
Using Genetic Algorithms to Solve NP-Complete Problems

Kenneth A. De Jong William M. Spears
George Mason University Navy Center for Applied Research in AI

KDEJONG@GMUVAX2.GMU.EDU SPEARS@AIC.NRL.NAVY.MIL

Abstract
A strategy for using Genetic Algorithms (GAs) to
solve NP-complete problems is presented. The key
aspect of the approach taken is to exploit the obser-
vation that, although all NP-complete problems are
equally difficult in a general computational sense,
some have much better GA representations than oth-
ers, leading to much more successful use of GAs on
some NP-complete problems than on others. Since
any NP-complete problem can be mapped into any
other one in polynomial time, the strategy described
here consists of identifying a canonical NP-complete
problem on which GAs work well, and solving other
NP-complete problems indirectly by mapping them
onto the canonical problem. Initial empirical results
are presented which support the claim that the
Boolean Satisfiability Problem (SAT) is a GA-
effective canonical problem, and that other NP-
complete problems with poor GA representations
can be solved efficiently by mapping them first onto
SAT problems.

1. Introduction

One approach to discussing and comparing AI
problem solving strategies is to categorize them using the
terms ‘‘strong’’ and ‘‘weak’’ methods. Generally, a weak
method is one which has the property of wide applicabil-
ity but, because it makes few assumptions about the prob-
lem domain, can suffer from combinatorially explosive
solution costs when scaling up to larger problems. State
space search algorithms and random search are familiar
examples of weak methods.

Frequently, scaling up problems can be avoided by
making sufficiently strong assumptions about the problem
domain and exploiting these assumptions in the problem
solving method. Many expert systems fall into this
category in that they require and use large amounts of
domain- and problem-specific knowledge in order to
efficiently find solutions in enormously complex spaces.
The difficulty with strong methods, of course, is their lim-
ited domain of applicability leading, generally, to
significant redesign even when applying them to related
problems.

These characterizations tend to make one feel
trapped in the sense that one has to give up significant
performance to achieve generality, and vice versa. How-
ever, it is becoming increasingly clear that there are at
least two methodologies which fall in between these two
extremes and offer in similar ways the possibility of
powerful, yet general problem solving methods.

The two approaches we have in mind are Genetic
Algorithms (GAs) and Neural Networks (NNs). They are
similar in the sense that they achieve both power and gen-
erality by demanding that problems be mapped into their
own particular representation in order to be solved. If a
fairly natural mapping exists, impressive robust perfor-
mance results. On the other hand, if the mapping is awk-
ward and strained, both approaches behave much like the
more traditional weak methods yielding mediocre,
unsatisfying results when scaling up.

These observations suggest two general issues
which deserve further study. First, we need to understand
how severe the mapping problem is. Are there large
classes of problems for which effective mappings exist?
Clearly, if we have to spend large amounts of time and
effort in constructing a mapping for each new problem,
we aren’t any better off than the more traditional strong
methods. The second major issue involves achieving a
better understanding of the relationship between GAs and
NNs. Are the representation issues and/or performance
characteristics significantly different? Are there classes of
problems handled much more effectively by one approach
than the other?

This paper is a first step in exploring these issues. It
focuses on GAs and how they can be applied to a large,
well-known class of combinatorially explosive problems:
NP-complete problems. A parallel effort is underway
using NNs to solve NP-complete problems. Although a
conclusive study is not yet completed, We will describe
some preliminary results which compare the performance
of GAs and NNs on a family of very difficult NP-complete
problems.

2. NP-Complete Problems

In complexity theory, NP denotes the set of all
(decision) problems solvable by a non-deterministic

1

polynomial time algorithm. P denotes the set of all (deci-
sion) problems solvable by a deterministic polynomial
time algorithm. NP problems are considered "hard" in the
sense that they are not currently solvable in deterministic
polynomial time. It is an open question whether NP = P.

The canonical example of a problem in NP is the
boolean satisfiability problem (SAT): Given an arbitrary
boolean expression of n variables, does there exist an
assignment to those variables such that the expression is
true? Other familiar examples include job shop schedul-
ing, bin packing, and traveling salesman problems.

The concept of NP-completeness comes from the
observation that, although every problem L in NP can be
transformed into an equivalent SAT problem in polyno-
mial time (Cooke’s theorem), the reverse polynomial-time
transformation may not exist. Those problems in NP
which do have 2-way transformations form an
equivalence class of "equally hard" problems and have
been called NP-complete problems [Garey79].

