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Abstract

We introduce a novel framework called “artificial
physics”,which providesdistributedcontrol of largecollec-
tionsof agents.Theagentsreactto artificial forcesthatare
motivatedby natural physicallaws. This framework pro-
videsan effectivemechanismfor achieving self-assembly,
fault-tolerance, and self-repair. Examplesare shownfor
various regular geometric configurations of agents. A
further exampledemonstrates that self-assemblyvia dis-
tributedcontrol canalsoperformdistributedcomputation.

1. Intr oduction

Theobjectiveof thisresearchis thedistributedcontrolof
agentsthatrangein scalefrom neurons,nanobots,or micro-
electromechanicalsystems(MEMS) to micro-air vehicles
(MAVs) andsatellitese.g.,see[4]. Agentscanbe physi-
cal or virtual (e.g.,softbots),mobileor immobile. Agents
generallyhave sensorsand effectors. An agent’s sensors
perceive the world (includingotheragents)andan agent’s
effectorsmake changesto that agentor the world (includ-
ing otheragents).Often, agentscanonly senseandaffect
nearbyagents;thus the problemis usuallyoneof “local”
control. Sometimescontrol is alsoguidedby global con-
straintsandinteractions.

Of course,one of the biggestproblemsis that we of-
tendon’t know how to createthepropercontrol rules. Not
only dowewantthedesiredglobalbehavior to emergefrom
the local interactionbetweenagents(i.e., self-assemblyor
self-organization),but we alsowould like thereto besome
measureof fault-tolerancei.e.,theglobalbehavior degrades
verygraduallyif individualagentsaredamaged.Self-repair
is alsodesirable,wherea damagedsystemrepairsitself.

Self-assembly, fault-tolerance,and self-repairare pre-
ciselythoseprinciplesexhibitedby naturalsystems.Thus,
many answersto theproblemsof distributedcontrolmaylie
in theexaminationof thenaturallawsof physics.

A recentresearchthrustthat is basedon naturalphysics
suggestsevenmorestronglythecloseconnectionbetween
physics and distributed control. This exciting research
thrust is the developmentof alternative distributed forms
of computingbasedon nature,suchas quantumcomput-
ing, molecularcomputing,andcomputingwith DNA e.g.,
see [1, 5]. Suchcomputingenginesarea direct resultof
thenaturallaws of physics.In thenaturalworld small en-
tities (quantumbits, molecules,etc.) exert forceson other
entitiesandrespondto forcesfrom otherentities.Generally
the only forcesthat matterare thosefrom nearbyentities,
thusthecomputationis performedvia so-called“local” in-
teractions.However, sometimesthecomputationsarealso
guidedby globalconstraintsandinteractions.

Clearlythefieldsof naturaldistributedcomputationand
distributedcontrolarerelated.Bothfieldsinvolvethestudy
of largenumbersof entities(or agents)undergoingchanges
(or performingchanges)dueto globalconstraintsandlocal
interactionsfrom nearbyentities. The main differenceis
in the forcesthatcontrol theentities.Theforcesin natural
distributedcomputingaretieddirectlytophysicallaws. The
forcesin distributedcontrolstemfrom man-maderules.

Thispaperproposesa generalframework for distributed
control in which “artificial physics” (AP) forces control
agents.Weusetheterm“artificial” becausealthoughweare
motivatedby naturalphysicalforces,we arenot restricted
to only naturalphysicalforces. Clearly, the agentsaren’t
reallysubjectto realforces,but they canact asif theforces
arereal.Thustheagent’ssensorsmustseeenoughto allow
it to computetheforcesto which it is reacting.Theagent’s
effectorsmustallow it to respondto thisperceivedforce.

We seeseveral potential advantagesto this approach.
First, in the real physicalworld, collectionsof small enti-
ties yield surprisinglycomplex behavior from very simple
interactionsbetweentheentities.Thusthereis a precedent
for believing thatcomplex controlcanbeachievedthrough
simple local interactions. This is requiredfor very small
agents(suchas neuronsor nanobots),sincetheir sensors
andeffectorswill necessarilybeprimitive. Two, sincethe
approachis largely independentof the sizeandnumberof



agents,the resultsshouldscalewell to larger agentsand
largersetsof agents.Finally, we believe thatthis approach
will tightenthe connectionbetweencontrol andcomputa-
tion, potentiallyyielding new insightsinto computationor
yieldingnew computationalalgorithms.

