS

Visually displaying the results in the preceding sections provides useful qualitative evidence
concerning which states accumulate probability mass over time. It is also instructive to
analyze these results quantitatively, as follows. If a particular ordering of states is a perfect
predictor of the shifting of probability mass to the left, then ¥ would have the property
that the column mass of each succeeding state will decrease (from left to right). A simple
metric ¥ that measures how well the initial ordering of states predicts decreasing column
mass in Q¥ is give by:

¥ =0.0;
for i =1;¢ < N; i++) {
for (j=i+1;j < N;j++) {
if(m,-<mj)IIJ:\Il+mj—m,-;

The probability mass of state (column) i in Q* is denoted m;. If the initial (Q!) ordering is
a perfect predictor of the shifting of the probability mass to the left in Q*, then the column
mass of each succeeding state in QF will not increase and ¥ = 0. ¥ will be greater than 0
if the prediction is not perfect (e.g., if the column mass of some state in Q¥ is greater than
the column mass of some preceding state), and the penalty for an incorrect prediction is
weighted by the amounts of column mass involved.

Applying this metric to the ramp function at & = 100 yields the results shown in Table 2.
These results confirm the earlier visual results, indicating that ordering states by initial
probability mass or Hamming distance provide strong predictors for those states that persist
and strengthen in probability mass as k increases.

Table 2: ¥ Values for Different Orderings of the Ramp Function

Ordering ¥
Lexicographic 5.18
Average Fitness 9.40
Hamming Distance | 0.54
Probability Mass | 0.10

The results in Table 2 are for one particular Markov model involving a ramp function where
n=3,1=3, p=0.01, and x = 1.0. To get a better sense of the generality of these results,
we also computed ¥ for those models investigated in our earlier paper (De Jong, Spears
and Gordon, 1994). Table 3 summarizes some representative results at k¥ = 100. For these

particular functions I = 2, n = 10, N = 286, and x = 1.0. We analyzed two settings for u
as indicated in the table.

Table 3: ¥ Values for Different Functions

Function Ordering W L4
Class 2 Lexicographic 0.1 | 22.54
Average Fitness 0.1 | 875
Hamming Distance | 0.1 | 59.75
Probability Mass 0.1 | 15.73
Class 3 Lexicographic 0.1 | 26.15
Average Fitness 0.1 | 24.34
Hamming Distance | 0.1 | 53.44
Probability Mass 0.1 | 22.20
Type 1 Deceptive Lexicographic 0.01 | 55.44
Average Fitness 0.01 | 19.35
Hamming Distance | 0.01 | 7.44
Probability Mass | 0.01 | 1.52
Type 2 Deceptive Lexicographic 0.01 | 45.32
Average Fitness 0.01 | 25.17
Hamming Distance | 0.01 | 5.32
Probability Mass | 0.01 | 2.18

The results indicate that ordering states by initial probability mass consistently provides
a good predictor of the relative importance of states as k increases. Not surprisingly, the
lexicographic ordering is of little use. Also, as one might expect, the usefulness of ordering by
Hamming distance appears to be tied to the mutation rate. At low mutation rates Hamming
distance provides a good ordering, but degrades significantly at higher mutation rates. It is
also interesting to note that ordering by average fitness is a much better predictor at higher
mutation rates. This agrees with the results presented in our earlier paper (De Jong, Spears
and Gordon, 1994) which suggested that optimal GAFO performance is frequently obtained
using higher mutation rates than those traditionally used.

The quantitative and qualitative analyses of these Markov models provide a simple intuitive
picture of the transient behavior of a GA. A GA is pulled quite early towards homogeneous
basins of attraction and, once in a particular basin, is not likely to leave it. This complements
nicely the more formal results obtained by Vose (1995).

3 REDUCED MARKOV MODELS

Since the number of states N grows extremely fast as n or [increases, we are currently
limited to Markov models involving small population sizes and small string lengths. To
address this issue, we have explored several approaches for reducing the size of the state
space in order to allow us to scale to larger GA models.

