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Abstract
Traditionally, genetic algorithms have relied upon 1
and 2-point crossover operators. Many recent empir-
ical studies, however, have shown the benefits of
higher numbers of crossover points. Some of the
most intriguing recent work has focused on uniform
crossover, which involves on the average L/2 cross-
over points for strings of length L. Theoretical
results suggest that, from the view of hyperplane
sampling disruption, uniform crossover has few
redeeming features. However, a growing body of
experimental evidence suggests otherwise. In this
paper, we attempt to reconcile these opposing views
of uniform crossover and present a framework for
understanding its virtues.

1 Introduction
One of the unique aspects of the work involving genetic
algorithms (GAs) is the important role that recombination
plays. In most GAs, recombination is implemented by
means of a crossover operator which operates on pairs of
individuals (parents) to produce new offspring by
exchanging segments from the parents’ genetic material.
Traditionally, the number of crossover points (which
determines how many segments are exchanged) has been
fixed at a very low constant value of 1 or 2. Support for
this decision came from early work of both a theoretical
and empirical nature [Holland, 1975; DeJong, 1975].
However, there continue to be indications that there are
situations in which having a higher number of crossover
points is beneficial [Syswerda, 1989; Eschelman, 1989].
Perhaps the most surprising result (from a traditional per-
spective) is the effectiveness on some problems of uni-
form crossover, an operator which produces on the aver-
age L/2 crossings on strings of length L [Syswerda,
1989].

Recent work by [Spears and De Jong, 1990] has extended
the theoretical analysis of n-point and uniform crossover
with respect to disruption of sampling distributions.

However, they pointed out that disruption analysis alone
is not sufficient in general to predict and/or select optimal
forms of crossover. In particular, they have shown that
the population size must also be taken into account
[DeJong and Spears, 1990]. This paper extends that work
by looking at the properties of a parameterized uniform
crossover operator and by considering two other aspects
of crossover operators, namely, their recombination
potential and their exploratory power. In this context, a
surprisingly positive view of uniform crossover emerges.

2 Disruption Analysis
Holland provided the initial formal analysis of the
behavior of GAs by showing how they allocate trials in a
near optimal way to competing low order hyperplanes if
the disruptive effects of the genetic operators used is not
too severe [Holland, 1975]. Since mutation is typically
run at a very low rate, it is generally ignored as a
significant source of disruption. However, crossover is
usually applied at a very high rate. So, considerable
attention has been given to estimating Pd, the probability
that a particular application of crossover will be disrup-
tive.

Holland’s initial analysis of the sampling disruption of
1-point crossover [Holland, 1975] has been extended to
n-point and uniform crossover [DeJong, 1975; Spears and
DeJong, 1990]. These results are in the form of estimates
of the likelihood that the sampling of a kth order hyper-
plane (Hk) will be disrupted by a particular form of cross-
over. It turns out to be easier mathematically to estimate
the complement of disruption: the likelihood of a sample
surviving crossover (which we denote as Ps). As one
might expect, the results are a function of both the order k
of the hyperplane and its defining length (see the Appen-
dix and [Spears and DeJong, 1990] for more precise
details).

We provide in Figure 1 a graphical summary of a typical
instance of these results for the case of 3rd order hyper-
planes. The non-horizontal curves represent the survival
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of 3rd order hyperplanes under n-point crossover
(n  = 1...6). The horizontal line represents the probability
of survival under uniform crossover. Figure 1 highlights
two important points. First, if we interpret the area above
a particular curve as a measure of the cumulative disrup-
tion potential of its associated crossover operator, then
these curves suggest that 2-point crossover is the least
disruptive of the n-point crossover family, and less dis-
ruptive than uniform crossover. Finally, unlike n-point
crossover, uniform crossover disrupts all hyperplanes of
order k with equal probability, regardless of how long or
short their defining lengths are.