2. Framework

The motivation for this work stemsfrom a desirefor
swarmsof micro-airvehicles(MAVs) to form variousreg-
ular geometricconfigurations– thuswe will focuson mo-
bile physicalagents.Ourapproachtreatsagentsasphysical
particles,whichcouldrangein sizefrom nanobotsto satel-
lites. A simplebut realisticphysicalsimulationof thepar-
ticles’ behavior wasbuilt. Particlesexist in two dimensions
(we seelittle difficulty in generalizingto threedimensions)
andareconsideredto bepoint-masses.Eachparticle

�
has

position �������	��
� andvelocity ����������������� . We usea
discrete-timeapproximationto the continuousbehavior of
theparticles,with time-step��� . At eachtime step,thepo-
sition of eachparticleundergoesa perturbation��� . The
perturbationdependson the currentvelocity ����������� .
Thevelocityof eachparticleateachtimestepalsochanges
by ��� . The changein velocity is controlledby the force
on theparticle ������������ "! , where! is themassof that
particleand � is theforceonthatparticle.A frictional force
is included,for self-stabilization.

For MAVs, the initial conditionsare similar to those
of a “big bang” – the MAVs are assumedto be released
from acanisterdroppedfrom aplane,thenthey spreadout-
wardsuntil a desiredgeometricconfigurationis obtained.
This is simulatedby using a two dimensionalGaussian
randomvariableto initialize the positionsof all particles
(MAVs). Velocitiesof all particlesareinitialized to be0.0,
and massesare all 1.0 (althoughthe framework doesnot
requirethis). An exampleinitial configurationfor 200par-
ticlesis shown in Figure1.
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Figure 1. The initial univer se at ')(+* .

Giventheinitial conditionsandsomedesiredglobalbe-
havior, then, we must definewhat sensors,effectors,and
force � laws are requiredsuchthat the desiredbehavior
emerges.We explorethis in thenext few sections,for dif-
ferentgeometricconfigurations.

3. CreatingHexagonalLattices

Theexampleconsideredhereis thatof aswarmof MAVs
whosemissionis to form a hexagonallattice, which cre-

atesaneffectivesensinggrid. Essentially, suchalatticewill
createa virtual antennaor syntheticapertureradarto im-
prove the resolutionof radarimages.A virtual antennais
expectedto be an important future applicationof MAVs.
Currently, thetechnologyfor MAV swarms(andswarmsof
othermicro-vehiclessuchasmicro-satellites)is in theearly
researchstage.Neverthelesswe aredevelopingthecontrol
softwarenow sothatwewill beprepared.

SinceMAVs (or other small agentssuchas nanobots)
have simplesensorsandprimitive CPUs,our goal was to
providethesimplestpossiblecontrolrulesthatrequiremin-
imal sensorsandeffectors.At first blush,creatinghexagons
would appearto be somewhat complicated,requiringsen-
sorsthatcancalculaterange,thenumberof neighbors,their
angles,etc. However, it turns out that only rangeinfor-
mationis required.To understandthis, recall anold high-
schoolgeometrylessonin whichsix circlesof radius, can
bedrawnontheperimeterof acentralcircleof radius, (the
factthatthiscanbedonewith only a compassandstraight-
edgecanbeprovenwith Galoistheory).Figure2 illustrates
this construction.If the particles(shown assmall circular
spots)aredepositedat the intersectionsof thecircles,they
form a hexagon.

-
-

--
--

-

Figure 2. How cir cles can create hexagons.

Theconstructionindicatesthathexagonscanbecreated
via overlappingcirclesof radius, . To mapthis into aforce
law, imaginethateachparticlerepelsotherparticlesthatare
closerthan , , while attractingparticlesthatarefurtherthan
, in distance.Thuseachparticlecanbeconsideredto have
acircular“potentialwell” arounditself at radius, – neigh-
boring particleswill want to be at distance, from each
other. Theintersectionof thesepotentialwells is a form of
constructive interferencethat creates“nodes” of very low
potentialenergy wheretheparticleswill be likely to reside
(againthesearethesmallcircularspotsin thepreviousfig-
ure). Thus the particlesserve to createthe very potential
energy surfacethey arerespondingto!1

With this in mind we defined a force law � �. !0/1!324 45"6 , where� is themagnitudeof theforcebetween
two particles