In keeping with the theme of our earlier paper (De Jong, Spears and Gordon, 1994), we are
interested in having models make predictions about GAFO behavior, that is, predictions
appropriate to the use of GAs as optimizers. To answer such questions, we need only

combine QF with a set of initial conditions concerning a GA at generation 0. For this paper
we make the reasonable assumption that GA populations are randomly initialized. Thus,
the a priori probability of the GA being in state ¢ at time 0, denoted as P(i @ 0), is:

Zz',o! zi,r—l! r

n! "
Piag=— " H 3)
Given this, we can now compute the probability that the GA will be in a particular state j
at time k:

P(jQk)= ZP(Z’ @ 0) QF; (4)

by simply considering the probability of each possible k-step transition, appropriately
weighted by the a priori probabilities. We can also compute probabilities over a set of
states. Define a predicate Pred; and the set J of states that make Pred; true. Then the
probability that the GA will be in one of the states of J at time k is:

P(J@k)=> P(j @k) (5)

j€J

In this paper, we let J represent the set of all states which contain at least one copy of the
optimum, and then use a Markov model to compute P(J @ k), the probability of having at
least one copy of the optimum in the population at generation k.

The models we have constructed so far are exact models and give precise values for such
probabilities. One approach to estimating the accuracy of a reduced model is to compare
P(J @ k) values for both the exact and the reduced models. We have used this technique
to evaluate the merits of various state reduction techniques and present our initial results
in this section.

3.1 REMOVING LOW PROBABILITY STATES

One of the most striking features of the () matrix visualizations is how quickly the probability
mass accumulates in the form of a relatively small number of vertical stripes. These columns
of high probability mass correspond to the set of attractor states in which the GA being
modeled is most likely to be as evolution proceeds. If we sort the states by “column mass” we
observe a fair number of states with very small amounts of probability mass in Q! and that
mass continues to decrease over time (Q¥, k > 1). Intuitively, such states are candidates to
be eliminated if we want a reduced model that still has good predictive accuracy.

We tested this intuition in the following manner. We iteratively deleted the state containing
the smallest column mass from the model by removing the corresponding row and column
from the) matrix. Since the rows must sum to 1.0, we distributed the small amount
of deleted probability mass uniformly to all remaining states. After removing a state, we
compared P(J @ k = 100) for both the exact and the reduced model.

Table 4 gives an example of the typical results obtained, namely, that the accuracy of the
P(J @ k) values degrades rather rapidly even when a relatively small proportion of the

Table 4: Ramp Function, n =5,1=2, u=0.1, x = 1.0, £k = 100, N = 56

Number (%) of States Removed | P(J @ k = 100)
0 (0-0%) 0.920196
1 (1.8%) 0.915596
2 (3.6%) 0.905835
3 (5.4%) 0.897447
4 (7.1%) 0.890103

states is removed.

3.2 LUMPED STATES

In addition to introducing significant P(J @ k) errors, simply deleting a state from the
model also has the conceptual difficulty that the GA being modeled can still visit states
which have been deleted from the model. A more satisfying approach would be to reduce
the number of states by lumping multiple states into a single state, thus maintaining the
direct correspondence between the GA and its model. The issues to be resolved are: 1) how
is lumping achieved computationally (i.e., what changes are made to the () matrix), and 2)
what states should be lumped together?

To get an intuitive sense of these issues, consider an arbitrary () matrix obtained from a
Markov chain of 3 states:

P11 P12 P13
Q = P21 P22 D23
P31 P32 P33

The entries in the Q matrix, p; ;, represent the probability that the system will transition
to state j, given that it currently is in state i.

Suppose the goal is to lump states 2 and 3 together. How can this be accomplished?
Consider how state 1 transitions to states 2 and 3 (p1,2 and p; 3). Lumping states 2 and 3
together means that the combined state represents being in either state 2 or state 3 (and it
is impossible to tell which of those two states the system is in). Since this is a disjunctive
situation, the probability of transition from state 1 to the lumped state is simply the sum
pi,2 + pi,3. In general, transitions into a lumped state are easily computed as the sum of
the transitions into each state of the lumped state. Stated another way, column 3 can be
removed by adding its values to column 2.

However, transitions from lumped states (removing a row) are more complicated. In the
above example, the simplest case to analyze is when the probability of transitioning from
state 2 to state 1 is the same as the probability of transitioning from state 3 to state 1
(p2,1 = p3,1). Thus the probability of transitioning from the lumped state to state 1 must
still be pa1 = ps,1, since it doesn’t matter whether the system is in state 2 or 3 of the
lumped state.