Although NP-complete problems are computation-
ally equivalent in this complexity theoretic sense, they do
not appear to be equivalent at all with respect to how well
they map onto GA (or NN) representations. For example,
in the case of GAs, the SAT problem has a very natural
representation while finding effective representations for
bin packing, job shop scheduling, and traveling salesman
problems seems to to be quite difficult [DeJong85, Gold-
berg85, Grefenstette85, Smith85, Davis85, Oliver87,
Goldberg89].

These observations suggest the following intriguing
strategy. Suppose we are able to identify an NP-complete
problem which has an effective representation in the
methodology of interest (GAs or NNs) and develop an
efficient problem solver for that particular case. Other
NP-complete problems which don’t have effective
representations can then be solved by transforming them
into the canonical problem, solving it, and transforming
the solution back to the original one.

We have explored this strategy in detail for GAs
using SAT as the canonical NP-complete problem. A
similar effort is underway using NNs and will be
presented at a later date.

3. Genetic Algorithms and Boolean Satisfiability Prob-
lems

In order to apply GAs to a particular problem, we
need to select an internal string representation for the
solution space and define an external evaluation function
which assigns utility to candidate solutions. Both com-
ponents are critical to the success/failure of the GAs on
the problem of interest. We have selected SAT as the
choice for our canonical NP-complete problem because it
appears to have a highly desirable string representation,
namely, binary strings of length N in which the i-th bit

represents the truth value of the i-th boolean variable of
the N boolean variables present in the boolean expression.
It is hard to imagine a representation much better suited
for use with GAs: it is fixed length, binary, and context
independent in the sense that the meaning of one bit is
unaffected by changing the value of other bits
[DeJong85].

3.1. Choosing a Payoff Function

Somewhat more thought must be given to selecting
an evaluation function. The simplest and most natural
function assigns a payoff of 1 to a candidate solution
(string) if the values specified by that string result in the
boolean expression evaluating to TRUE, and 0 otherwise.
A moment’s thought, however, suggests that for problems
of interest the payoff function would be 0 almost every-
where and would not support the formation of useful
intermediate building blocks. Even though in the real
problem domain, partial solutions to SAT are not of much
interest, they are critical components of a GA approach.

One approach to providing intermediate feedback
would be to transform a given boolean expression into
conjunctive normal form (CNF) and define the payoff to
be the total number of top level conjuncts which evaluate
to true. While this makes some intuitive sense, one can-
not in general perform such transformations in polyno-
mial time without introducing a large number of addi-
tional boolean variables which, in turn, combinatorially
increase the size of the search space.

An alternative would be to assign payoff to indivi-
dual clauses in the original expression and combine them
in some way to generate a total payoff value. In this con-
text the most natural approach is to define the value of
TRUE to be 1, the value of FALSE to be 0, and to define
the value of simple expressions as follows:

val (NOT e) = 1 − val (e)

val (AND e 1
. . . en) = MIN (val (e 1) . . . val (en))

val (OR e 1
. . . en) = MAX (val (e 1) . . . val (en))

Since any boolean expression can be broken down
(parsed) into these basic elements, one has a systematic
mechanism for assigning payoff. Unfortunately, as the
astute reader has probably already noticed, this mechan-
ism is no better than the original one since it still only
assigns payoff values of 0 and 1 to both individual clauses
and and the entire expression.

However, a minor change to this mechanism can
generate differential payoffs, namely:

val (AND e 1
. . . en) = AVE (val (e 1) . . . val (en))

This suggestion was made first by Smith [Smith79]
and intuitively justified by arguing that this would reward

2

‘‘more nearly true’’ AND clauses. So, for example, solu-
tions to the boolean expression

X1 AND (X1 OR X2

)

would be assigned payoffs as follows:_____________________________________
X1 X2 PAYOFF_____________________________________
0 0 (AVE 0 (MAX (0 (1 - 0))) = 0.5
0 1 (AVE 0 (MAX (0 (1 - 1))) = 0.0
1 0 (AVE 1 (MAX (1 (1 - 0))) = 1.0
1 1 (AVE 1 (MAX (1 (1 - 1))) = 1.0_____________________________________

��
�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

Notice that both of the correct solutions (lines 3 and 4) are
assigned a payoff of 1 and, of the incorrect solutions (lines
1 and 2), line 1 gets higher payoff because it got half of
the AND right.