�
and7 , and5 is therangebetweenthetwo par-

ticles.The“gravitationalconstant”
.

is setat initialization.
Theforceis repulsiveif 5�89, andattractiveif 5;:<, . Each

1Theentirepotentialenergy surfaceis never actuallycomputed.Parti-
clesonly computelocal forcevectorsfor theircurrentlocation.
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particlehasonesensorthat candetectthe rangeto nearby
particles.Theonly effector is to beableto move with ve-
locity � . To ensurethat the force laws arelocal in nature,
particleshavea visualrangeof only =�>@?�, .2

The initial universeof 200 particles(as shown in Fig-
ure1) is now allowedto evolve for 1000time steps,using
thisverysimpleforcelaw (seeFigure3). For a radius, of
50wehavefoundthatagravitationalconstantof

. �A=CB�D�D
providesgoodresults(thesevaluesremainfixedthroughout
thispaperunlessstatedotherwise).
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Figure 3. A good hexagonal lattice ( '�(FEG*�*H* ).

Therearea numberof importantobservationsto make
aboutFigure3. First, it is obvious thata reasonablywell-
definedhexagonallatticehasbeenformedfrom theinterac-
tion of simplelocal force laws that involve only thedetec-
tion of distanceto nearbyneighbors.Thehexagonallattice
is not perfect– thereis a flaw nearthecenterof thestruc-
ture. Also, theperimeteris not a hexagon,althoughthis is
not surprising,given the lack of global constraints.How-
ever, many hexagonsareclearlyembeddedin thestructure
andtheoverallstructureis quitehexagonal.Thesecondob-
servationis thateachnodein thestructurecanhave multi-
pleparticles(i.e.,multipleparticlescan“cluster” together).
Clusteringwas an emergentpropertythat we had not ex-
pected,andit providesincreasedrobust behavior, because
the disappearance(failure) of individual particles(agents)
from a clusterwill have minimal effect. This form of fault-
toleranceis a resultof the settingof

.
, which we explore

laterin thissection.
Thepatternof particlesshown in Figure3 is quitestable,

anddoesnotchangeto any significantdegreeas � increases
past1000.Thedynamicsof theevolving system(from DI8
�J8K=LD�DMD ) is quitefascinating(whenwatchedonacomputer
screen),yet is hardto simplyconvey in apaper. As opposed
to displayingnumeroussnapshotswe have insteaddecided
to graphcertainwell-definedcharacteristicsof the system
thatcanbemeasuredatany timestep.Thesecharacteristics
yield usefulinsightsinto thesystemdynamics.

Thefirst characteristicweexaminedis motivatedby our

2The constant1.5 is not chosenrandomly. In a hexagon,if a nearby
neighboris furtherthan N away, it is O0P QRN away. Wewantedtheforce
laws to beaslocalaspossible.
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Figure 4. The average angular error in the
structure as ' increases. The log scale em-
phasiz es early behavior .

2

4

6

8

10

12

14

16

18

20

1 10 100 1000

Si
ze

 o
f C

lus
te

rs

T

Time

Hexagonal Lattice Cluster Size

Figure 5. The size of cluster s as ' increases.

desireto have theglobalstructurecontainasfew errorsas
possible,in the sensethat theorientationof the hexagonal
lattice shouldbe the sameeverywherethroughoutthe lat-
tice. To seehow we can achieve a measureof this char-
acteristic,considerchoosingany pair of particlesseparated
by B�, . This formsa line segment.Thenchooseany other
pairof particlesalsoseparatedby B�, , forminganotherline
segment.Measuretheanglebetweenthetwo line segments.
For a hexagonallattice, this angleshouldbecloseto some
multipleof U�DMV . Theerror is theabsolutevalueof thediffer-
encebetweentheangleandtheclosestmultiple of 60. The
maximumerroris WMDMV andtheminimumis DMV . Weaveraged
thisoverall distinctpairsof particlepairs,anddisplayedthe
averageerrorfor every tentimesteps(seeFigure4).3

Sinceerror rangesfrom DMV to W�DMV , we expectthe aver-
ageerrorat thebeginningto bearound =C? V . After that the
error shoulddecrease– the rateat which the decreaseoc-
cursis a reasonablemeasureof how quickly the systemis
stabilizing. Error decreasessmoothlyuntil about �X�YB�D�D ,
resultingin afinal errorof roughly UMV overthewholestruc-
ture.This is a typical result.Averagedover40 independent
runs(differentstartingconditions)thefinal errorwas ?Z> U[V .

