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Abstract

In this paper we develop an empirical
methodology for studying the behavior of
evolutionary algorithms based on problem
generators. We then describe three genera-
tors that can be used to study the effects of
epistasis on the performance of EAs. Finally,
we illustrate the use of these ideas in a pre-
liminary exploration of the effects of epistasis
on simple GAs.

1 Introduction

Although we have made significant progress in recent
years with respect to our ability to analyze evolution-
ary algorithms (EAs) formally, there are still consid-
erable gaps between the algorithms we use, the classes
of problems we wish to solve, and our formal models.
As a consequence, much of our understanding of the
behavior and the capabilities of EAs is the result of a
large body of empirical studies in which comparative
studies are performed on a set of test problems, and
conclusions are drawn concerning the relative merits
of one EA over another.

However, a continual concern of such empirical studies
is that their results may not generalize beyond the test
problems used. A classical example of this is a study in
which a new algorithm is carefully tuned to the point
that it outperforms some existing algorithms on a few
problems, for example, the De Jong test suite (De Jong
1975). The results of such studies typically have only
weak predictive value regarding relative performance
on new problems.

This frequently leaves us “between a rock and a hard
place” in that neither our theoretical models nor our
empirical studies are sufficiently powerful to make ac-
curate predictions about the performance of EAs on
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many classes of problems. And, of course, we are
also periodically reminded that there is no free lunch
(Wolpert and Macready 1995)!

There is considerable effort being put into improved
theoretical models (cf. Belew and Vose 1996). There
has also been some discussion about improving our em-
pirical tools, mostly along the lines of improved test
suites. One of the recurring criticisms of current test
suites is that they do not contain many instances of
non-separable problems (Salomon 1996). Hence, EAs
with strong biases to search along coordinate axes per-
form better than other EAs on such “impoverished”
test suites.

While we share such concerns, we feel there is more
that needs to be done than just adding a few more
problems to existing test suites. Rather, we feel that to
improve our empirical studies we need to develop and
use problem generators that, when used appropriately
can strengthen considerably the results obtained.

In this paper we develop an empirical methodology
based on problem generators. We then describe three
generators that can be used to study the effects of
epistasis on EAs. Finally, we illustrate the use of these
ideas in a preliminary exploration of the effects of epis-
tasis on simple GAs. In this paper we concentrate
on epistatic problems that are non-separable, although
epistasis need not imply non-separability.

2 Using Problem Generators

There are several ways in which one can strengthen
the results obtained from empirical studies, the most
important of which is to remove the opportunity to
hand-tune algorithms to a particular problem or sets
of problems. An abstract model that accomplishes this
is one in which EAs are submitted for testing by an in-
dependent agent who treats each EA as a “black box”
and makes no tuning adjustments during evaluation.



There must, of course, be some agreement as to the
classes of problems to be used for testing, but there
should be no a priori knowledge concerning the par-
ticular problem instances to be used. It is the respon-
sibility of the evaluator to provide a set of problem
instances that are both rich in variety and unbiased
for testing purposes.

While this model seems to suggest the need for an
independent testing agency, our experience has been
that these goals can be achieved quite simply (and
perhaps more systematically) through the use of test
problem generators that are capable of producing ran-
domly generated test problems on demand. Since our
EAs are stochastic algorithms, we already require em-
pirical results to be reported in terms of average be-
havior along with the variance and tests of statisti-
cal significance. Having problem generators allows us
to report such results over a randomly generated set
of problems rather than a few hand-chosen examples.
Thus, by increasing the number of randomly gener-
ated problems, we increase the predictive power of the
results for the problem class as a whole.

A second advantage of problem generators is that in
most cases they are quite easy to parameterize, allow-
ing one to design controlled experiments in which one
or more properties of a class of problems can be varied
systematically to study the effects on particular EAs.

In the remainder of this paper we describe three prob-
lem generators that allow for a more systematic study
of epistasis, and we illustrate their use in understand-
ing better the effects of epistasis on GAs.

3 An NK Landscape Generator

The most obvious candidate for a problem generator
to study the effects of epistasis is Kauffman’s tunable
NK model of fitness landscapes (Kauffman 1989). In
the NK model, N represents the number of genes in
a haploid chromosome and K represents the number
of linkages each gene has to other genes in the same
chromosome. To compute the fitness of the entire chro-
mosome, the fitness contribution from each locus is
averaged as follows:

N

f(chromosome) = %Z f(locus;),

i=1

where the fitness contribution of each locus, f(locus;),
is determined by using the (binary) value of gene 4 to-
gether with values of the K interacting genes as an
index into a table T; of size 2K+! of randomly gener-
ated numbers uniformly distributed over the interval

[0.0,1.0]. For a given gene i, the set of K linked genes
may be randomly selected or consist of the immedi-
ately adjacent genes.

