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Abstract

In thispaper, wecombinetwo frameworksin thecontext
of an important application. The first framework, called
“artificial physics,” is describedin detail in a companion
paperbySpearsandGordon[13]. Thepurposeof artificial
physicsis thedistributedspatialcontrol of largecollections
of mobilephysicalagents.Theagentscanbecomposedinto
geometricpatterns(e.g., to act as a sensinggrid) by hav-
ing themsenseand respondto local artificial forcesthat
are motivatedby natural physicslaws. Thepurposeof the
secondframework is global monitoringof theagentforma-
tions developedwith artificial physics.Using only limited
global information,themonitorchecksthat thedesiredge-
ometricpatternemergesover timeasexpected.If there is a
problem,theglobalmonitorsteers theagentsto self-repair.
Our combinedapproach of local control throughartificial
physics,globalmonitoring, and“steering” for self-repairis
implementedandtestedona problemwheremultipleagents
forma hexagonallatticepattern.

1. Intr oduction

The objective of this researchis the distributedcontrol
of largenumbersof mobilephysicalagentsto form regular
geometricconfigurations,e.g.,to actassensinggrids.Dur-
ing formation,theconfigurationsaremonitoredby a global
observer to detectwhetherthere is a significant increase
in the numberof patternviolations over time. Our com-
binedapproachof distributedlocalcontrolandglobalmon-
itoring enablesspatio-temporalcoordinationof theagents.
Theagentsmay rangein scalefrom neurons,nanobots,or
micro-electromechanicalsystems(MEMS) to micro-airve-
hicles(MAVs) andsatellites.Theexampleconsideredhere
is that of a swarm of MAVs whosemissionis to form a
�
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hexagonallattice, which createsan effective sensinggrid.
Essentially, sucha lattice will createa virtual antennaor
syntheticapertureradarto improve the resolutionof radar
images. A virtual antennais expectedto be an important
futureapplicationof MAVs. Currently, the technologyfor
MAV swarms(andswarmsof othermicro-vehiclessuchas
micro-satellites)is in theearlyresearchstage.Nevertheless
wearedevelopingthecontrolsoftwarenow sothatwewill
beprepared.

We assumeagentscan only senseand affect nearby
agents;thus the problemis one of “local” control. The
methodfor localcontrolshouldbebasedonprinciplessuch
as self-assembly, fault-tolerance,and self-repair. These
principlesarepreciselythoseexhibitedby naturalsystems.
This leadsus to look at the laws of physicsfor ideason
distributedcontrol. To explore this, we have developeda
generalframework for distributedcontrol in which “artifi-
cial physics”(AP) forcescontrol agents.We usethe term
“artificial” becausealthoughwe are motivatedby natural
physicalforces,we arenot restrictedto only naturalphys-
ical forces. Theagentsaren’t really subjectto real forces,
but they canact asif the forcesarereal. Thustheagent’s
sensorswill have to be able to seeenoughto allow it to
computethe forcesto which it is reacting.Theagent’s ef-
fectorsshouldallow it to respondto this perceived force.
For detailsonAP, seeSpearsandGordon[13].

We seeat leasttwo advantagesto AP. First, in the real
physicalworld, collectionsof small entitiesyield surpris-
ingly complex behavior from very simple interactionsbe-
tweenthe entities. Thusthereis a precedentfor believing
thatcomplex controlcanbeachievedthroughsimplelocal
interactions.This is requiredfor verysmallagents(suchas
nanobots),sincetheir sensorsandeffectorswill necessarily
be primitive. Two, sincethe approachis largely indepen-
dent of the size and numberof agents,the resultsshould
scalewell to largeragentsandlargersetsof agents.