This approach was used successfully by Smith and
was initially adopted in our experiments. However, there
were a number of features of this payoff function that left
us uncomfortable and which led to a more careful exami-
nation of it.

The first and fairly obvious property of using AVE
to evaluate AND clauses is that the payoff function is not
invariant under standard boolean equivalency transforma-
tions. For example, it violates the associativity law:

val ((X1 AND X2) AND X3) ≠ val (X1 AND (X2 AND X3))

since

(AVE (AVE X1 X2) X3) ≠ (AVE X1 (AVE X2 X3))

We have attempted to construct alternative differential
payoff functions which have this ideal property of payoff
invariance and have had no success. However, one could
argue that a weaker form of invariance might be adequate
for use with GAs, namely, truth invariance. By that we
mean that the payoff function should assign the same
value (typically 1, but could even be a set of values) to all
correct solutions of the given boolean expression, and
should map all incorrect solutions into a set of values
(typically 0 ≤ value < 1) which is distinct and lower than
the correct ones. Since boolean transformations do not
occur while the GAs are searching for solutions, the
actual values assigned non-solutions would seem to be of
much less importance than the fact that they are useful as
a differential payoff to support the construction of partial
solutions.

Unfortunately, the proposed payoff function does
not even guarantee this second and weaker property of
truth invariance as the following example shows:

X1 OR X2 = (X1

AND X2

)

by De Morgan

However,

(MAX X1 X2) ≠ 1 −
2

((1 − X1) + (1 − X2))__________________

as we see in the following table:_______________________________
X1 X2 Left side Right side_______________________________
0 0 0 0
0 1 1 1/2
1 0 1 1/2
1 1 1 1_______________________________

��
�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

Notice that lines 2-4 are all solutions, but lines 2 and 3 are
assigned a payoff of 1/2 after De Morgan’s law has been
applied.

In general, it can be shown that, although the payoff
does not assign the value of 1 to non-solutions, it fre-
quently assigns values < 1 to perfectly good solutions and
can potentially give higher payoff to non-solutions!

A careful analysis, however, indicates that these
problems only arise when De Morgan’s laws are involved
in introducing terms of the form (AND . . .)

. This sug-

gests a simple fix: preprocess each boolean expression by
systematically applying De Morgan’s laws to remove such
constructs. It also suggests another interesting opportun-
ity. Constructs of the form (OR . . .)

are computed

correctly, but only take on 0/1 values. By using De
Morgan’s laws to convert these to AND constructs, we
introduce additional differential payoff. Converting both
forms is equivalent to reducing the scope of all NOTS to
simple variables. Fortunately, unlike the conversion to
CNF, this process has only linear complexity and can be
done quickly and efficiently.

In summary, we feel that, with the addition of this
preprocessing step, we now have an effective payoff func-
tion for applying GAs to boolean satisfiability problems.
This payoff function has the following properties: 1) it
assigns a payoff value of 1 if and only if the candidate
solution is an actual solution; 2) it assigns values in the
range 0 ≤ value < 1 to all non-solutions; and 3) non-
solutions receive differential payoff on the basis of how
near their AND clauses are to being satisfied.

3.2. Possible Improvements to the Payoff Function

One way to view the problems discussed in the pre-
vious section is to note that many of the undesirable
effects are due to the fact that, by choosing to evaluate
AND /OR clauses with AVE /MAX, we have broken the
natural symmetry between AND and OR in the sense that
AND clauses will have differential payoffs assigned to
them while OR clauses will only be assigned 0/1. An
interesting observation is that evaluating AND nodes by
raising AVE to some integer power p is still truth preserv-
ing (assuming the preprocessing step described above)
and has several additional beneficial effects. First, it has
the effect of reducing the AND /OR asymmetry by

3

reducing the average score assigned to a false AND
clause. In addition, it increases the differential between
the payoff for AND clauses with only a few 1s and those
which are nearly true.

On the other hand, as p approaches infinity, the
function AVE p behaves more and more like MIN which
means we have again lost the differential payoff property.
This suggests an interesting optimization experiment to
determine a useful value for p. We will present our initial
results on this in the next section.

4. Experimental Results

4.1. Implementation Details

All of our experiments have been performed using a
Lucid Common Lisp implementation of the GAs. In all
cases the population size has been held fixed at 100, the
standard 2-point crossover operator has been applied at a
60% rate, the mutation rate is 0.1%, and selection is per-
formed via Baker’s SUS algorithm [Baker87].