3 A Positive View of Crossover Disruption
A recurring theme in Holland’s work is the importance of
a proper balance between exploration and exploitation
when adaptively searching an unknown space for high
performance solutions [Holland, 1975]. The disruption
analysis of the previous section implicitly assumes that
disruption of the sampling distributions is a bad thing and
to be avoided (e.g., a high disruption may stress explora-
tion at the expense of exploitation). However, this is not
always the case. There are important situations in which
minimizing disruption hinders the adaptive search pro-
cess by overemphasizing exploitation at the expense of
needed exploration. One of the clearest examples of this
is when the population size is too small to provide the
necessary sampling accuracy for complex search spaces
[DeJong and Spears, 1990].

To illustrate this we have selected a 30 bit problem with 6
peaks from [DeJong and Spears, 1990]. The measure of
performance is simply the best individual found by the
genetic algorithm. This is plotted every 100 evaluations.
Since we are maximizing, higher curves represent better
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Figure 1. Survival of 3rd Order Hyperplanes

performance. Figures 2 and 3 illustrate the effect of
population size on GA performance. Notice how uniform
crossover dominates 2-point crossover on the 6-Peak
problem with a small population, but just the opposite is
true with a large population.

One conclusion of these results might be that we should
maintain a portfolio of crossover operators and study the
effects of various combinations. We have been examin-
ing another approach: achieving a better balance of
exploration and exploitation using only uniform cross-
over. We are intrigued by this possibility for two reasons:
its simplicity (only one crossover form) and its potential
for increased robustness because the disruptive effect of
uniform crossover is not influenced by hyperplane
defining length.
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Figure 2: 6-Peak (30 bits) - Population 20
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4 A Closer Look at Uniform Crossover
It is clear that the level of disruption provided by uniform
crossover is too high in many cases (e.g., when large
populations are used). This standard form of uniform
crossover swaps two parents’ alleles with a probability of
0.5. Suppose, however, that we parameterize uniform
crossover, where P0 denotes the probability of swapping.
We can now consider the effect of decreasing P0 .1 Figure
4 illustrates this for 3rd order hyperplanes. Notice how
the disruption of uniform crossover can be controlled by
lowering P0 , without affecting the property that the disr-
uption has no defining length bias. In particular, note that
by simply lowering P0 to .1, uniform crossover is less
disruptive (overall) than 2-point crossover and has no
defining length bias! This suggests a much more positive
view of the potential of uniform crossover, namely, an
unbiased recombination operator whose disruption poten-
tial can be easily controlled by a single parameter P0 .

To test this hypothesis, we have run a number of experi-
ments in which P0 varied. As expected, we can increase
and decrease performance on a given problem with a
fixed population size simply by varying P0 . Figure 5
illustrates this on the 6-Peak problem. Note that in this
particular case, a value of P0  = 0.2 produced the best
results. Referring back to Figures 3 and 4, we can now
see why. For the 6-Peak problem, a population size of
1000 has sufficient sampling capacity to require only the
disruption level provided by 2-point crossover. Uniform
crossover with P0  = 0.2 provides approximately the same
level of disruption but without the length bias.
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Figure 4. Survival of 3rd Order Hyperplanes

____________________________________

1 Note that we do not need to consider the possibility of
increasing P0 , due to the symmetry of uniform crossover.
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Figure 5: 6-Peak (30 bits) - Population 1000

Is this lack of length bias really important? Intuitively, it
should help overcome representation problems in which
important hyperplanes happen to have defining lengths
which are adversely affected by the particular n-point
crossover operator in use. Syswerda illustrated this
clearly with his "sparse 1-max" problem in which 270
fake bits were appended to a 30-bit problem [Syswerda,
1989]. One can show similar results with almost any
problem. Figure 6 illustrates this on our 6-Peak problem
appended with 270 fake bits and the same evaluation
function. Notice that, in comparison to the original 30-bit
problem shown in Figure 5, the performance of 2-point
crossover is worse, while the performance of uniform
crossover (P0  = .2) remains essentially unchanged.