The secondcharacteristicwe examinedis the size of
3Weuse\]N insteadof N in anattemptto smoothout localnoise,since

wecareaboutglobalerror. A particleis consideredto beseparatedby \]N
if ^R_ `ba]Ndcfegcf\C_ hb\]N .
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Figure 6. Cluster size drops sud denl y as i is
decreased linearl y after 'j(kE�*H*�* .

clusters.For eachparticle
�

we countedthenumberof par-
ticles that were closeto

�
( DA8l5�8kD> B�, ). We always

includetheparticle
�
itself, sotheminimumsizeof acluster

is 1.0. This wasaveragedover all particlesanddisplayed
for every time step. Resultsare shown in Figure 5. At
���+D all particlesarevery closeto oneanother, yielding
a high clustering. Immediately, theparticlesfly apart,due
to the repulsive force, so that by �&�mU the particlesare
all effectively separated.However, after �X�YU clustersre-
emerge,with thefinal clustersizebeingaround2.5.Clearly
the re-emergenceof clustersserves to lower the total po-
tentialenergy of thesystem,andthesizeof there-emerged
clustersdependson factorssuchas

.
, , , andthegeometry

of thesystem.A full understandingof this phenomenonis
beyondthescopeof this paper, yet we summarizehereone
interestingexperimentwith

.
. We continuedtheprevious

experiment,evolving thesystemuntil �n�oB�?�D�D . However,
after �I�F=CD�DMD we lowered

.
by D> ? for every time step.

Theresultsareshown in Figure6.
Weexpectedtheaverageclustersizeto linearlydecrease

with
.

, but in fact the behavior wasmuchmore interest-
ing. Theaverageclustersizeremainedquiteconstant,until
about �J�AB�DMD�D , which is where

.
is 700. At this point the

clustersizedramaticallydroppeduntil roughly �p�FB�B�D�D
(where

. �qU�D�D ), wheretheparticlesareseparatedagain.
This appearsvery similar to a phasetransitionin natural
physics,demonstratingthatAPcanyieldbehavior verysim-
ilar to thatdemonstratedin naturalphysics.

4. CreatingSquare Lattices

Giventhesuccessin creatinghexagonallattices,wewere
inspiredto investigateotherregularstructures.Naturallythe
squarelatticeis anobviouschoice,since(aswith hexagons)
squareswill tile a 2D plane.Thesuccessof thehexagonal
latticehingeduponthefact thatnearestneighborsare , in
distance. Clearly this is not true for squares,sinceif the
distancebetweenparticlesalonganedgeis , , thedistance

alongthediagonalis r B", . Theproblemis that the parti-
cleshave no way of knowing whethertheir relationshipto
neighborsis alonganedgeor alonga diagonal.

Onceagainit wouldappearasif wewouldneedto know
anglesor the numberof neighborsto solve this difficulty.
In fact, a muchsimplerapproachwill do the trick. Sup-
posethatatcreationeachparticleis givenanotherattribute,
called“spin”. Half of theparticlesareinitialized to bespin
“up”, while theotherhalf areinitialized to bespin“down”.
Spinsdonotchangeduringtheevolutionof thesystem.4

-s
- s

Figure 7. Forming a square using two spins.

Considerthesquaredepictedin Figure7. Particlesthat
are spin up areopencircles, while particlesthat arespin
down arefilled circles.Notethatparticlesof unlikespinare
distance, from eachother, while particlesof like spinare
distancer B", from eachother. This“coloring” of theparti-
clesextendsto squarelattices,with alternatingspinsalong
theedgesof squares,andsamespinsalongthediagonals.

