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Abstract
In the past few years the evolutionary
computation landscape has been rapidly
changing as a result of increased levels of
interaction between various research groups
and the injection of new ideas which
challenge old tenets. The effect has been
simultaneously exciting, invigorating,
annoying, and bewildering to the old-timers
as well as the new-comers to the field.
Emerging out of all of this activity are the
beginnings of some structure, some common
themes, and some agreement on important
open issues. We attempt to summarize these
emergent properties in this paper.

1 INTRODUCTION
The field of evolutionary computation (EC) is in a stage
of tremendous growth as witnessed by the increasing
number of conferences, workshops, and papers in the
area as well as the emergence of a central journal for the
field. Until recently, the field could be characterized as a
fairly amorphous collection of independent research
groups each representing a particular approach to
evolutionary computation with little interaction in the
form of migration and cross-fertilization of ideas.

However, in the past few years the evolutionary
computation landscape has been rapidly changing. There
has been a significant increase in the levels of interaction
between various research groups. New arrivals to the
field have resulted in the injection of new ideas which
challenge old tenets. The effect has been exciting and
invigorating, annoying at times, and in some cases
bewildering to the old-timers as well as the new-comers
to the field.

Emerging out of all of this activity are the beginnings of
some structure, some common themes, and some
agreement on important open issues. We attempt to
summarize these emergent properties in the remainder of
the paper.

2 A HISTORICAL VIEW OF THE FIELD
The most obvious and straightforward way to
characterize the field is in terms of its historical
evolution. There have been three well-defined
paradigms which have served as the basis for much of
the activity in the field: genetic algorithms (GAs),
evolution strategies (ESs), and evolutionary
programming (EP). Each of these paradigms has
acquired an admittedly over simplified characterization
of its basic tenets which, in spite of its shortcomings,
serves as a useful starting point for the subsequent
discussions of issues and open questions.

GAs owe their name to an early emphasis on
representing and manipulating individuals in terms of
their genetic makeup rather than using a phenotypic
representation. Much of the early work used a universal
internal representation involving fixed-length binary
strings with "genetic" operators like mutation and
crossover defined to operate in a domain-independent
fashion at this level without any knowledge of the
phenotypic interpretation of the strings (Holland, 1975;
De Jong, 1975). This universality was also reflected in a
strong emphasis on the design of robust adaptive systems
with a broad range of applications. Equally important
was the early emphasis on theoretical analysis resulting
in "the schema theorem" and characterizations of the role
and importance of crossover.

By contrast, ESs were developed with a strong focus on
building systems capable of solving difficult real-valued
parameter optimization problems (Rechenberg, 1973;
Schwefel, 1981). The "natural" representation was a
vector of real-valued "genes" which were manipulated
primarily by mutation operators designed to perturb the
real-valued parameters in useful ways. Analysis played a
strong role here as well with initial theorems on
convergence to global optima, rates of convergence, and
other ES properties such as the "1/5" rule.

Universality was also a central theme of the early work
on EP. The direction this took was the idea of
representing individuals phenotypically as finite state
machines capable of responding to environmental
stimuli, and developing operators (primarily mutation)
for effecting structural and behavioral change over time
(Fogel et al, 1966). These ideas were then applied to a



broad range of problems including prediction problems,
optimization, and machine learning.

These early characterizations, however, are no longer all
that useful in describing the enormous variety of current
activities on the field. GA practitioners are seldom
constrained to universal fixed-length binary
implementations. ES practitioners have incorporated
recombination operators into their systems. EP is used
for more than just the evolution of finite state machines.
Provocative new terms and ideas like "messy GAs"
(Goldberg, 1991) and "genetic programming" (de Garis,
1990; Koza, 1992) have emerged on the landscape.

This suggests that we need to rethink how we think about
evolutionary computation. Categorizing things
according to historical roots appears to have outgrown its
usefulness. Rather, we need to identify important
dimensions along which the broader field of EC can be
expanded and evaluated. In the remainder of the paper,
we present a first cut at identifying such properties and
also suggest potentially useful dimensions which are
currently unexplored.

3 CENTRAL EC DIMENSIONS
In this section we discuss the most obvious candidates
for important dimensions of the field. The more
speculative dimensions are deferred to next section.

3.1 CHARACTERISTICS OF FITNESS
LANDSCAPES

The majority of the EC work to date has been with
problem domains in which the fitness landscape is time-
invariant and the fitness of individuals can be computed
independently from other members of the current
population. This is a direct result of the pervasiveness of
optimization problems and the usefulness of evolutionary
algorithms (EAs) in solving them. This has led to
considerable insight into the behavior of EAs on such
surfaces including such notions as "GA-easy", "GA-
hard", and "deception".