AP addressesthe problemof distributed agentcontrol
via local rules. This approach,which also includesfault-
toleranceandlocalself-repairmechanisms[13], maybein-
adequatefor handlingmajor unanticipatedevents. For ex-
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ample,if a swarm of MAVs is flying in formation, fault-
toleranceand/orlocal self-repaircapabilitiescould enable
recovery from minor air turbulence. Nevertheless,inten-
tional or unintentionalcorruption of the MAVs’ control
software, severeenvironmentalconditions,or widespread
mechanicalfailurescouldconceivablyresultin anunrecov-
erableproblemmaintainingthe desiredgeometricforma-
tion. Therefore,wealsoincludeaglobalobserverthatmon-
itors the progressof the formation, using the Monitoring
andChecking(MaC) framework, which is describedin de-
tail in Kim etal. [6]. Wedonotmakethestrongassumption
that the global observer canseethe pattern– becausethis
assumptionmaybe infeasiblefor largenumbersof widely
distributedagents.We only assumethat the observer can
communicatewith the individual agents.Eachagentsends
analertif it fails to satisfyits localevaluationmeasure.The
globalobservercollectsthealertsandissuesageneralalarm
if thelocal alertsaretoo frequentfor too long. Thegeneral
alarmmight be sentto peoplenearbyto persuadethemto
interveneandmanuallysolve theproblemby sendingcom-
mandsto theagents.Here,weassumethatthegeneralalarm
suggeststheneedfor “steering”(i.e., self-repairto recover
from problems).In ourapproachto steering,theglobalob-
server broadcaststo the agentsa global parameterchange
for self-repair. This restoresprogresstoward the desired
geometricconfiguration.

The noveltiesof this paperare: (1) the combinationof
AP with MaC,(2) theintroductionof a steeringmethodfor
self-repairwhenMaC detectsa failure,and(3) experimen-
tal resultsthatvalidatetheusefulnessof this combinedap-
proachin thecontext of hexagonallattice formations.The
paperbeginsby presentingtheartificial physicsframework.
This is followed by a descriptionof how AP canbe used
to generatehexagonallattices. We thendescribethe MaC
framework, andapplyit to monitortheprogressof forming
hexagonallattices. Finally, we presenta methodfor steer-
ing that adjustsglobal parametersfor self-repair. The pa-
perconcludeswith someinitial results,followedby related
work andideasfor futureresearch.

2. Artificial Physics: A Framework for Dis-
trib uted Multiagent Control

Our artificial physicsapproachtreatsagentsasphysical
particles,thoughtheiractualsizemayrangefrom nanobots
to satellites. A simplebut realisticphysicalsimulationof
theparticles’behavior wasbuilt. Particlesexist in two di-
mensions(weseelittle difficulty in generalizingto threedi-
mensions)andareconsideredto bepoint-masses.Eachpar-
ticle

�
hasposition�����	��
��� andvelocity ����������
����� . We

usea discrete-timeapproximationto thecontinuousbehav-
ior of theparticles,with time-step��� . At eachtimestep,the
positionof eachparticleundergoesa perturbation��� . The

perturbationdependson the currentvelocity ����������� .
Thevelocityof eachparticleateachtimestepalsochanges
by ��� . The changein velocity is controlledby the force
on the particle ������� ���!#" , where " is the massof
that particleand � is the force on that particle. An addi-
tional simple frictional force is also always included,for
self-stabilization.

Giventheinitial conditionsandsomedesiredglobalbe-
havior, wemustdefinewhatsensors,effectors,andforce �
laws are requiredsuchthat the desiredbehavior emerges.
We explorethis for hexagonallattices.

2.1. CreatingHexagonalLattices

This subsectionexplainsthe constructionof hexagonal
lattices,e.g.,for MAV sensorgrids. For MAVs, the initial
conditionsareassumedtobesimilarto thoseof a“big bang”
– the MAVs are releasedfrom a canisterdroppedfrom a
plane, then they spreadoutwardsuntil a desiredgeomet-
ric configurationis obtained.This is simulatedby usinga
two-dimensionalGaussianrandomvariableto initialize the
positionsof all particles(MAVs). Velocitiesof all particles
are initialized to be 0.0, andmassesareall 1.0 (although
the framework doesnot requirethis). An exampleinitial
configurationfor 150particlesis shown in Figure2.1.
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Figure 1. The initial univer se at ')(+* .