Having formulated SAT as an optimization prob-
lem, there are some interesting issues concerning conver-
gence to a solution. First of all, whenever a candidate
evaluates to 1, we know that a solution has been found
and the search can be terminated. Conversely, there is
strong motivation to continue the search until a solution is
found (since nearly true expressions are not generally of
much interest to the person formulating the problem).
The difficulty, of course, is that on any particular run there
is no guarantee that a solution will be found in a reason-
able amount of time due to the increasing homogeneity of
the population as the search proceeds.

One approach would be to take extra measures to
guarantee continuing diversity (such as increasing muta-
tion, selection by ranking, introducing crowding factors,
etc.). Unfortunately, these all have additional side effects
which would need to be studied and controlled as well.
We have chosen a simpler approach. We use De Jong’s
measure of population homogeneity based on allele ‘‘con-
vergence’’ [DeJong75], and when that measure exceeds
90%, the GA is restarted with a new random population.
Consequently, in the experimental data presented in the
subsequent sections, the evaluation counts reflect all of
the GA restarts. Although this technique might seem a bit
drastic, it appears to work quite well in practice.

Since the number of evaluations (trials) required to
find a solution can vary quite a bit from one run to the
next due to stochastic effects, all of the results presented
here represent data averaged over at least 10 independent
runs.

4.2. Initial SAT Experiments

Our first set of experiments involves constructing
several families of boolean expressions for which we can

control the size and the difficulty of the problem. The first
family selected consists of two-peak (TP) expressions of
the form:

(AND X1
. . . Xn) OR (AND X1

. . . Xn

__
)

which have exactly two solutions (all 0s and all 1s). By
varying the number n of boolean variables, one can
observe how the GAs perform as the size of the search
space increases exponentially while the number of solu-
tions remains fixed.

Figure 1 presents the results of varying n between
10 and 90 (i.e., for search spaces ranging in size from 210

to 290). It is clear that the differential payoff function is
working as intended, and that the GAs can locate solu-
tions to TP problems without much difficulty.

To make things a bit more difficult, we changed the
problem slightly by turning one of the solutions into a
false peak (FP) as follows:

(AND X1
. . . Xn) OR (AND X1 X1

. . . Xn

__
)

so that the previous all 0s solution is now almost correct
and the only correct solution is that of all 1s.

-0 20 40 60 80

-0

5000

10000

15000

20000

Evals

Variables = log(Search Space)

-0 20 40 60 80

1

2

3

4

5

log(Evals)

Variables = log(Search Space)

Figure 1: Performance of GAs on the TP Problems

4

Figure 2 presents the results of applying GAs to the
FP family with n ranging from 10 to 90. As before, we
see that the GAs have no difficulty in finding the correct
solution even in the presence of false peaks.

Since we are dealing with problems for which there
are no known polynomial-time algorithms, we have been
particularly interested in the log-log graphs. Notice that,
for both the TP and FP problems, a sub-linear curve is
generated, indicating (as expected) a substantial improve-
ment over systematic search. The form that these sub-
linear curves take give some indication of the speedup
(over systematic search) obtained by using GAs. If, for
example, these curves are all logarithmic in form, we
have a polynomial-time algorithm for SAT! Additional
discussion of these curves will occur in a later section
after more data has been presented.

With these initial encouraging results, we were
eager to apply GAs to more naturally arising boolean
expressions. However, we have found it difficult to find
good examples of hard SAT problems (including those

-0 20 40 60 80

-0

10000

20000

30000

40000

50000

Evals

Variables = log(Search Space)

-0 20 40 60 80

1

2

3

4

5

log(Evals)

Variables = log(Search Space)

Figure 2: Performance of GAs on the FP Problems

used by Smith [Smith79]). So, we have chosen instead to
look at other NP-complete problems as possible sources.
The first one we have selected is the family of hamil-
tonian circuit problems.

4.3. Solving Hamiltonian Circuit Problems

The hamiltonian circuit (HC) problem consists of
finding a tour through a directed graph that touches all
nodes exactly once. Clearly, if a graph is fully connected,
this is an easy task. However, as edges are removed the
problem becomes much more difficult, and the general
problem is known to be NP-Complete.

Attempting to solve this problem directly with GAs
raises many of the same representation issues as in the
case of traveling salesman problems [DeJong85, Grefen-
stette85]. However, it is not difficult to construct a
polynomial-time transformation from HC problems to
SAT problems.