However, most of these insights evaporate if we attack
problem classes for which the fitness landscapes violate
one or more of our traditional assumptions. There are at
least three important problem classes for which results
are badly needed: autonomously changing landscapes,
the evolution of cooperative behavior, and ecological
problems.

Problems involving autonomously changing landscapes
frequently arise when fitness is defined in terms of one or
more autonomous agents in the environment whose
behavior can change independently of any of the search
activity of an EA. Typical examples are mechanical
devices which age, breakdown, etc, or changes in
weather patterns which dramatically change the "fitness"
of a particular ship on the open sea. If we apply typical
optimization-oriented EAs to such problems, the strong

pressures to converge generally result in a loss of the
population diversity needed to respond to such changes.
We currently have very little insight regarding how to
design EAs for such problems.

Holland’s classifier systems (1986) and iterated
prisoner’s dilemma problems are examples of problems
in which fitness is a function of how well an individual
complements other individuals in the population. Rather
than searching for a single optimal individual, the goal is
to evolve groups of individuals (generalists, specialists,
etc.) which collectively solve a particular problem.

If we apply typical optimization-oriented EAs to such
problems, the strong pressures towards homogeneity in
the population make it difficult to maintain different but
cooperative individuals. Additional mechanisms for
rewarding groups of individuals seem to be required
(e.g., bucket brigades, profit sharing), but we have little
in the way of theory to guide us.

Ecology-oriented problems present a third and perhaps
most difficult class of landscapes in which the shape of
the fitness landscape is directly affected by the
evolutionary process itself. Perhaps a better way to think
of this is in co-evolutionary terms in which multiple
interacting evolutionary processes are at work modeling
the availability of resources, prey-predator relationships,
host-parasite interactions, etc. Very few of our insights
from the optimization world appear to carry over here.

The interest in using EAs to solve problems like these
which violate traditional assumptions continues to grow.
We already have examples of EAs which are are
powerful function optimizers, but which are completely
ineffective for evolving cooperative behavior or tracking
a changing landscape. Modified EAs are now being
developed for these new problem classes, but are also
much less useful as traditional optimizers. These
developments have created both the need and the
opportunity to gain a deeper understanding of the
behavior of EAs.

3.2 INTERNAL REPRESENTATIONS

One of the most critical decisions made in applying
evolutionary techniques to a particular class of problems
is the specification of the space to be explored by an EA.
This is accomplished by defining a mapping between
points in the problem space and points in an internal
representation space.

The EC community differs widely on opinions and
strategies for selecting appropriate representations,
ranging from universal binary encodings to problem-
specific encodings for TSP problems and real-valued
parameter optimization problems. The tradeoffs are
fairly obvious in that universal encodings have a much
broader range of applicability, but are frequently
outperformed by problem-specific representations which
require extra effort to implement but exploit additional
knowledge about a particular problem class.



Although there are strong historical associations between
GAs and binary string representations, between ESs and
vectors of real numbers, and between EP and finite state
machines, we can clearly imagine (and, in fact, have
many examples of) using representations other than the
traditional ones. Claiming one EA approach is better
than another on a particular class of problems is not
meaningful any more without motivating and specifying
(among other things) the representations chosen.

What is needed, but has been difficult to obtain, are
theoretical results on representation theory. Holland’s
schema analysis (1975) and Radcliffe’s (1991)
generalization to formae are examples of how theory can
help guide representation choices. The recent work on
"fitness correlation" (Manderick, et al, 1991) suggests
another approach. Clearly, much more work is required
along this important dimension if effective
representations are to be easily selectable.

3.3 MODELING THE DYNAMICS OF
POPULATION EVOLUTION

At a high level of abstraction we think of evolutionary
processes in terms of the ability of more fit individuals to
have a stronger influence on the future makeup of the
population by surviving longer and by producing more
offspring which continue to assert influence after the
parents have disappeared. How these notions are turned
into computational models varies quite dramatically
within the EC community. This variance hinges on
several important design decisions discussed briefly in
the following subsections.

3.3.1 Population Size Issues

Most current EAs assume a constant population size N
which is specified as a user-controlled input parameter.
So called "steady state" EAs rigidly enforce this limit in
the sense that each time an offspring is produced
resulting in N +1 individuals, a selection process is
invoked to reduce the population size back to N. By
contrast, "generational" EAs permit more elasticity in the
population size by allowing K >>1 offspring to be
produced before a selection process is invoked to delete
K individuals.

Although we understand that the size of an EA’s
population can affect its ability to solve problems, we
have only the beginnings of a theory strong enough to
provide a priori guidance in choosing an appropriate
fixed size (e.g., (Goldberg, 1989a)), not much theory
regarding appropriate levels of elasticity (K), and even
less understanding as to the merits of dynamically
adjusting the population size.