From a practical perspective, there are some problems
in developing a generator of NK landscape problems,
the most important of which is the space required to
store the tables used to compute fitness. The amount
of storage is N2K+1. Even with clever programming
tricks involving sparse tables and lazy evaluation we
are restricted to relatively small models.

Another concern with the NK model is that all genes
have the identical degree (K) of epistasis, while most
“real world” problems vary considerably in the amount
of epistasis among parameter subsets. This concern is
not easily remedied within the NK model, but can be
addressed by looking at other problem classes such as
boolean satisfiability that are not quite so abstract.

4 A Boolean Satisfiability Problem
Generator

Boolean satisfiability (SAT) problems have served as
a useful testbed for many areas of algorithm develop-
ment. They are known to be NP-complete and are
frequently used as the canonical representative of this
class of difficult problems (De Jong and Spears 1989).
The most general statement of SAT problems is: given
an arbitrary boolean expression involving V' boolean
variables, find an assignment of truth values to the V'
boolean variables that makes the entire boolean ex-
pression true. There is no guarantee that such an as-
signment exists, and clearly the difficulty of the prob-
lem generally increases as a function of both the num-
ber of boolean variables and the complexity of the
boolean expression.

Since any boolean expression can be converted to an
equivalent expression in a canonical form such as dis-
junctive normal form (DNF) or conjunctive normal
form (CNF), it is frequently assumed that SAT prob-
lems are presented in a canonical form. Such forms
are usually simplified further by assuming (at no loss
of generality) that all clauses are of the same length
L. This makes it easier to quantify the complexity
of a boolean expression in terms of the number C of
disjunctive (or conjunctive) clauses.

It should be clear that for such normal forms it is quite
straight forward to implement a boolean expression
generator with parameters specifying V, C, and L.
In our case we are looking for a particular form that
allows us to study the effects of epistasis in a controlled
fashion. One such generator that has this property is



referred to as Random L-SAT (Mitchell, Selman, and
Levesque 1992), which we now describe in more detail.

The Random L-SAT problem generator creates ran-
dom problems in conjunctive normal form subject to
the three parameters V, C, and L. Each clause is
generated by selecting L of the V' variables uniformly
randomly and negating each variable with probability
0.5.

We can make direct contact here with the biological
notions of pleiotropy (a gene may influence multiple
traits) and polygeny (a trait may be influenced by mul-
tiple genes). For these L-SAT problems, each clause
can be considered to be a trait. Hence, the polygeny is
of order L. The pleiotropy is estimated by noting that
each variable occurs (on average) in CL/V clauses.

By systematically controlling and varying these pa-
rameters, one can vary both the type and the amount
of epistasis. In addition, note that the Random L-SAT
generator produces problems with much smaller stor-
age requirements (of order LC'), which allows one to
study much larger problems than the NK model. Also,
as noted above the amount of epistasis varies among
subsets of genes, which is more representative of prac-
tical problems than the uniform level of epistasis built
into the NK model.

5 GAs and Epistasis

There has been a considerable amount of discussion
and (often contradictory) studies regarding how the
performance of EAs in general and GAs in partic-
ular is affected by epistasis. These discussions fre-
quently center on the usefulness, or lack thereof, of
operators such as crossover and mutation in solving
epistatic problems, with evidence (pro and con) in the
form of theoretical arguments or empirical studies on
a few carefully chosen examples (Booker 1992; Davi-
dor 1990; De Jong and Spears 1992; Fogel 1995; Gold-
berg 1989; Holland 1975; Schaffer and Eshelman 1991;
Spears 1992).

The lack of emergence of a clear picture of these effects
suggests to us that there is an opportunity here to im-
prove our understanding by way of systematic studies
using problem generators. We have begun to do so,
and report our initial findings here.

To keep things simple initially, we have focused on
the effects of epistasis on a standard textbook GA.
That is, we used a generational GA with scaled fitness
proportional selection. Recombination is done in the
standard way using two-point crossover, and mutation
is the standard bit-flipping operator.

To solve NK and L-SAT problems with a GA we need
to select an internal representation and a fitness func-
tion. The representation used is the most natural one:
a bit string of length N for NK problems, and of length
V for the L-SAT problems. The fitness function was
given for NK problems previously. For L-SAT prob-
lems the boolean expressions are in CNF, so we used
the simplest and most intuitive fitness function, the
fraction of clauses that are satisfied by the assignment.
More formally,

c
1
f(chromosome) = c ; f(clause;),

where the fitness contribution of each clause,
f(clause;), is 1 if the clause is satisfied and 0 oth-
erwise.