An example of the transformation we are using is
given in Figure 3. The definition of the HC problem
implies that, for any solution, each node must have
exactly one input edge and one output edge. If any tour
violates this constraint, it cannot be a solution. Therefore,
an equivalent boolean expression is simply the conjunc-
tion of terms indicating valid edge combinations for each
node. As an example, consider node d. Node d has two
output edges and one input edge. The output edge con-
straints are given by the exclusive-or,
((db and de

__
) or (db

__
 and de)). The input edge is

Figure 3: Transforming HC Problems to SAT Problems

5

described simply by cd. The assignments to the edge
variables indicate which edges make up a tour, with a
value of 1 indicating an edge is included and a value of 0
if it is not. This transformation is computed in polyno-
mial time, and a solution to the HC problem exists if and
only if the boolean expression is satisfiable.

As before, we wish to systematically study the per-
formance of GAs on a series of increasingly difficult HC
problems. Clearly, the complexity in this case is a func-
tion of both the number of nodes and the number of
directed edges. For a given number N of nodes, problems
with only a small number of edges (≤ N) or nearly fully
connected (approximately N 2 edges) are not very
interesting. We feel that problems with approximately

2
N 2____ edges would, in general, present the most difficult

problems. In addition, to achieve some degree of uniform
difficulty and to allow for a direct comparison with some
of the results in the previous section, we wanted the prob-
lems to have exactly one solution. Consequently, we
have defined the following family of HC problems for our
experiments.

Consider a graph of n nodes, which are labeled
using consecutive integers. Suppose the first node has
directed edges to all nodes with larger labels (except for
the last node). The next n−2 nodes have directed edges to
all nodes with larger labels (including the last one). The
last node has a directed edge back to the first node. A
complete tour consists of following the node labels in
increasing order, until you reach the last node. From the
last node you travel back to the first. Because the edges
are directed, it is clear that this is also the only legal tour.

Intuitively, such instances of HC problems should
be difficult. Only one tour exists in each instance. In addi-
tion, there are a large number of solutions that are almost
complete tours scattered throughout the search space.
Figure 4 illustrates what the corresponding SAT payoff
function looks like for an HC problem of this type with 7
nodes.

In summary, our experimental framework consists
of varying the number N of nodes in the range 4 ≤ N ≤ 10

Figure 4: SAT Payoff function for a 7-node HC Problem

and, for each value of N, generating a directed graph of

the form described above containing approximately
2

N 2____

edges and exactly one solution. Each of these HC prob-
lems is transformed into its equivalent SAT problem using
the transformation described above, generating search
space sizes ranging from 26 to 245 . GAs are then used to
solve each of the corresponding SAT problems which, in
turn, describes a legal HC tour.

Figure 5 presents the results of these experiments.
Notice that we have succeeded in generating significantly
more difficult SAT problems in that the number of evalua-
tions required to find a solution is an order of magnitude
higher that the earlier TP and FP problems. However,
even with these difficult problems, the log-log plot is still
sub-linear.

4.4. Improvements to the SAT Payoff Function

Although we were pleased with the results so far,
we were very curious as to the effects of using AVE p in

-0 20 40 60

-0

200000

400000

600000

800000

1e+06

Evals

Variables = log(Search Space)

-0 20 40 60

1

2

3

4

5

6

log(Evals)

Variables = log(Search Space)

Figure 5: Performance of GAs on the HC Problems

6

the payoff function for integer values of p > 1 for the rea-
sons discussed in section 3.2. Our hypothesis was that
initial increases in the value of p would improve perfor-
mance, but that beyond a certain point performance would
actually drop off as AVE p began to more closely approxi-
mate MIN.

-0 20 40 60 80

-0

5000

10000

15000

20000

Evals

Variables = log(Search Space)

..
.

..
.

...
...

...
..
..
...
..
..
..
..
.TP Problems

AVEˆ5

AVEˆ4

AVEˆ3

AVEˆ1

AVEˆ2

-0 20 40 60 80

-0

10000

20000

30000

40000

50000

Evals

Variables = log(Search Space)

..
.

....
...

...
..
..
..
..
.........

FP Problems

AVEˆ5

AVEˆ1

AVEˆ4

AVEˆ2
AVEˆ3

-0 10 20 30 40

-0

20000

40000

60000

80000

100000

Evals

Variables = log(Search Space)

...
. ..