SinceMAVs (or other small agentssuchas nanobots)
havesimplesensorsandprimitiveCPUs,ourgoalis to pro-
vide the simplestpossiblecontrol rules that requiremini-
mal sensorsandeffectors.At first blush,creatinghexagons
would appearto be somewhat complicated,requiringsen-
sorsthatcancalculaterange,thenumberof neighbors,their
angles,etc. However, it turns out that only rangeinfor-
mationis required.To understandthis, recall anold high-
schoolgeometrylessonin whichsix circlesof radius, can
bedrawnontheperimeterof acentralcircleof radius, (the
factthatthiscanbedonewith only a compassandstraight-
edgecan be proven with Galois theory). Figure 2 illus-
tratesthis construction.Notice that if theparticles(shown
assmallcircularspots)aredepositedat theintersectionsof
thecircles,they form ahexagon.

Theconstructionindicatesthathexagonscanbecreated
via overlappingcirclesof radius, . To mapthis into aforce
law, imaginethateachparticlerepelsotherparticlesthatare
closerthan , , while attractingparticlesthatarefurtherthan
, in distance.Thuseachparticlecanbeconsideredto have
acircular“potentialwell” arounditself at radius, – neigh-
boring particleswill want to be at distance, from each
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Figure 2. How cir cles can create hexagons.

other. Theintersectionof thesepotentialwells is a form of
constructive interferencethat creates“nodes” of very low
potentialenergy wheretheparticleswill be likely to reside
(againthesearethesmallcircularspotsin thepreviousfig-
ure). Thusthe particlesserve to createthe very potential
energy surfacethey arerespondingto!

With this in mind we defined a force law � �. "0/	"21#!43#5 , where� is themagnitudeof theforcebetween
two particles

�
and6 , and3 is therangebetweenthetwo par-

ticles.The“gravitationalconstant”
.

is setat initialization.
Theforceis repulsiveif 3�78, andattractiveif 3�9:, . Each
particlehasonesensorthat candetectthe rangeto nearby
particles.Theonly effector is to beableto move with ve-
locity � . To ensurethat the force laws arelocal in nature,
particlescannot evenseeor respondto otherparticlesthat
aregreaterthan ;�<>=�, in distance.1

The initial universeof 150 particles(as shown in Fig-
ure 2.1) evolves,using this very simple force law. For a
radius , of 50 we have foundthata gravitationalconstant
of
. �?;A@�BCB providesgood results(thesevaluesfor , ,.

, andthenumberof particlesremainfixedthroughoutthis
paper).Figure3 showsthesystemafter35 timesteps.
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Figure 3. The 150 par tic les form a good hexag-
onal lattice by ')(+DFE .

Thereare a coupleof importantobservationsto make
aboutFigure 3. First, a reasonablywell-definedhexago-
nal lattice hasbeenformedfrom the interactionof simple
local force laws that involve only thedetectionof distance
to nearbyneighbors. Also, the perimeteris not a perfect
hexagon,althoughthis is not surprising,given the lack of

1The constant1.5 is not chosenrandomly. In a hexagon,if a nearby
neighboris furtherthan G away, it is H0I JKG away. Wewantedtheforce
laws to beaslocalaspossible.

global constraints. However, many hexagonsare clearly
embeddedin thestructureandtheoverall structureis quite
hexagonal.Thesecondobservationis thateachnodein the
structurecanhavemultipleparticles(i.e.,multipleparticles
can“cluster” together).Clusteringis anemergentproperty
thatprovidesincreasedrobust(fault-tolerant)behavior, be-
causethedisappearanceof individualagentsfrom a cluster
will haveminimaleffect.

2.2. Discussion

Theartificial physicsframework offersa numberof ad-
vantages.For one, it enableslarge numbersof agentsto
self-assembleinto geometriclattices.Here,wehaveshown
the methodfor assemblinghexagonallattices. With a mi-
norextension(theintroductionof a“spin” attribute),agents
canalsoself-assembleinto squareandotherlattices.Fault-
tolerancefrom clusteringis anotheradvantageof the AP
framework. Furthermore,in SpearsandGordon[13], it is
shown that thereis an effective offline evaluationmeasure
of lattice quality that averagesthe angularerror through-
out thelattice. This is usefulduringprogramdevelopment.
Finally, SpearsandGordon[13] presenteffectivelocalself-
repairmethodsthatcanfill gapsin thelattice(emptynodes)
andreducetheangularerror.