The conventional wisdom is that recombination should
have a relative advantage over mutation when epista-
sis is small, while mutation should have a relative ad-
vantage when epistasis is large. These two problem
generators allow us to test this hypothesis by vary-
ing K (for a fixed N) on NK problems systematically.
For L-SAT problems there are a number of options.
We have chosen the following strategy in our initial
studies: we keep L and V fixed, and we vary the num-
ber of clauses C' to increase or decrease the amount of
pleiotropic epistasis.

6 Initial Experimental Results

A full study of epistasis effects on GAs is beyond the
scope and the size limitations of a conference paper.
We present here some interesting initial results that
illustrate the usefulness of the problem generator ap-
proach. The experimental methodology we used con-
sistently throughout was as follows: for each of the
selected settings of our problem generator parameters,
we randomly generated 50 problems. Hence, all the
results presented in this paper represent observed be-
havior averaged over 50 randomly generated problems.

6.1 NK Experiments

For our initial experiments with NK landscape prob-
lems we use a fixed NV of 48 and varied K from 0 to 24.
As noted earlier, the storage requirements for the NK
tables make it difficult to explore models with much
larger K. We also used the simpler form of linkage, the
neighborhood model, rather than randomly generated
linkages.

We started with fairly standard settings of the GA pa-
rameters: a crossover rate of 0.6, and a mutation rate



equal to the reciprocal of the chromosome length, and
population sizes ranging from 50-200. We were inter-
ested in how the behavior of this simple GA is affected
by increasing epistasis. To separate out the individual
effects due to crossover and mutation, we compared
three GA variations: one using only crossover (GA-c),
one using only mutation (GA-m), and the standard
GA using both operators.

Figures 1-3 illustrate typical results for low (K = 4),
medium (K = 12), and high (K = 24) epistasis, with
a population size of 200. The vertical bars overlaying
the best-so-far curves represent 95-percent confidence
intervals computed from Student’s t-statistic (Miller
1986).
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Figure 1: Average best-so-far curves for GA, GA-c,
and GA-m on NK problems with low epistasis.
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Figure 2: Average best-so-far curve for GA, GA-c, and
GA-m on NK problems with medium epistasis.

As expected, one can see a clearly diminishing advan-
tage of crossover over mutation as the amount of epis-
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Figure 3: Average best-so-far curve for GA, GA-c, and
GA-m on NK problems with high epistasis.

tasis increases. However, there were several surprising
results. Note that the standard GA is consistently out-
performed by GA-c, and isn’t much better than GA-m.
On the basis of our own personal experiences and other
results in the literature, we expected the standard GA
to dominate on low epistasis problems, and GA-m to
dominate on problems with high epistasis.

These trends were relatively insensitive to changes in
population size. What was not clear was whether these
results were peculiar to NK landscape problems. To
clarify this, we ran a similar set of experiments with
the L-SAT generator.

6.2 Initial L-SAT Experiments

For our initial L-SAT experiments we fixed the number
of variables V' to 100, the length of the clauses L to 3,
and the population size to 100. As discussed earlier,
this allowed us to vary the degree of epistasis in a
manner similar to the NK problems by varying the
number of clauses C' from 200 (low epistasis) to 2400
(high epistasis).

We were somewhat surprised to observe nearly identi-
cal trends. Figures 46 illustrate the typical behavior
observed for low epistasis (200 clauses), medium epis-
tasis (1200 clauses) and high epistasis (2400 clauses).

As before, we ran additional experiments to test the
sensitivity of these results to various GA parameter
settings. Again, the observed trends were insensitive
to changes in population size, and the trends were am-
plified by increasing the mutation rate.

We also tried decreasing the mutation rate from its
default value (which in this case corresponded to a
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Figure 4: Best-so-far curves for GA, GA-c, and GA-m
on L-SAT problems with low epistasis.
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Figure 5: Best-so-far curves for GA, GA-c, and GA-m
on L-SAT problems with medium epistasis.
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Figure 6: Best-so-far curves for GA, GA-c, and GA-m
on L-SAT problems with high epistasis.

mutation rate of 0.01) by an order of magnitude to
0.001. This produced rather striking changes in GA
behavior, resulting in trends much closer to our origi-
nal expectations.

Figures 7-9 are typical of what we saw, namely, that
GA-m has the initial advantage, but is ultimately over-
taken by GA-c and GA. As epistasis increases, the ini-
tial advantage of GA-m lasts for an increasing number
of evaluations.
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Figure 7: Average best-so-far curves for GA, GA-c,
and GA-m using a 0.001 mutation rate on L-SAT prob-
lems of low epistasis.
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Figure 8: Average best-so-far curves for GA, GA-c,
and GA-m using a 0.001 mutation rate on L-SAT prob-
lems of medium epistasis.