How do we explain the drop in performance of 2-point
crossover? In this case, the 30 important bits are all
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Figure 6: 6-Peak (300 bits) - Population 1000
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within a distance of L/10 of each other (where L is the
length of the string). If we examine Figure 4, we note that
2-point crossover is less disruptive within that range (0 to
L /10) of defining lengths. In other words, the addition of
270 additional bits effectively decreases the disruption of
the important hyperplanes under 2-point crossover. This
effect is most obvious towards the end of the runs (see
Figure 6), where disruption is increasingly useful (due to
the increasing homogeneity of the population). Uniform
crossover is not influenced by the added 270 bits, since it
is insensitive to defining length.

In summary, we see two important virtues of uniform
crossover. The first is the ease with which the disruptive
effect of uniform crossover can be controlled by varying
P0 . This is useful in achieving the proper balance
between exploration and exploitation. The second virtue
is that the disruptive potential of uniform crossover does
not depend on the defining length of hyperplanes. This
allows uniform crossover to perform equally well, regard-
less of the distribution of important alleles.

5 Recombination Potential
Another possible virtue of uniform crossover that has
been discussed in the literature is its recombination
potential. In comparing uniform, 1 and 2-point crossover,
Syswerda felt that uniform crossover gained significant
advantage from its ability to combine small building
blocks into larger ones [Syswerda, 1989]. He defined
recombination potential as the ability of crossover to
create higher order hyperplanes when the parents contain
the necessary lower order hyperplanes. He provided an
analysis showing uniform crossover (P0  = .5) to have a
higher recombination potential than 1 and 2-point cross-
over.

Syswerda pointed out that recombination can be con-
sidered to be a specialized form of survival, in which two
lower order hyperplanes survive onto the same string,
resulting in a higher order hyperplane. This observation
allowed Syswerda to construct a recombination analysis
from his survival analysis. However, since his survival
analysis was limited to 1 and 2-point crossover, and to
uniform crossover with a P0 of .5, his recombination
analysis was similarly limited. This motivated us to
create a new recombination analysis in a similar vein,
since our survival analysis includes all of n-point cross-
over and a parameterized uniform crossover.

In [Spears and DeJong, 1990], we developed a survival
analysis for n-point crossover and a parameterized (P0)
uniform crossover. Details of this analysis, and our
recombination analysis, are presented in the Appendix.
Figure 7 illustrates the relationships of the crossover
operators in terms of their recombination potential (we
denote Pr as the probability of recombination). Note
specifically that there is evidence to support the claim
that uniform crossover (P0  = .5) has a higher
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Figure 7: 3rd Order Hyperplane Recombination

recombination potential than the other crossover opera-
tors. However, it is even more interesting to note that
these relationships are qualitatively identical to those
shown in Figure 4. In other words, if one operator is
better than another for survival, it is worse for recombina-
tion (and vice versa). This observation appears to hold for
all k, and suggests very strongly that the recombination
analysis tells us nothing new about crossover.

6 Exploration Power
It has also been pointed out that disruption does not
necessarily mean useful exploration. Crossover disrup-
tion simply implies that a hyperplane sample has been
modified by crossover in some way so as to no longer be
a member of that hyperplane, without any indication as to
the possible forms that change might take. The potential
number of ways in which a crossover operator can effect
a change has been called its exploratory power. It has
been pointed out that uniform crossover has the addi-
tional property that it has more exploratory power than
n-point crossover [Eschelman, 1989].

To see that this is true, consider the extreme case in
which one parent is a string of all 0s and the other all 1s.
Clearly uniform crossover can produce offspring any-
where in the space while 1 and 2-point crossover are res-
tricted to rather small subsets. In general, uniform cross-
over is much more likely to distribute its disruptive trials
in an unbiased manner over larger portions of the space.