AlthoughAPhasthedesirableattributesof enablingself-
assembly, fault-tolerance,andlocalself-repair, it cannotad-
dressall problemsthat theagentsmight encounter. In par-
ticular, althoughthe offline measureof lattice quality pro-
videsassistanceduring programdevelopment,it relieson
measuringanglesand makinggeometriccomparisonsbe-
tweenagentsthatarefar apartin the lattice. As statedear-
lier, we do not wantagentsto have to measureangles,and
we cannotassumesensorsthat detectotheragentsbeyond
thevisibility range.Thereforewe requirea simpleronline
measureof latticequality. Furthermore,althoughthe local
self-repairmethodsareeffective for repairingemptynodes
andglobalflawsin angles(suchasthosedetectedby thean-
gular error measure),they arenot capableof restoringthe
latticeafterseveredisturbancesthatdistorttheshapeof the
perimeter. An exampleof a potentialhazardfor an MAV
is air turbulence.MAVs areexpectedto besmall(lessthan
six inchesin length,width, andheight),slow (traveling22-
45milesperhour),andlight (50-70grams).This translates
into a low Reynoldsnumber, which impliesthat for practi-
cal purposesinertia canbe ignoredandthe MAVs will be
especiallyvulnerableto air turbulence[7]. Our solutionis
to addMonitoringandChecking.
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Figure 4. Overview of the MaC frame work.

3. A Framework for Global Monitoring

The Monitoring and Checking(MaC) framework (see
Figure 4) aims at run-time assurancemonitoring of real-
timesystems.Thecurrentimplementationis in Java,though
the framework is genericand can apply to any language.
The framework includestwo main phases:(1) beforethe
systemis run, its implementationand requirementspeci-
fication areusedto generaterun-timemonitoringcompo-
nents;(2) during systemexecution,informationaboutthe
runningsystemis collectedandmatchedagainstthe(user-
generated)requirements.

During the first phase,MaC provides a mappingbe-
tweenhigh-level eventsusedin the requirementspecifica-
tion and low-level stateinformationextractedduring exe-
cution. They arerelatedby meansof a monitoringscript,
which describeshow eventsat the requirementslevel are
definedin termsof monitoredstatesof an implementation.
For example,in the requirementswe may want to express
the event that the agentsaretooClose. The implemen-
tationstoresthe informationaboutproximity in a variable
distance. In anexecutionstate,this variablehasa par-
ticular value. Themonitoringscript in this casecandefine
the event tooClose as(distance > 0.25*R) &&
(distance < 0.75*R). Thisdefinitionof tooClose
capturesthe notion that if neighboringparticles are L
BM<>@�=�, apart then we permit this becausethey are in the
samecluster(node);however, if they arenot in the same
clusterthenwewantthemto beapproximately, apart.

Themonitoringscriptis usedto automaticallygeneratea
filter andaneventrecognizerfor run-timemonitoring.The
filter is a set of programfragmentsthat are insertedinto
theimplementationto instrumentthesystem.Instrumenta-
tion is performedstaticallydirectly on the code(bytecode

in thecaseof Java). Instrumentationis automatic,which is
madepossibleby the low-level descriptionin themonitor-
ing script.Theessentialfunctionalityof thefilter is to keep
track of changesto monitoredobjectsand sendpertinent
stateinformationto theeventrecognizer.

Themonitoringscript is alsousedto automaticallygen-
eratetheeventrecognizer. Theeventrecognizerdetects,ac-
cordingto themonitoringscript,occurrencesof high-level
eventsfrom thedatareceived from the filter. The purpose
of the event recognizeris to deliver eventsto a run-time
checker, describedbelow.

Also, during thefirst phasetheuserformalizesthesys-
tem requirementsin a requirementsspecification. The re-
quirementsin this specificationare defined in terms of
events(which aredefinedin themonitoringscript). A run-
time checker is producedautomaticallyfrom the require-
mentsspecification.Thepurposeof therun-timechecker is
to determineat run-timewhetherthesystemis satisfyingits
requirements.

In summary, duringthefirst phasetheuserdefinesa re-
quirementsspecificationanda monitoringscript. The re-
quirementsspecificationdefineswhat the userexpectsof
the system. The monitoring script providesevent defini-
tionsnecessaryfor therequirementsspecification.Fromthe
monitoringscript,afilter andeventrecognizerareautomat-
ically generated,andfrom therequirementsspecification,a
run-timechecker is automaticallygenerated.