....
..
..
..
..
..
..
.

HC Problems

AVEˆ5

AVEˆ1
AVEˆ4

AVEˆ3

AVEˆ2

Figure 6: Performance of GAs using AVE p

We tested this hypothesis by re-running the GAs on
the three families of problems (TP, FP, and HC) varying p
from 2 to 5, and compared their performance with the ori-
ginal results with p = 1. Figure 6 presents the results of
our experiments. Somewhat surprisingly, an optimum
appeared already at p = 2. Accordingly, we have adopted
that value for the remaining experimental work we have
performed.

4.5. Some Empirical Evidence of Implicit Parallelism

One of the nice theoretical results in Holland’s ori-
ginal analysis of the power of GAs is the ‘‘implicit paral-
lelism’’ theorem which sets a lower bound of an N3

speedup over systematic sequential search [Holland75].
This suggests that, in the worst case, GAs should not have
to search more than the cube root of the search space in
order to find a solution and, in general, should do much
better.

One of the unexpected benefits of the experimental
results presented here is substantial empirical evidence of
just such speedups on SAT problems.

Figure 7 summarizes the performance of the GAs
on the 3 families of SAT problems using AVE2 in the
payoff function. As we noted earlier, the log-log curves
appear to be sub-linear. To get a better feeling for the
form of these curves, we have tried to fit both linear and
quadratic curves to the data. For each of the families of
SAT problems, a quadratic form produces a better fit and,
by using the coefficients of the quadratic form, we can
calculate the observed speedup. The results are as fol-
lows:

TP speedup: N7.28

FP speedup: N6.25

HC speedup: N2.94

Clearly, on the easier problems (TP and FP) we are per-
forming better than the predicted lower bound. What is
particularly intriguing, however, is how well the empiri-
cal results match the theoretical results for the HC family
which we have deliberately constructed to be a class of
very difficult single-solution problems.

5. Current Activities

5.1. C and Parallelization

The experiments reported here have been con-
strained by our use of Lucid Common Lisp. While Lisp
makes it easy to automate the process of generating Lisp
code for the various SAT families of problems, the Lucid
Lisp compiler imposes internal limits on the size and
complexity of the functions it can compile. We hit these
limits when attempting to generate payoff functions for
HC problems with more than 10-11 nodes. We are in the
process of switching over to the Genesis system, a C
implementation of GAs [Grefenstette84], to avoid these

7

-0 20 40 60 80

1

2

3

4

5

6

Log(Evals)

Variables = log(Search Space)

TP Problems

-0 20 40 60 80

1

2

3

4

5

6

Log(Evals)

Variables = log(Search Space)

FP Problems

-0 20 40 60

1

2

3

4

5

6

Log(Evals)

Variables = log(Search Space)

HC Problems

Figure 7: Summary Performance of GAs using AVE2

limitations. A side benefit of this conversion is that the
experiments also run a order of magnitude faster! Since
many GA sites already use Genesis, this step has the
added advantage of creating an additional GA testbed for
the GA community.

More exciting perhaps is the use of parallelism.
Genesis is being converted for use on the Butterfly
machine at NRL. The Butterfly is a MIMD machine with

128 68020-based nodes. Preliminary results suggests that
the use of this machine could result in a two order of mag-
nitude speedup in execution time.

5.2. An NP-Complete Factorization Problem

Although the GA’s have performed well on TP, FP,
and HC problems, one can argue that the problems are
simply not interesting, since the TP and FP problems are
somewhat artificial and there already exists specialized
algorithms for HC problems which can out perform the
GAs on the examples shown. What is perhaps needed at
this point to evaluate the robustness of this approach is a
problem which is known to be NP-complete, but for
which few (if any) specialized algorithms have been
developed.

An example of such a problem has come to us from
the cryptography community. Most cryptography systems
make use of prime numbers and factorization [Rivest78].
Hoey [Hoey89] has devised an algorithm for converting a
factorization decision problem into an equivalent SAT
problem. For example, a problem of the form:

"Does 689 have a 4 bit factor?"
can be converted to a boolean expression with 22 vari-
ables, 105 clauses, and 295 literals.

Such problems are of interest to both the crypto-
graphic and complexity theory communities because they
are generally highly intractable. We plan a set of exten-
sive experiments when we have completed the conver-
sions described in the previous section.