Theconstructionin Figure7 indicatesthatsquarelattices
canbecreatedif particlescansensenotonly rangeto neigh-
bors,but alsothespinsof theirneighbors.Thusthesensors
needto beableto detectonemorebit of information,spin.
We usethesameforcelaw asbefore: �q� . ! / ! 2  45"6 . In
this case,however, therange5 is renormalizedto be 5� r B
if thetwo particleshavethesamespin.Thenonceagainthe
forceis repulsiveif 5;8<, andattractiveif 5�:�, . Theonly
effectoris to beableto movewith velocity � . To ensurethat
theforcelawsarelocal in nature,particlescannotevensee
or respondto otherparticlesthatarefurtherthan =�>ut", .5

Theinitial universeof 200particlesis allowedto evolve
for 4000time steps(thesystemis somewhatslower to sta-
bilize thanthe hexagon),usingthis very simpleforce law.
The final result is shown in Figure8. Again, we measure
the angularerror by choosingpairsof particlepairssepa-
ratedby B�, (andby insistingthat eachparticlepair have
like spins,we help ensurethat pairs arealignedwith the
rows andcolumnsof the lattice). In this casetheanglebe-
tweenthetwo line segmentsshouldbecloseto somemulti-
ple of v�DMV . Theerroris theabsolutevalueof thedifference
betweentheangleandtheclosestmultipleof 90. Themax-
imum error is w[?MV while theminimumis DMV . Thegraphof
angularerroris shown in Figure9.

The resultsare clearly suboptimal. Locally, the parti-
cles have formed decentsquarelattices. This can be ob-
served by noting that the spinsalternatealong the edges

4Spinis merelyaparticlelabelandhasnorelationto therotationalspin
usedin navigationtemplates[11].

5Theconstantis 1.7 if particleshave like spinand1.3otherwise.
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Figure 8. The 200 par tic les form a square lat-
tice by 'j(zyH*H*�* , but global flaws exist.
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Figure 9. Angular error as ' increases.

of squares,while spinsarethesamealongthediagonalof
squares.Onceagaineach“node” in the lattice can have
multipleparticles,providing for increasedrobustbehavior.6

However, largeglobalflawssplit thestructureinto separate
squarelattices. This is also indicatedby Figure9, which
shows that thesystemis unableto achieve anerrorof less
thanabout =CDMV . Again,thisresultis fairly typical. Averaged
over 40 independentruns,the final error wasabout =CBZ> { V .
Thus,althoughthe local forcelaws do appearto work rea-
sonablywell, they (not surprisingly)do not rule out diffi-
cultiesat the global level. The questionis whetherthese
sortsof difficultiesmustbe repairedvia global constraints
or whetherwecangetby with local repairs.

5. Local Repair of Square Lattices

As with other physicalsystems,the presenceof some
form of noiseoften helpsto remove global flaws in struc-
tures. Furthermore,we would also like systemsto self-
repaireven at the local level. For example,if all particles
at a particularnodearedestroyed,a local holeopensin the
hexagonalor squarelattice.Ourgoalis to providea simple
repairmechanismthatrepairsbothlocalandglobalfaults.

6In this casethefinal clustersizeis roughly1.75.

To achieve this goalwe focusedagainon theconceptof
spin. If oneexaminesFigure8 onenoticesthatclustersare
almostalwaysmadeupof particlesof likespin.Thereis an
aversionto having clustersof unlikespins(thiswasanother
surprisingemergentproperty).

Now recall thatspinsaresetat initializationandarenot
allowedto change.Whatwouldhappen,though,if onepar-
ticle in a clusterof like spinschangesspin?It would prob-
ably fly away from that clusterto anotherclusterwith the
samespin as it now has. It could also land at an empty
node,which althoughempty, is still an areaof very low
potentialenergy. In essenceclustersrepresentareaswith
excesscapacity(i.e., morethana sufficient numberof par-
ticles),andthatexcesscapacitycanbeusedto fix problems
in the structureas they arise. Thusour hypothesisis that
this increasedflow of particles(noise)canhelprepairboth
localandglobalflaws in thesquarelattice.

To test this hypothesisonly requiredonechangeto the
code.Againparticlesareinitializedwith agivenspin.How-
ever, if a particle hasa neighborthat is extremely close
( 5d8|=�> D ), theparticlemayflip its spinwith a smallprob-
ability. Thustheparticlesnow have oneadditionaleffector
– they canchangetheir own spin. This shouldnot create
structuralholes,sincea particlecanonly leave a clusterif
thereis excesscapacity(atleastoneneighborin thecluster).