During the second(run-time) phase,the instrumented
implementationis executedwhile being monitored. The
filter sendsrelevant stateinformation to the event recog-
nizer, which detectsevents. Theseeventsarethenrelayed
to therun-timechecker, whichchecksadherenceto theuser-
desiredrequirements.
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Requirement Specification HexagonPattern

import event MAValert, startPgm;

Auxiliary Variables :

var long currInterval;
var int count0, count1, count2;
var int prevAverage, currAverage;

Alarm Definition :

property NoPattern =
(currAverage > prevAverage*1.15 + 100) &&
(prevAverage != -1);

Auxiliary Variable Definitions:

event startPeriod = (time(MAValert) -
currInterval > 10000);

startPgm -> {
currInterval = time(startPgm);
count0 = 0;
prevAverage = -1;
currAverage = -1; }

startPeriod -> {
currInterval = currInterval + 10000;
prevAverage = currAverage;
currAverage = (count0+count1+count2)/3;
count2 = count1;
count1 = count0;
count0 = 0; }

MAValert -> {
count0 = count0 + 1; }

Figure 5. MEDL requirement specification.

3.1. The Monitoring Language

We give a very brief overview of two languages:one
to describemonitoringscripts(i.e., what to observe in the
program),andtheotherto describetherequirementsspec-
ification (i.e., the requirementsthat the programmustsat-
isfy). For moredetailson the logical framework of these
languages,seeKim etal. [6].

The language for monitoring scripts is called the
PrimitiveEventDefinitionLanguage(PEDL).Requirement
specificationsare written in the Meta Event Definition
Language(MEDL). The primary reasonfor having two
separatelanguagesin the MaC framework is to separate
implementation-specificdetailsof monitoringfrom the re-
quirementsspecification.This separationensuresthat the
framework is portable to different implementationlan-
guagesand specificationformalisms, while providing a

Monitoring Script MAVpattern

export event MAValert, startPgm;

Monitored Entities :

monobj int Hexagon.R;
monmeth void EmulateMAV.main(String[]);
monobj double Mav.run().distance;

Event Definitions :

event startPgm =
startM( EmulateMAV.main(String[]) );

event tooClose =
(Mav.run().distance > 0.25*Hexagon.R) &&
(Mav.run().distance < 0.75*Hexagon.R);

event tooFar =
(MAV.run().distance > 1.25*Hexagon.R) &&
(MAV.run().distance < 1.5*Hexagon.R);

event MAValert = tooClose || tooFar;

Figure 6. PEDL script.

cleaninterfaceto the designerof monitors. For example,
if we wish to retargetour systemfrom programswritten in
Javato C++,thenall wewouldneedto modify is thesyntax
of PEDL,leaving MEDL unchanged.

Thedesignof PEDL, the languagefor writing monitor-
ing scripts,is basedon thefollowing two principles.First,
weencapsulateall implementation-specificdetailsof moni-
toring in PEDLscripts.Second,wewanteventrecognition
to be assimpleaspossible.Thenameof the languagere-
flectsthe fact that the main purposeof PEDL scriptsis to
defineprimitive eventsthat can be referencedin require-
mentspecifications.

The requirementsthatneedto bemonitoredarewritten
in MEDL. LikePEDL,MEDL is basedonalogic of events.
This logic hasalimited expressivepower. For example,one
cannotcountthenumberof occurrencesof anevent,or talk
aboutthe

�
th occurrenceof anevent. Becausewe needad-

ditional expressive capabilitiessuchascountingfor there-
quirementsspecifications,MEDL allows theuserto define
auxiliary variables.Updatesof auxiliary variablesaretrig-
geredby events. For example,MAValert -> count0
= count0 + 1 canbeinterpretedasstatingthat theoc-
currenceof eventMAValert triggersthesystemto incre-
menttheauxiliaryvariablecount0. MEDL alsoallowsthe
definitionof complex eventsusingexpressionsof primitive
eventsandauxiliaryvariables.