These results suggested a somewhat different expla-
nation for the observed trends. These simple gener-
ational GAs have no explicit form of elitism; rather,
there is an émplicit form of elitism in the sense that
some of the offspring produced may be identical copies
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Figure 9: Average best-so-far curves for GA, GA-c,
and GA-m using a 0.001 mutation rate on L-SAT prob-
lems of high epistasis.

of their parents. The performance of these GAs de-
pends on a proper balance when producing the next
generation between exploration via genetically differ-
ent offspring and exploitation via genetically identical
offspring. The default mutation rate results in little or
no cloning, which is apparently too high an exploration
rate for these simple, non-elitist GAs.

To test this hypothesis we performed an additional set
of experiments in which we increased and decreased
the rate of crossover, and we observed similar changes
in behavior. Increasing the crossover rate from 0.6
to 1.0 significantly degraded performance as shown in
figure 10, while reducing the crossover rate to 0.2 sig-
nificantly improved performance as seen in figure 11.
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Figure 10: Best-so-far curves with a 0.001 mutation
rate and a crossover rate of 1.0 on L-SAT problems of
medium epistasis.
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Figure 11: Best-so-far curves with a 0.001 mutation
rate and a crossover rate of 0.2 on L-SAT problems of
medium epistasis.

At this point it became clear what was going on. Typ-
ical operator rates are too explorative for a simple,
generational non-elitist GA resulting in distorted per-
formance curves that, in turn, mask the more subtle
effects of epistasis.

6.3 Summary

We were quite pleased at this point with the experi-
mental methodology using the problem generators to
study these effects systematically. We found the NK
and L-SAT generators to be useful, but not without
problems. Table space requirements for the NK mod-
els restrict experiments involving large values of N and
K. The L-SAT generator has the advantage that it
permits the exploration of much higher levels of epis-
tasis, and allows one to vary polygeny and pleiotropy
independently. Both generators have the property
that the variance in the fitness values decreases as the
amount of epistasis increases. This results in more
difficult fitness landscapes for simple GAs using pro-
portional selection, independent of the effects of epis-
tasis, resulting in additional masking of the effects of
epistasis. We are currently developing a “multimodal”
problem generator that allows one to increase epista-
sis without significantly reducing fitness variance. We
describe this idea briefly in the next section.

7 Multimodal Generator

The idea is to generate a set of P random N-bit strings,
which represent the location of the P peaks in the
space. To evaluate an arbitrary bit string, first locate
the nearest peak (in Hamming space). Then the fitness



of the bit string is the number of bits the string has in
common with that nearest peak, divided by V.

f(chrom) = % mglz)c {N — Hamming(chrom, Peak;)}

Problems with a small/large number of peaks are
weakly /strongly epistatic. Figures 12 and 13 illustrate
some of our preliminary results with respect to the
performance of GA, GA-m, and GA-c on 1-peak and
500-peak problems, with a 0.001 mutation rate, 0.6
crossover rate, and a population size of 100. Note that
the range of fitness values is not greatly affected by
increasing the number of peaks, thus addressing the
issue concerning the“flattening” of the NK and L-SAT
landscapes as epistasis increases. What is most no-
ticeable is the severe drop in performance of GA-c and
GA for the 500-peak problems, while the GA-m curves
are almost identical in the two figures. This provides
strong confirmation of the increasing initial advantage
of GA-m as epistasis increases.
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Figure 12: Average best-so-far curves for GA, GA-c,
and GA-m on 1-peak problems.

8 Summary and Conclusions

There are a number of important observations that can
be made from this initial use of problem generators to
study the effects of epistasis on GAs. The most im-
portant observation is to note how subtle the effects
are, and how easy it is to reach hasty and erroneous
conclusions. Crossover and mutation do not operate
in a vacuum. Rather, they are components that in-
teract in complex ways with the other components of
an evolutionary system. As a consequence, as we have
seen, even something as simple as changing operator
rates has side effects that can mask some of the more
subtle effects of epistasis.
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Figure 13: Average best-so-far curves for GA, GA-c,
and GA-m on 500-peak problems.

On the other hand, these initial results do support the
notion that the relative advantage of crossover over
mutation is reduced as epistasis increases. What is
somewhat surprising, however, is the continued effec-
tiveness of crossover at higher levels of epistasis than
commonly believed. Clearly, more careful experiments
will be required understand and to quantify this bet-
ter.

Clearly, there is more work to be done here. We are
currently using this methodology to find “optimal”
settings for the operators involved. By doing so we
should be able to keep the exploration/exploitation
balance constant across experiments and perhaps see
more clearly the effects of epistasis.

In addition, we are looking at the effects of epistasis on
other EAs. As these preliminary results suggest, the
effects could be quite different for rank-based selection,
explicit forms of elitism, etc.
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