The difficulty comes in analyzing whether this explora-
tory power is a virtue. If we think of exploitation as the
biased component of the adaptive search process, it
makes sense to balance this with unbiased exploration.
Clearly, this exploratory power can help in the early gen-
erations, particularly with smaller population sizes, to
make sure the whole space is well sampled. At the same
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time, some of this exploratory power can be achieved
over several generations via repeated applications of 1
and 2-point crossover. Unfortunately, our current
analysis tools do not allow us to make comparisons of
properties which span generations and are strongly
affected by selection. Hopefully we will develop such
tools and resolve questions of this type in the near future.

7 Conclusions and Further Work
The extensions to the analysis of n-point and uniform
crossover presented in this paper open up an interesting
and positive view of the usefulness of uniform crossover.
There appear to be three potentially important virtues of
uniform crossover. First, the disruption of hyperplane
sampling under uniform crossover does not depend on the
defining length of the hyperplanes. This reduces the pos-
sibility of representation effects, since there is no defining
length bias. Second, the disruption potential is easily
controlled via a single parameter P0 . This suggests the
need for only one crossover form (uniform crossover),
which is adapted to different situations by adjusting P0 .
Finally, when a disruption does occur, uniform crossover
results in a minimally biased exploration of the space
being searched.

The first two virtues have been confirmed both theoreti-
cally and experimentally. At the same time, it should be
emphasized that the empirical studies presented are lim-
ited to a carefully controlled experimental setting. The
authors are currently working on expanding these experi-
ments and on developing an exploration theory for
recombination operators. Our goal is to understand these
interactions well enough so that GAs can be designed to
be self-selecting with respect to such decisions as optimal
population size and level of disruption.
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Appendix
Summary of the Survival Analysis

For n-point crossover, Ps is expressed in the order depen-
dent form (Pk,s):

P2,s( n,  L,  L1  ) = 

i = 0
Σ
n ��

i
n �� ��� L

L1___
� �
	 i 
�� L

L − L1_______
 �
� n − i

Cs

and

Pk,s( n,  L,  L1 , . . . ,  Lk−1  ) =

i = 0 
Σ
 n ��

i
n ������  

L

L1___ 

� �
� i ���  L

L − L1_______ 

� �
 n  − i

Pk−1,s( i,  L1 , . . . ,  Lk−1  ) 

Note that the survival of a kth order hyperplane under n-
point crossover is recursively defined in terms of the sur-
vival of lower order hyperplanes. L refers to the length of
the individuals. The L1

 . . . Lk−1 refer to the defining
lengths between the defining positions of the kth order
hyperplane. The effect of the recursion and summation is
to consider every possible placement of n crossover
points within the kth order hyperplane. The correction
factor Cs computes the probability that the hyperplane
will survive, based on that placement of crossover points.
Suppose that crossover results in x of the k defining posi-
tions being exchanged. Then the hyperplane will survive
if: 1) the parents match on all x positions being
exchanged, or 2) if they match on all k  − x positions not
being exchanged, or 3) they match on all k defining posi-
tions. Hence, the general form of the correction is:

Cs = Peq
x + Peq

k −x − Peq
k

where Peq is the probability of two parents sharing an
allele at each locus, and the Peq

k reflects an overlap
within the 3 possibilities (and hence must be subtracted).
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As an example, consider Figure 8. The two parents are
denoted by P1 and P2. In this figure, we represent the sur-
vival of a 4th order hyperplane. The hyperplane defining
positions are depicted with circles. Since 1 of the defining
positions will be exchanged (under the 2-point crossover
shown), the probability of survival is:

Cs = Peq
1 + Peq

3 − Peq
4

P2:

P1:

Figure 8: 4th Order Hyperplane Survival

For parameterized uniform crossover, Ps is also expressed
in an order dependent form (Pk,s):

Pk,s(Hk) = 

i = 0
Σ
k !"

i
k #$ (P0)i (1 − P0)k −i (Peq

i + Peq
k −i − Peq

k)

where P0 is the probability of swapping two parents’
alleles at each locus. A graphical representation of these
equations has been shown previously in Figure 4.