3.3.2 Deletion Strategies

The processes used to delete individuals varies
significantly from one EA to another and includes
strategies such as uniform random deletion, deletion of
the K worst, and inverse fitness-proportional deletion. It
is clear that "elitist" deletion strategies which are too
strongly biased towards removing the worst lead can lead
to premature loss of diversity and suboptimal solutions.
It is equally clear that too little fitness bias results in
unfocused and meandering search. Finding a proper
balance is important but difficult to determine a priori
with current theory.

3.3.3 Parent Selection

Similar issues arise with respect to choosing which
parents will produce offspring. Biasing the selection too
strongly towards the best individuals results in too
narrow a search focus, while too little bias produces a
lack of needed focus. Current methods include uniform
random selection, rank-proportional selection, and
fitness-proportional selection.

Clearly, the parent selection and individual deletion
strategies must complement each other in terms of the
overall effect they have on the exploration/exploitation
balance. We have some theory here for particular cases
such as Holland’s "optimal allocation of trials"
characterization of traditional GAs (Holland, 1975), and
the "1/5" rule for ESs (Schwefel, 1981), but much
stronger results are needed.

3.3.4 The Mechanisms of Reproduction

In addition to these selection processes, the mechanisms
used for reproduction also affect the balance between
exploration and exploitation. At one extreme one can
imagine a system in which offspring are exact replicas of
parents (asexual reproduction with no mutation)
resulting in rapid growth in the proportions of the best
individuals in the population, but with no exploration
beyond the initial population members. At the other
extreme, one can imagine a system in which the offspring
have little resemblance to their parents, maximizing
exploration at the expense of inheriting useful parental
characteristics.

The EC community has focused primarily on two
reproductive mechanisms which fall in between these
two extremes: 1-parent reproduction with mutation and
2-parent reproduction with recombination and mutation.
Historically, the EP and ES communities have
emphasized the former while the GA community has
emphasized the latter.

However, these traditional views are breaking down
rapidly. The ES community has found recombination to
to be useful, particularly in evolving adaptive mutation
rates (Ba.. ck et al, 1991). Various members of the GA
community have reported improved results by not using



recombination (de Garis, 1990), by not using mutation
(Koza, 1992), or by adding new and more powerful
mutation operators (Eshelman and Schaffer, 1991).

As before, we have the tantalizing beginnings of a theory
to help understand and guide the use and further
development of reproductive mechanisms. Beginning
with Holland’s initial work (1975), the GA community
has analyzed in considerable detail the role of crossover
and mutation (see, for example, (Goldberg, 1989b),
(Vose and Liepins, 1991), (Booker, 1992), (De Jong and
Spears, 1992), or (Spears, 1992a)). The ES community
has developed theoretical models for optimal mutation
rates with respect to convergence and convergence rates
in the context of function optimization (Schwefel, 1981).

However, the rapid growth of the field is pressing these
theories hard with "anomalous results" (Forrest and
Mitchell, 1993) and new directions not covered by
current theory. One of the important issues not well
understood is the benefit of adaptive reproductive
operators. There are now a variety of empirical studies
which show the effectiveness of adaptive mutation rates
(e.g., (Fogarty, 1989), (Ba.. ck et al, 1991), or (Fogel and
Atmar, 1992)) as well as adaptive recombination
mechanisms (e.g., (Schaffer and Morishima, 1987),
(Davis, 1989), or (Spears, 1992b)).

4 NEW AND POTENTIALLY
IMPORTANT DIMENSIONS FOR EC
RESEARCH

In the previous section, we summarized the current state
of the art with respect to central EC issues and indicated
where additional research on these issues is required. In
this section, we discuss some more speculative areas
which are likely to play a more central role in the near
future.

4.1 REPRESENTATION AND
MORPHOGENESIS

In the earlier section on representation issues we
discussed the tradeoffs between problem-independent
and problem-specific representations. Closely related to
this is the biological distinction between the more
universal genotypic descriptions of individuals in the
form of plans for generating them and the phenotypic
descriptions of the actual generated structures.

Historically, much of the EA work has involved the
evolution of fairly simple structures could be represented
in phenotypic form or be easily mapped onto simple
genotypic representations. However, as we attempt to
evolve increasingly more complex structures (e.g., Lisp
code (Koza, 1992) or neural networks (de Garis, 1990)),
it becomes increasingly difficult to define forms of
mutation and recombination which are capable of
producing structurally sound and interesting new
individuals. If we look to nature for inspiration, we don’t

see many evolutionary operators at the phenotype level
(e.g., swapping arms and legs!). Rather, changes occur at
the genotype level and the effects of those changes
instantiated via growth and maturation. If we hope to
evolve such complexity, we may need to adopt more
universal encodings coupled with a process of
morphogenesis (e.g., see Dawkins (1987) or Harp, et al
(1989)).