In general, however, the probability of transitioning from states 2 and 3 to state 1 will
not be the same. A reasonable first thought is that in this case the appropriate lumped
transition probability is just the average of the two: (p21 + ps1)/2. However, a simple

average of row entries will not work well in general. This is because the Markov chain might
spend much more time in one of the two states that are being lumped. Thus a weighted
average of row entries is called for. The weights should reflect the relative amount of time
spent in each of the two states being lumped. Unfortunately, this data is not known in
general, and is frequently a function of time. However, recall that the column masses provide
reasonable estimates of the relative amount of time spent in particular states, and hence
are good candidates for the weights to be used for lumping (for a mathematical treatment
of this lumping algorithm see Spears, 1996). Mathematically, the lumping algorithm can be
described as follows.

Assume that two states have been chosen for lumping. Let S denote the set of N states, and
let the non-empty sets Si, ..., Sny_1 partition S such that one S; contains the two chosen
states, while each other S; is composed of exactly one state. Let m; denote the column mass
of state 4. Then the lumped matrix Q' is:

Q;,j = p;’,j = Z; Z My Z Pz,y (6)

m
T€S; T reS; y€ES;

This corresponds to taking a weighted average of the two rows corresponding to the two
chosen states, while summing the two corresponding columns. The other entries in the
() matrix remain unchanged. This can be illustrated by continuing the previous example,
which lumps states 2 and 3. In that case S; = {1} and S> = {2,3}. The lumped matrix Q'
is described by:

pll,l = D11
Pla = Pi2+p13
Phy = #[m2p21+m 3,1
2,1 ma + ms3) 33,
1
: = —|m + +m +
20 o + m3[2(p2,2 + P2,3) 3(p3,2 + p3,3)]

Applying this to a specific example where m; = 1.2, my = .6, and m3 = 1.2 yields:

7102
Q=4 2 4
1 3 6

, [3

o7 3]

Note how the .7 does not change (p1,1 = pj ;). This makes sense, since the lumping of states
2 and 3 should have no affect on this value. The rest of the values in @' (which refer to
states 2 and 3) are weighted averages (sometimes trivial) of sums of the values in the 2nd
and 3rd rows and columns of Q).

In general, the exact lumping of arbitrary states is not always possible (see Spears, 1996).
So we are left with a situation in which states with identical rows can be combined without

difficulty, but is not likely to result in a significant reduction in the number of states since
identical rows are encountered relatively infrequently. However, since we are interested in
reduced models which give good, but not necessarily perfect P(J @ k) values, it seems
plausible that states with “nearly identical” rows could be combined without introducing
too much error into a model. The most straightforward measure of row similarity is the
sum of the squared error (SSE):

SSE(i,5) =Y (pik — pjk)’ (7)

k

Such a measure together with a similarity threshold € can be used to identify states to be
lumped. At a high level, the full lumping algorithm is:

Lump()
Repeat as long as possible
Find a pair of states ¢ and j for which SSE(i,j) <e.
Lump-states(i,j) by taking a weighted average of rows i
and j, and by summing the i¢th and jth columns.

3.3 ONE-PASS LUMPING

In order to get a sense of the viability of this approach, we first implemented a one-pass
lumping algorithm, and compared the results with those produced by the unlumped models.
Since our goal is to compute probabilities involving states containing the optimum (the J
set), we don’t want to lump J states with non-J states. Consequently, the lumping algorithm
is run separately for both sets of states, making a single pass over the unlumped states and
allowing only the lumping of pairs of unlumped states. Hence, the maximum reduction in
the number of states will be 50%. In addition, the amount of lumping will be a function of
€, the similarity measure threshold value. More specifically, our one-pass algorithm is:

For a given €
For each unlumped state i in the J set
Find the most similar unlumped state j in the J set.
If SSE(i,7) < €, Lump-states(i,5)-
Repeat this process for non-J states.

Table 5: Ramp Function, n =5,1 =2, u=0.1, x = 1.0, £k = 100, N = 56
€ | Number (%) of States Removed | P(J @Q k = 100)

:000 0 (0%) 0.920196
010 14 (25%) 0.918322
.020 22 (39%) 0.919037
.030 23 (41%) 0.918995
.040 25 (45%) 0.918810
.090 26 (46%) 0.917849

Table 5 gives the results on the same model used in section 3.1. Notice the rather dramatic
difference in the results in comparison with Table 4. It is not difficult to obtain greater than
40% (out of a possible 50%) reduction in the number of states while still producing accurate
P(J Q k) values.

3.4 MULTI-PASS LUMPING

It is not hard to extend one-pass lumping to multi-pass lumping which produces lumped
states involving more than just pairs of unlumped states:

For a given €
Repeat until no new lumped states are created
For each state ¢ in the J set of the current lumped model
Find the most similar state j in the J set.
If SSE(i,j) < €, Lump-states(i,7)-
Repeat this process for non-J states.