Recombination Analysis for N-Point Crossover

In our definition of survival, it is possible for a hyper-
plane to survive in either child. Recombination can be
considered a restricted form of survival, in which two
lower order hyperplanes survive to form a higher order
hyperplane. The difference is that the two lower order
hyperplanes (each of which exists in one parent) must
survive in the same individual, in order for recombination
to occur.

In the remaining discussion we will consider the creation
of a kth order hyperplane from two hyperplanes of order
m and n. We will restrict the situation such that the two
lower order hyperplanes are non-overlapping, and
k  = m + n. Each lower order hyperplane is in a different
parent. We denote the probability that the kth order
hyperplane will be recombined from the two hyperplanes
as Pk,r.

An analysis of recombination under n-point crossover is
simple if one considers the correction factor Cs defined
earlier for the survival analysis. Recall that recombina-
tion will occur if both lower order hyperplanes survive in
the same individual. If an n-point crossover results in x

of the k defining positions surviving in the same indivi-
dual (i.e., x is a subset of the m + n defining positions),
then recombination will occur if: 1) the parents match on
all of the x positions, or 2) if they match on all k  − x posi-
tions, or 3) they match on all k defining positions. Hence,
the general form of the recombination correction Cr is:

Cr = Peq
x + Peq

k −x − Peq
k

Note the similarity in description with the survival
correction factor Cs (the only difference is in how x is
defined). In other words, given a kth order hyperplane,
and two hyperplanes of order n and m, Pk,r is simply Pk,s

with the correction factor redefined as above.

As an example, consider Figure 9. In this figure, we
represent the recombination of 2 2nd order hyperplanes.
One hyperplane is depicted with circles, and the other
with rectangles. Since 3 of the defining positions will sur-
vive onto the same individual (under the 2-point cross-
over shown), the probability of survival is:

Cr = Peq
3 + Peq

1 − Peq
4

P2:

P1:

Figure 9: 2nd Order Hyperplane Recombination

Recombination Analysis for Uniform Crossover

The analysis of recombination under uniform crossover
also involves the analysis of the original survival equa-
tion. Note that, due to the independence of the operator
(each allele is swapped with probability P0), the survival
equation can be divided into three parts. The first part
expresses the probability that a hyperplane will survive in
the original string:

Pk,s,orig(Hk) = 
i= 0 
Σ
 k %&

i
k '(   (P0)i   (1 − P0)k −i  (Peq

k −i)

The second part expresses the probability that a hyper-
plane will survive in the other string:

Pk,s,other(Hk) = 
i= 0 
Σ
 k )*

i
k +,   (P0)i   (1 − P0)k −i  (Peq

i)

The final part expresses the probability that a hyperplane
will exist in both strings:
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Pk,s,both(Hk) = 
i= 0 
Σ
 k -.

i
k /0   (P0)i   (1 − P0)k −i   (Peq

k) = Peq
k

Then:

Pk,s(Hk) = Pk,s,orig(Hk) + Pk,s,other(Hk) − Pk,s,both(Hk)

Note, however, that this formulation allows us to express
recombination under uniform crossover. Again, assuming
the recombination of two non-overlapping hyperplanes of
order n and m into a hyperplane of order k:

Pk,r(Hk) = Pm,s,orig(Hm) Pn,s,other(Hn) + 

Pm,s,other(Hm) Pn,s,orig(Hn) − 

Pm,s,both (Hm) Pn,s,both(Hn)

This equation reflects the decomposition of recombina-
tion into two independent survival events. The first term
is the probability that Hm will survive on the original
string, while Hn switches (i.e., both hyperplanes survive
on one parent). The second term is the probability that
both hyperplanes survive on the other parent. The third
term reflects the joint probability that both hyperplanes
survive on both strings, and must be subtracted. Finally, it
is interesting to note that the last term is equivalent to
Peq

mPeq
n  = Peq

k .
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