Onceagainthe initial universeof 200particlesevolved
usingthesameforcelaw for thesquarelattice,coupledwith
this simplespin-flip repairmechanism.The initial condi-
tions werethe sameasthosein the previoussection. The
resultsareshown after4000time steps(seeFigures10 and
11) andarequiteimpressive. Thepreviouslyshown global
flaws areno longerin evidence(althougha minor portion
of thelatticeis still misaligned).Many of theflaws thatre-
mainarelocal andarea resultof a still operatingspin-flip
repairmechanism,thatcontinuesto occasionallyflip spins
(sendingparticlesfrom clusterto cluster). Observationof
theevolving systemshows thatholesarecontinuallyfilled,
asparticlesleave their clusterandheadtowardsthe open
areasof low potentialenergy.

Notealsothatspin-flip repairhastheeffectof creatinga
largersquarelatticepattern.This occursbecausespin-flip
repair will continually operateuntil eachclustercontains
only one particle. Note also that, as expected,Figure 11
shows increasednoise,which is provided by the spin-flip
repair. Thenoiseallows a betterglobalstructureto emerge
(thefinal erroris WZ>@?�V ).

To testour hypothesisthat spin-flip repairservesto re-
move flaws from theevolvedstructure,we ranour system
on thesame40 independentproblemsthatwereusedwith
no spin-flip repair. UsinganexactWilcoxon rank-sumtest
wehavedeterminedthatthemeanerrorwith spin-fliprepair
( w�> v[V ) is statisticallysignificantlyless(�d8}D> DMDZ= ) thanthe
meanerrorwithoutspin-flip repair( =4BG> {MV ).
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Figure 10. The 200 par tic les form a better
square lattice at '0(~yH*H*�* . Global flaws are
almost absent.
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Figure 11. Angular error as ' increases.

In this section we presenteda repair mechanismfor
global andlocal flaws. Futurework will introducesensor
andeffector noise,aswell asother faults. This will help
usidentify thelimitationsof ourcurrentapproach,sothatit
canbeimprovedasneededfor greaterself-repairability.

6. Sorting

Onemotivationfor AP stemmedfrom theconnectionbe-
tweendistributedcontrol andnaturaldistributedcomputa-
tion. Thus far we have shown that the framework of AP
canbequiteusefulfor distributedcontrol.CanAP alsoper-
form distributedcomputation?To explore this possibility
weconsideredthetraditionalcomputationaltaskof sorting,
which movesdatafrom memorylocationto memoryloca-
tion, until thedatais ordered.Supposethateachparticlein
theAP framework representedeachdatum.Couldthepar-
ticles physicallymove themselvesso that they arealigned
in thecorrectorder?If so,we would have useddistributed
controlto performdistributedcomputation!

We decidedto investigatethe taskof 2D sortingalong
a squarelattice. Interestingly, it turnsout that the taskcan

beachievedusingtheaboveAP framework for constructing
squarelattices,with smallmodifications.Recallthatwere-
quiredtheadditionof a “spin” attributefor eachparticle,in
orderto constructsquarelattices.Everyspinup(down) par-
ticle is indistinguishablefrom every otherspin up (down)
particle. However, for sortingevery particlemustbe dis-
tinguishable.Thuswe addeda new 2D attribute ��!����	� to
eachparticle,where! and � areintegers.Eachparticlere-
ceivesauniquepair ��!����	� . Thegoalis to sorttheparticles
accordingto ! alongthe rows of the squarelattice,while
sortingtheparticlesaccordingto � alongthecolumns.

-
�1BZ�R="�

s
��=��R="�

-��=���B[� s�1BZ��B[�

Figure 12. Four sor ted par tic les.

Figure12 representsa sortingof four particlesthathave
theattributes(1,1),(1,2), (2,1)and(2,2). Theastutereader
will notethatthissortingassumesanorientationto thesys-
tem(i.e., that ! shouldincreaseto theright, and � should
increaseupwards). The upshotis that local informationis
not sufficient for this task.Onepieceof global information
is required,orientation. Thusparticlesmusthave sensors
for determiningrangeto otherparticles,their spin, ��!����	�
attribute, andorientationin the world.7 It is importantto
notethataparticle’s ��!����	� attributedoesnotrepresenta2D
coordinate,rather, it specifiesits orderingrelative to other
particles.Thustheparticlewith attribute(2,1)shouldbeto
theright of (1,1).