Correctnessof the system is describedin terms of
alarms, which areeventsthat shouldnever occur. Alarms
aredefinedin termsof eventsand/orauxiliaryvariables.
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4. Global Monitoring and Steeringof Hexago-
nal Lattice Formations

Ourapproachassumesthatoneagentactsasaglobalob-
server to monitortheformation.Theobservermight bethe
planethat droppedthe MAVs. This global observer uses
MaC to determinewhetherthedesiredpatternof agentsis
formingasexpected.Wedonotmakethestrongassumption
thattheglobalobservercanseethepattern.Thisassumption
may be infeasiblefor large numbersof widely distributed
agents.Instead,weonly assumethattheobservercancom-
municatewith theindividualagents.

Thisapproachto monitoringis basedon theobservation
that in the hexagonallattice, eachneighborof an MAV is
eitheratafixeddistance, (adjacentnode),or verycloseto
theMAV in question(samenode).If thepatternis not fully
formed,thereareMAVs thathave neighborsin otherloca-
tions,andthis canbedetectedasa violation of thepattern.
Intuitively, we shouldexpectthatasthepatternforms, the
numberof suchviolationsshoulddecrease.

We call the requirementbeing specified a property.
An implementation-independentMEDL specificationof the
propertyjust describedis shown in Figure5. The primi-
tive eventMAValert (abbreviated“alert”) denotesa spa-
tial misplacementof someneighborof an MAV. For the
purposeof countingalert events, time is divided into in-
tervals. Auxiliary variablecount0 is usedto count the
numberof violations (alerts)of the patternin the current
interval. When an interval elapses,the numberof alerts
over this interval and the previous two are averaged. In
other words, averagingis doneover a sliding window of
sizethree. The reasonfor averagingis to reducethe vari-
ancein alert numbers.This averageis comparedwith the
averageobtainedat the end of the previous interval. If a
significantincreasein thenumberof violationsis detected
(measuredas currAverage 9 prevAverage*1.15
+ 100, which is an empirically determinedthreshold),
thenanalarmNoPattern is sentasnotificationof a pat-
ternformationproblem.

The AP-MaC combinationhas been implementedin
Java. Monitoring is applied to a distributed emulatorof
MAV deployment. Each MAV is representedas a sep-
arateinstanceof classMAV, basedon the standardJava
classThread. When the threadin an MAV is run, it
continuouslyexecutesthe AP positioning algorithm and
queriesits neighborsfor their positions. A local vari-
ableMAV.run().distance in the run() methodof
the MAV classis usedto hold the distancefrom the cur-
rently queriedneighbor. Hexagon.R is the variablefor
the desiredhexagonradius , . The monitoring script in
PEDL for this implementationis shown in Figure6. It de-
fineseventMAValert in termsof thevalueof thevariable
MAV.run().distance. Event MAValert is defined
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Figure 7. Formation after a blast.
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to occurif a neighborMAV is tooClose or tooFar. By
declaringthe variableasa monitoredentity, the script in-
structsthefilter to reportall updatesof this variablesothat
they canbe comparedwith the acceptablerangeof values
describedin thescript.

5. Experimental Results

We testedthe combinedAP-MaC implementationwith
150simulatedMAVs. AP wasusedto form thelattice,and
MaC determinedwhetherthe frequency of MAValerts
(alerts)wasincreasing.Whenever the frequency increased
significantly, aNoPattern alarmwasissued.Therequire-
mentsspecificationandmonitoringscript usedwerethose
shown in Figures5 and6, respectively.

Undernormalconditions,thenumberof alertsgradually
decreasesasthehexagonallatticeis formed,andno alarms
areissued.Now thatwe have a methodfor monitoring,to
test this methodwe needto subjectthe MAVs to an un-
expectedyet severeenvironmentalcondition that disrupts
the formation. We have implementedthis asa blast (i.e.,
an explosionthat causesa gustof wind), which is applied
to onesideof the latticeafter it hasbeenformed. Theef-
fect of theblaston anMAV is inverselyproportionalto the
squareof theMAV’s distancefrom thecenterof theblast.
In particular, this force is �N�O;PBCB . "Q/R!#3A/R5 , where "Q/
is the massof MAV

�
and 3A/ is its distancefrom the cen-

ter of theblast. Figure7 shows the formationaftera blast
hasbeeninjected. Figure8 shows theprofile of alertsand
alarmsresulting from a blast. The numberof alertsde-
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creasesasthe hexagonallattice is formed. However after
theblast,injectedaroundtime 80, thenumberof alertsin-
creasesenoughto setoff an alarm. This profile is typical.
In this figure, if an alarm is absentits magnitudeis 0; if
analarmis issued,its magnitudeis 6000. This is donefor
graphicalconvenience.In reality, alarmNoPattern has
nomagnitude;it is binary-valued.
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Figure 9. Formation after steering.