5.3. A Comparison with Simulated Annealing

As mentioned earlier, we are also examining the
use of neural networks (NNs) to solve NP-Complete prob-
lems. In particular, we have developed a method for
using simulated annealing (a class of NNs [McClel-
land88]) to solve SAT problems. Although the details of
the methodology will not be presented here, some experi-
mental highlights are worth mentioning.

First, SA’s work remarkably well on the TP prob-
lem, producing correct solutions in almost constant time
(regardless of the size of the TP problem). In this case,
SA’s are essentially greedy algorithms, and the results are
not surprising. Secondly, SA’s appear to be reasonably
competitive with GA’s on HC problems, although they are
consistently outperformed on the examples we have run
so far (see Figure 8).

If we again use quadratic fits to the HC data seen so
far, the NN speedup is approximately N2.22 while the GA
speedup (reported earlier) is N2.94 . We will have a more
comprehensive report on these experiments in the near
future.

8

-0 20 40 60

-0

500000

1e+06

Evals

Variables = log(Search Space)

SA

GA

-0 20 40 60

1

2

3

4

5

6

log(Evals)

Variables = log(Search Space)

SA

GA

Figure 8: GAs and SAs on the HC Problems

6. Conclusions

This paper presents a series of initial results regard-
ing a strategy for using GAs to solve NP-complete prob-
lems. This strategy avoids many of the GA representation
difficulties associated with various NP-complete problems
by mapping them into SAT problems for which an
effective GA representation exists.

These initial results support the view that GAs are
an effective, robust search procedure for NP-complete
problems in the sense that, although they may not outper-
form highly tuned, problem-specific algorithms, GAs can
be easily applied to a broad range of NP-complete prob-
lems with performance characteristics no worse than the
theoretical lower bound of an N3 speedup.

This paper also sets the stage for a direct com-
parison between GAs and NNs on NP-complete problems.
We feel that such comparisons are important and
encourage the research community to develop additional
results on these and other problems of interest.

References

Baker, James E. (1987). Reducing Bias and Inefficiency in
the Selection Algorithm, Proc. Int’l Conference on
Genetic Algorithms and their Applications.

Davis, Lawrence (1985). Job Shop Scheduling with
Genetic Algorithms, Proc. Int’l Conference on Genetic
Algorithms and their Applications.

De Jong, K. A. (1975). An Analysis of the Behavior of a
Class of Genetic Adaptive Systems, Doctoral dissertation,
Dept. Computer and Communication Sciences, University
of Michigan, Ann Arbor.

De Jong, K. A. (1985). Genetic Algorithms: a 10 Year
Perspective, Proc. Int’l Conference on Genetic Algorithms
and their Applications.

Garey, Michael R. & David S. Johnson (1979). Comput-
ers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company, San Fran-
cisco, CA.

Goldberg, David E. and Robert Lingle, Jr. (1985). Alleles,
Loci, and the Traveling Salesman Problem, Proc. Int’l
Conference on Genetic Algorithms and their Applications.

Goldberg, David E. (1989). Genetic Algorithms in
Search, Optimization & Machine Learning, Addison-
Wesley Publishing Company, Inc.

Grefenstette, John J. (1984). GENESIS: A system for
using genetic search procedures. Proceedings of the 1984
Conference on Intelligent Systems and Machines, 161-
165.

Grefenstette, John J., et. al. (1985). Genetic Algorithms
for the Traveling Salesman Problem, Proc. Int’l Confer-
ence on Genetic Algorithms and their Applications.

Hoey, Dan Navy Center for Applied Research in Artificial
Intelligence. Private Communication.

Holland, John H. (1975). Adaptation in Natural and
Artificial Systems, The University of Michigan Press.

McClelland, James L. and David E. Rumelhart (1988).
Explorations in Parallel Distributed Processing, The MIT
Press, Cambridge, MA.

Oliver, I. M., Smith, D. J. and J. R. C. Holland (1987). A
Study of Permutation Crossover Operators on the Travel-
ing Salesman Problem, Proc. Int’l Conference on Genetic
Algorithms and their Applications.

Rivest, R. L., et al (1978). A Method for Obtaining Digi-
tal Signatures and Public-key Cryptosystems, CACM, 21,

9

2, 120-6.

Smith, Gerald H. (1979). Adaptive Genetic Algorithms
and the Boolean Satisfiability Problem, Unpublished
Work.

Smith, Derek (1985). Bin Packing with Adaptive Search,
Proc. Int’l Conference on Genetic Algorithms and their
Applications.

10