We now use the same force law as before: � �. !0/1!324 45"6 , whereagaintherange5 is renormalizedto be
5� �r B if the two particleshave the samespin. Onceagain
the force is repulsive if 5�8k, and attractive if 5�:�, .
However, thereis now one further situationin which the
forceshouldbeattractive, which is whentwo particlesare
notorderedproperlywith respectto their ! or � attributes.
Theideais that in this situationthetwo particlesshouldbe
drawn to eachothersothatthey passby oneanother. Thus,
thetwo particleswill “dance”aroundoneanother, until their
relative orderingis correct.Putanotherway, the force law
now simultaneouslyenforcesbothatopologyandageome-
try to thesystem.The ��!����	� attributedefinesthetopology,
while spinandrangedefinethegeometry.

To test theseideaswe chosea systemof 225 particles,
which weregiven the 225 attributesrangingfrom (1,1) to
(15,15). For this taskwe do not wantclustering,sowe set. ��U�DMD (asshown in ourearlierresults,this is sufficiently
low to avoid the clusteringeffect). Spin-flip repair is not
used. The systemof 225 particleswas randomlyinitial-
ized in the samefashionasin the earlierexperimentsand

7A microscopiccompasscouldsenseorientation.
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Figure 13. 225 par tic les form a perf ect global
square , using sor ting ( ')(zy�*�*H* ).

the systemwas allowed to run for 4000 time steps. Fig-
ure13 shows thefinal configuration,which is very impres-
sive.The225particleshavebeentopologicallysortedalong
therowsandcolumnsof thesquarelattice.In fact,wehave
succeededin creatinga perfectsquarewith the 225 parti-
cles!AP hasperformedtwo taskssimultaneously– forming
asquarelatticewhile sortingtheparticlesthatform thatlat-
tice. The additionaltaskof sortingprovidesa mechanism
for achieving a globally perfectlattice (we confirmedthis
over tenindependentruns).

Sincewe were motivatedinitially by the formation of
hexagonalstructures,we wonderedwhetherthesamesort-
ing mechanismcould be usedto createperfecthexagons.
It turnsout that it canin fact be donequite simply, if the
��!����	� attributesaredefinedproperly. ConsiderFigure14,
which shows the ��!����	� attributes for a simple hexagon
composedof sevenparticles. Onceagain ! and � should
notbeconsideredto becoordinates(in factit is obviousthat
if they werecoordinatesthey would be incorrect). Rather,
they indicatesimply therelativeorderingof theparticlesin
the2D plane.Thesettingof the ��!����	� attributecanbeeas-
ily generalizedto hexagonswith moreparticles.

-
��=��L��=4�

-
����=M�R��=4�

-����=��L=4� -��=M�R=4�
-���XBZ��D�� - ��BG��D��-��D��D[�

Figure 14. Seven sor ted par tic les.

To test theseideaswe chosea systemof 217 particles
(which is thenumberof particlesneededto createa perfect
hexagonwith nine particlesper side at the outer perime-
ter)andinitializedtheir ��!����	� attributeaccordingly. Again. ��U�DMD andthesystemof 217particleswasrandomlyini-

# #�#9#�# #�#&#�##�# #�#9#�#<#9# #�##9#�#�#9# #9#�#�#9# ##�# #9#�#9#�# #9#�#�#9##9#�#9#�# #�#9#�# #9#�#9## #9#�#�#9# #�#<#9#�# #9#�##�#9# #9#�#�# # # #�#�#�# #�##9#�#9#�#�# #�#9#�# #9#�#9# #�##�#�# #�#9#�# #9#�#9#�# #9#�#9#�##�#�#&# #&#�#�#9# #�#9#�# #�#�##�#9#�#�# #�#9#o# #�#$#�#�#9## #�#9#�# #9#�#�#&#�# #�#&## #�#�#9#�#9# #�#9#�# #<##�#9# #�#9#�#9# #�#9#�##�#�#9#�# #�#�#9# #9##�#�#&#�# #9#�#�#9## #�#9#�#9# #&#9#

Figure 15. 217 par tic les form a perf ect global
hexagon, using sor ting ( '�(FEG��*H*�* ).

tialized.Thissystemwasslowerto stabilizethanthesquare
lattice,andwasallowed to run for 15000time steps.Fig-
ure15showsthefinal configuration,whichisagainveryim-
pressive. The217particleshave beentopologicallysorted,
andhavesucceededin formingaperfecthexagon(againwe
confirmedthisover tenindependentruns).