Although the numberof alertsdecreasesafter a suffi-
ciently long time following the blast, from visual inspec-
tion we often find that the formationis not a well-defined
hexagonallattice. Local flaws canbefixedwith local self-
repairmethods,but the concavity in the overall shapere-
sultingfrom theblasttypically persists.Therefore,steering
is required. Steeringconsistsof global parameteradjust-
ment to compensatefor the blast. In particular, the blast
occurs,whichsetsoff analarm.After issuinganalarm,the
global monitorbroadcastsa global commandto all MAVs
to temporarilysuspendrepulsion.In otherwords,for abrief
periodof timeall MAVs aretold to assumethattheforce �
is attractive only. During this time all of the MAVs grav-
itate toward eachother. Also during this time alarmsare
suppressed.After thespecifiedtime period(in our experi-
mentsthis lastedthreeintervals,i.e., onewindow of time),
repulsionis resumed.Thealarmsaresuppressedfor another
threeintervals,however, to give themultiagentsystemtime
to settledown. Figure9 showstheformationaftersteering.

Table 1. Shape impr ovement from steering.

meanSATVU /XWZY S\[KU^] 1.8SATVU /XWZY S\[KT`_ba 0.6

A typical profile of alertsand alarmswith a blast fol-
lowed by steeringlooks the sameas in Figure 8 with no
steering. To evaluatethe effectivenessof steering,a use-
ful offline measureof the quality of the overall shapeis S
= thesizeof (numberof nodespersidein) the largestper-
fectembeddedregularhexagonin theformation.Thismea-
sureis appliedto the original formation( S T^U /cW ), the post-
blastpre-steeringformation( Sd[KUV] ), andthepost-blastpost-
steeringformation ( Sd[KT`_ba ). Table5 shows the differences

SATVU /cWeY Sd[KU^] and SAT^U /XWeY Sd[KT^_ba , averagedover10independent
experiments.Smallerdifferencesarebetter. Usinganexact
Wilcoxon rank-sumtest,we find that thereis a statistically
significantdifferencebetweenthe two means(�f7�BM< B�B�; ).
Thereforethe experimentalresultsindicatethat steeringis
aneffectivemethodfor recoveringagoodlattice.In conclu-
sion, our methodof global monitoringanderror recovery
appearspromising.

6. RelatedWork

Others have examined physical simulations of self-
assembly. Schwartz et al. [12] have investigatedthe self-
assemblyof viral capsids.Winfree[14] hasinvestigatedthe
self-assemblyof DNA double-crossovermoleculesona2D
lattice. Both Schwartz et al. andWinfreearerestrictedto
usingplausiblemodelsof naturalphysics,sincethey arein-
vestigatingtheself-assemblyof smallnaturalparticles.AP,
however, is notboundby this restriction.

AP is alsocloselyrelatedto the work of Carlsonet al.
[2], which investigatestechniquesfor controlling minia-
ture agentssuch as micro-electromechanicalagentsand
nanobots.Their work reliesheavily on theuseof a global
controller that can imposean external potentialfield that
agentscan sense.Sincewe rely primarily on local force
interactions,the work by Carlsonet al. could be comple-
mentaryto ourwork.

AP is similar to the “potential field” and “behavior
based”approachesto robotics. Potential field (PF) ap-
proaches[4, 5] areusedfor robot navigation andobstacle
avoidance.Like AP, PF approachesmodela goalposition
asanattractive force,while obstaclesaremodeledwith re-
pulsive forces. PF computesforce vectorsby taking the
gradientof an entirepotentialfield. In AP, however, each
particledirectlycomputestheforcevectorthatappliesto its
currentposition– thepotentialfield is nevercomputed.AP
thushaslowercomputationaloverhead.