In theory multi-pass lumping could result in a lumped two state model involving just J
and non-J. In practice, this would require large values of ¢ and unacceptable reductions in
P(J @ k) accuracy.

Table 6: Ramp Function, n =5,1 =2, u=0.1, x = 1.0, £k = 100, N = 56

€ | Number (%) of States Removed | P(J @ k = 100)
1000 0 (0%) 0.920196
.010 19 (34%) 0.917328
020 28 (50%) 0.912407
030 33 (59%) 0.914112
.040 36 (64%) 0.911954
.090 44 (79%) 0.897008

Table 6 gives an example of typical results obtained with multi-pass lumping. In this case
the model can be reduced by as much as 79% and still produce P(J @ k) values within 3%
of the values produced by the full model.

Table 7: Ramp Function, n =10,1 =2, p =0.1, x = 1.0, £ = 100, N = 286

€ | Number (%) of States Removed | P(J @ k = 100)
:000 0 (0%) 0.995170
010 225 (79%) 0.993724
020 245 (86%) 0.992398
.030 256 (90%) 0.991835
.045 265 (93%) 0.990371

Another interesting property that we have observed is that, as the size of the state space
increases, models can generally be reduced even further. Table 7 shows the results obtained

on a model identical to the previous one except that the population size is 10 rather than
5, increasing the number of states from 56 to 286. In this case over 90% of the states can
be removed with less than 1% loss in accuracy. Similar results on other models suggest
that the lumping algorithm actually performs better as the number of states increases (in
terms of the percentage of states that can be removed without significant losses in numerical
accuracy).

1 , 1
0.8 0.8
0.6 0.6
P J@k) 04 P (J@k) 04
0.2 0.2
-0 I T T T T -0 I T T T T
2 5 10 K 20 50 2 5 10 K 20 50
Class 2 Function Class 3 Function
1 1
0.8 0.8
0.6 0.6
P @k) 04 P @k) 04
0.2 0.2
-0 I T T T T -0 I T T T T
2 5 10 K 20 50 2 5 10 K 20 50
Type 1 Deceptive Type 2 Deceptive

Figure 6: P(J Q k) where € is 0.0 and 0.030 for Several Functions

So far we have been using P(J @ k = 100) as a measure of the accuracy of reduced models.
In point of fact we would like P(J @ k) to be accurate for all values of k, particularly those
representing transient behavior, since that is where most of the interesting GAFO behavior
occurs. Figure 6 graphs the transient behavior for the four functions used in Table 2. The
dotted curves represents the exact P(J @ k) values for k ranging from 2 to 100. The solid
curves represent the values computed for the lumped model when ¢ = .030. The z-axis
is depicted using a log scale in order to focus on the transient behavior. Roughly 80%
of the states have been removed, yet the lumped models are predicting transient behavior
extremely well.

3.5 SEMANTIC LUMPING

We have seen in the preceding section that we can significantly reduce the size of a Markov
model without significant loss of accuracy. This is quite encouraging and allows us to scale
to larger models. This was achieved with a lumping strategy based on properties of the @
matrix without any reference to GA semantics. That is, except for the J set partition of
the state space, the lumping procedure could be used on arbitrary Markov models.

The next step is to understand better from a GA point of view the properties of the states
being lumped. The approach we are taking is to work backwards from the data obtained
in the previous section, which provides examples of effective lumping of states. If the
states being lumped share any obvious properties, these properties could be used to develop
semantically based lumping strategies, which could allow us to perform lumping without
having to compute the full Q matrix. We are currently exploring these ideas and briefly

summarize our work in progress in this section.

Recall that the states in these Markov models represent the set of all possible populations
of size n of binary strings of length [, as enumerated by the incidence matrix Z (e.g., Table
1). One pattern that shows up quite clearly is that states (populations) that are nearly
identical to each other in their Z row entries are frequently lumped. This is particularly
true if populations differ only on strings with low fitness. Hence one could imagine a
similarity measure based on Hamming distance and fitness alone without any reference to
the () matrix at all.

How effective is this? Preliminary results suggest that measures based on these two prop-
erties alone are not sufficient. This appears to be due to the fact that there must be some
accounting for the amount of time spent in states to be lumped. Recall that column mass
estimates the relative amount of time spent in a given state. We have been able to obtain
reasonably effective results by adding column mass weighting, but that involves the @) ma-
trix. If time spent in a state could be characterized via GA semantics, then we would have
a promising basis for purely semantic lumping. We are currently pursuing this possibility.