4.2 INCLUSION OF LAMARCKIAN
PROPERTIES

Although EAs may be inspired by biological systems,
many interesting properties arise when we include
features not available to those systems. One common
example is the inclusion of Lamarckian operators, which
allow the inheritance of characteristics acquired during
the lifetime of an individual.

In the EC world this is beginning to show up in the form
of hybrid systems in which individuals themselves go
through a learning and/or adaptation phase as part of
their fitness evaluation, and the results of that adaptation
are passed on to their offspring (e.g., see Grefenstette
(1991)).

Although initial empirical results are encouraging, we
presently have no good way of analyzing such systems at
a more abstract level.

4.3 NON-RANDOM MATING AND SPECIATION

Currently, most EAs incorporate a random mating
scheme in which the species or sex of an individual is not
relevant. One problem with this, as with real biological
systems, is that the offspring of parents from two species
are often not viable. As we move to more complex
systems which attempt to evolve cooperating behavior
and which may have more than one evolutionary process
active simultaneously, the roles of non-random mating
and speciation will become an important issue.

Some solutions to these problems have been suggested,
such as crowding (De Jong, 1975), sharing (Goldberg,
1987), and tagging (Booker, 1982). Unfortunately, these
solutions tend to make fairly strong assumptions, such as
the number of species and/or the distribution of niches in
the environment. For some problems these assumptions
are reasonable. However, in many cases such properties
are not known a priori and must evolve as well.

4.4 DECENTRALIZED, HIGHLY PARALLEL
MODELS

Because of the inherent natural parallelism within an EA,
much recent work has concentrated on the
implementation of EAs on both fine and coarse grained
parallel machines. Clearly, such implementations hold
promise of significant decreases in the execution time of
EAs.



More interestingly, though, for the topic of this paper,
are the evolutionary effects that can be naturally
implemented with parallel machines, namely, speciation,
nicheing, and punctuated equilibria. For example, non-
random mating may be easily implemented by enforcing
parents to be neighbors with respect to the topology of
the parallel architecture. Species emerge as local
neighborhoods within that topology. Subpopulations in
equilibrium are "punctuated" by easily implemented
migration patterns from neighboring subpopulations.

However, each such change to an EA significantly
changes its semantics and the resulting behavior. Our
admittedly weak theory about traditional EAs is
currently of little help in understanding these parallel
implementations.

4.5 SELF-ADAPTING SYSTEMS

Another theme that has been arising with increasing
frequency is the inclusion of self-adapting mechanisms
with EAs to control parameters involving the internal
representation, mutation, recombination, and population
size. This trend is due in part to the absence of strong
predictive theories which specify such things a priori. It
is also a reflection of the fact that EAs are being applied
to more complex and time-varying fitness landscapes.

Some important issues that need to be solved involve the
self-adaptation mechanism itself. For example, do we use
an EA or some other mechanism? If we use an EA, how
do we use fitness as a performance feedback for self-
adaptation?

On a positive note, the EC community has already
empirically illustrated the viability of self-adaptation of
mutation and recombination as noted earlier, as well as
adaptive representations like Argot (Shaefer, 1987),
messy GAs (Goldberg, 1991), the dynamic parameter
encoding (DPE) scheme of Schraudolph and Belew
(1992), and the Delta coding of Whitley et al (1991).

4.6 CO-EVOLUTIONARY SYSTEMS

Hillis’ recent work (1990) on the improvements
achievable by co-evolving parasites along with the actual
individuals of interest gives an exciting glimpse of the
behavioral complexity and power of such techniques.
Holland’s Echo system (1992) reflects an even more
complex ecological setting with renewable resources and
predators.

Both systems suggest an important future role for co-
evolution in EAs, but raise more questions than they
answer concerning a principled method for designing
such systems as well as the kinds of problems for which
this additional level of complexity is both necessary and
effective.

5 SUMMARY AND CONCLUSIONS
This is an exciting time for the EC field. The increased
level of EC activity has resulted in an infusion of new
ideas and applications which are challenging old tenets
and invalidating historical categorizations. In spite of
this rapidly changing EC landscape, some common
structures and agreement on important issues is
beginning to emerge.

We have presented a framework containing both basic
and more speculative dimensions which are useful for
both characterizing the current state of the field, and also
point out important open issues which need further
research. We believe that a view of this sort is an
important and necessary part of the continued growth of
the field.
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