Behavior basedapproaches(e.g., [1]) derive vector in-
formation in a fashionsimilar to AP. However, behavior
basedapproachesdo not make useof potentialfields and
forces. Rather, they deal directly with velocity vectors.
This distinction is significant for two reasons. First, AP
canmimic naturalphysicsphenomenamoreeasilysinceit
dealsdirectly with forces. Second,unlike behavior based
approaches,AP hasthe potentialof beinganalyzablewith
conventionalphysicstechniques.

Thereis also researchrelatedto MaC. Although most
researchin verificationdoesnot addresscorrectnessat ex-
ecutiontime, recentlyseveral researchefforts have begun
to addressrun-timemonitoring.Yet they all differ from the
MaC framework. For example,in [3, 11], only thebusac-
tivity can be monitored. In our opinion, instrumentation
of a variety of key points in the systemallows us to de-
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tectviolationsfasterandmorereliably. Severalmonitoring
approachesconcentrateonareducedclassof safetyproper-
ties,e.g.,[10, 8]. By contrast,MaC canmonitorall safety
properties.Anothernovelty of ourwork is thatit addresses
propertieswith spatialconstraints.Previoussystemverifi-
cationmethodshave focusedalmostexclusively on verify-
ing temporalproperties.

Finally, our combinedapproach,which includeslocal
rulesfor self-assemblyof distributedagentsinto a geomet-
ric formationandglobalmonitoringandsteering,is unique.
We weremotivatedto usedecentralization(local rules)as
the basisof our approachbecauseagents,suchasMAVs,
mayhaveseverecostandweightlimitations,therebyposing
extremerestrictionsontherangeandnumberof sensorsand
theprocessingpower. Theprimarydisadvantageof ourap-
proachoverpurelydecentralizedapproachesis therequire-
mentof a global observer. Nevertheless,it is not possible
to recover from severe disturbancesto a formation with-
out somecentralrepositoryof information. To minimize
theamountof global information,we only requirethat the
globalobservercollectalertsfrom theagents.Furthermore,
our approachincludesa novel and successfulmethodfor
formationrepair.

7. Conclusionsand Future Work

In this paper, we have combinedtwo frameworks. The
first, calledartificial physics,is usedfor distributedspatial
controlof largecollectionsof mobileagentsvia local arti-
ficial forces.Thesecondframework is for globalmonitor-
ing of the agentformations. Furthermore,we have added
a steeringcapabilityfor self-repair. Fromour experimental
results,we canseethat thecombinedapproachis effective
andpotentiallyuseful.Weplanto exploreavarietyof steer-
ing methods.

Another future direction will be to explore alternative
geometricconfigurations(e.g., continue the direction of
SpearsandGordon[13]) andalternativerequirementsspec-
ificationsandmonitoringscripts. Thecurrentpropertybe-
ing monitored(i.e., that the MAVs must not be between
BM<>@�=�, and BM<hg�=�, or between ;�<>@�=�, and ;�<>=�, ) doesnot
necessarilyenforcea hexagonallattice. Theexplorationof
more sophisticatedpropertyrequirementswould be valu-
able. Also, as PEDL scriptsbecomemore sophisticated,
we will needto addressissuesrelatedto theexpressionof
qualitativespatialrelations,suchasthosein Mukerjee[9].

In conclusion,we have presentedan approachto dis-
tributedspatialcontrol, global monitoring,andsteeringof
collectionsof agentsthatis independentof thenumberand
sizeof theagents.This combinedframework haspotential
applicability to a wide rangeof problems,including geo-
metric formationsfor MAV sensinggrids, a virtual space
telescope,nanotechnologyfor MEMS,fleetsof autonomous

underwater vehicles,and configuring micro-satellitesfor
betterreceptionand transmission.This approachenables
self-assemblyof complex multiagentsystemsthroughartifi-
cial physicsalongwith monitoringandself-repairto handle
unanticipatedsevereevents.Therefore,ournovel combined
approachtakesusonestepcloserto theautonomouscoor-
dinationof spatiallydistributedmultiagentsystems.When
the technologyfor MAVs andotherphysicalagentsripens
to the extent that we have swarms of micro-agents,we
would like to testourmethodon theactualvehicles.
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