4 RELATED WORK

There is a considerable body of literature involving both lumped Markov models and tran-
sient behavior. We briefly summarize in this section that work which is most closely related
to the work presented here.

Vose (1995) describes an “aggregation” (lumping) theorem, which arbitrarily partitions the
set of states S into s non-empty sets Si,...,.Ss. Denoting the steady state probability of
state i as m;, this theorem states that if

Q;',j = ! Z Ty Z Dz,y (8)
S

.
Ezesi TreS; yeS;

I
then 7} = Zzesj Tg-

This theorem states that if lumping is performed in this manner, the steady state behavior of
the lumped system is the same as the original system. Interestingly, this form of aggregation
has also been applied in the Markov community (e.g., see Stewart and Wu, 1992). In both
cases the emphasis has been on examining steady state behavior. Note that one difference
between our method of lumping and the more traditional method is the choice of weights
- we focus on column mass instead of steady state values. This leads to the intriguing
hypothesis that our lumping algorithm will be more accurate when describing transient
behavior. Preliminary results appear to confirm this hypothesis.

Transient behavior has also been investigated by the Markov community, but traditional
techniques often involve the computation of “matrix exponentials”, in which the Markov
chain is described by a system of ordinary differential equations (e.g., see Sidje and Stewart,
1996). Although these techniques are not related to our lumping algorithm, it is possible that
they could answer the same types of questions. Future work will focus on this possibility.

Finally, it has been noted in the literature (Dayar and Stewart, 1996; Kemeny and Snell,
1960) that perfect lumping can occur if there exists a partition of the states into “blocks”

such that:

VS:, S5 CSVE € Sit Y Pay = ki)
yES;

where k; ; is a constant value that depends only on ¢ and j. This means that the probability
of transitioning from each state in any block S; to any other block S; must be the same.
Since this is related to our notion of “row similarity”, being more general but harder to
compute, it raises the interesting possibility of a more general version of the sum of the
squared error (SSE) metric that will still yield good results.

5 SUMMARY AND CONCLUSIONS

In this paper, we have explored alternative orderings of the states of Markov models of GAs
based on interesting semantic properties such as average fitness, degree of homogeneity,
average attractive force, etc. We have also explored lumping techniques for reducing the
size of the state space and the corresponding Markov models. Analysis of these reordered
and lumped Markov models provides new insights into the transient behavior of GAs in
general and GAFOs in particular. The emerging picture is one in which a relatively small
number of states dominate the transient behavior of GAs and serve as basins of attraction.
The characteristics of these basins of attraction are states (populations) which are nearly
homogeneous and contain copies of high fitness individuals.

As we have seen, further analysis of Markov models involving the full state space is not likely
to scale to “real world” configurations. However, the results obtained from these smaller
models have provided some insights into how one might obtain useful semantically lumped
models which would scale better. We are currently pursuing these ideas.

Acknowledgements

We would like to thank Diana Gordon and the anonymous referees for their constructive
comments which were quite helpful in improving the paper.

References

T. Dayar & W. J. Stewart. (1996) Quasi-lumpability, lower bounding coupling matrices,
and nearly completely decomposable Markov chains. To appear in the SIAM Journal on
Matriz Analysis and Applications.

K. A. De Jong, W. M. Spears, & D. F. Gordon. (1994) Using Markov chains to analyze
GAFOs. Proceedings of the Foundations of Genetic Algorithms Workshop. Estes Park, CO:
Morgan Kaufmann, 115 - 137.

J. Kemeny & J. Snell. (1960) Finite Markov Chains. D. Van Nostrand, New York.

A. E. Nix & M. D. Vose. (1992) Modelling genetic algorithms with Markov chains. Annals
of Mathematics and Artificial Intelligence #5, 79 - 88.

R. Sidje & W. J. Stewart. (1996) A survey of methods for computing large sparse matrix
exponentials arising in Markov chains. Submitted for publication.

W. M. Spears. (1996) A compression algorithm for probability transition matrices. NRL-
AIC Technical Report. In preparation.

W. J. Stewart & W. Wu. (1992) Numerical experiments with iteration and aggregation for
Markov chains. ORSA Journal on Computing, Volume 4, #3, 336 - 350.

M. Vose. (1995) Modeling Simple Genetic Algorithms. Evolutionary Computation, Volume
3, 44, 453-472.