7. Summary and RelatedWork

This paperhas introduceda novel framework for dis-
tributed control, basedon laws of artificial physics(AP).
The motivation for this approachis that natural laws of
physicssatisfytherequirementsof distributedcontrol(i.e.,
self-assembly, fault-tolerance,andself-repair).

The initial resultswith this framework have beenquite
promising. We illustrated how a simple AP framework
canresultin theself-assemblyof hexagonalandsquarelat-
tices.Theconceptof spin-flippingfromnaturalphysicswas
showntobeusefulasarepairmechanismfor squarelattices,
if no global information is available. We have also used
thesemechanismsto createother structures(e.g., tiling a
2D surfacewith “open” hexagonsthat have no particle in
thecenter, by usingparticlesof alternatingspin).

The paperhas also shown that self-assemblycan be
viewed as a form of computation,when we use the AP
framework to perform sorting. Sorting requiresonly one
small pieceof global information– eachparticlemustbe
able to senseits global orientation. Sorting turnedout to
bethekey to building hexagonalandsquarelatticesthatare
globallyperfect,whichbroughtusbackfull circle.

Others have examined physical simulations of self-
assembly. Schwartz et al. [10] hasinvestigatedthe self-
assemblyof viral capsidsin a 3D solution,usinga kinetics
modelto simulatethebindingof proteins.Winfree[12] has
investigatedthe self-assemblyof DNA double-crossover
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moleculeson a 2D lattice,usinga thermodynamicandki-
netic model to describethe binding of the molecules. In-
terestingly, Winfreealsoshows thatself-assemblyof DNA
is a form of computation,andoutlinesa simplealgorithm
thatusesself-assemblyto solve HamiltonianCircuit prob-
lems. Oneof the computationalstepsis a sort, similar to
thatdescribedin thispaper.

Both Schwartzet al. andWinfreearerestrictedto using
plausiblemodelsof naturalphysics,sincethey are inves-
tigating the self-assemblyof small naturalparticles. AP,
however, is notboundby this restriction.Sinceagentshave
their own sensorsandeffectors,they canmake useof any
AP forcethatthey canperceiveandrespondto.

AP is alsocloselyrelatedto the work of Carlsonet al.
[4], which investigatestechniquesfor controlling minia-
ture agentssuch as micro-electromechanicalagentsand
nanobots.Their work reliesheavily on theuseof a global
controller that can imposean external potentialfield that
agentscan sense. Sincewe rely primarily on local force
interactions,thework by Carlsonetal. is complementary.

AP bearssomesimilarity to work in robotics,suchas
“potentialfield” and“behavior-based”approaches.Poten-
tial field (PF)approaches[6, 7] areusedfor robotnavigation
andobstacleavoidance.In a mannersimilar to AP, PFap-
proachesmodela goalpositionasanattractive force,while
obstaclesaremodeledwith repulsive forces. PFcomputes
force vectorsby taking the gradientof an entirepotential
field. In AP, however, eachparticledirectly computesthe
forcevectorthatappliesto its currentposition– thepoten-
tial field is never computed.AP thushaslower computa-
tionaloverhead.

Behavior-basedapproaches(suchasmotor schemaap-
proaches[2] and other ethological behavior-basedap-
proaches[3, 8]), derivevectorinformationin afashionsimi-
lar to AP. Furthermore,particularbehaviorssuchas“aggre-
gation”and“dispersion”havesomesimilarity to theattrac-
tive and repulsive forcesin AP. However, behavior-based
approachesdo not make useof potentialfieldsandforces.
Rather, they dealdirectly with velocity vectors. Although
this distinctionappearssubtle,we believe that it is impor-
tant for two reasons.First, AP canmimic naturalphysics
phenomenamoreeasily, sinceit dealsdirectly with forces
(e.g.,we arenot awareof any behavior-basedapproaches
that show clusteringor phasetransitionbehavior). Sec-
ondly, AP hasthe potentialof beinganalyzablewith con-
ventionalphysicstechniques.In summary, AP potentially
placesthe behavior-basedapproacheson a firmer physics
foundation,yetavoidscomputingentirepotentialfields.

The term “artificial physics”hasbeenusedin another
context, namely, in philosophicaldiscussionsconcerning
theartificial reality necessaryto constructartificial life [9].
Weusethetermmoregenerallyto referto any quasi-natural
physicsmodelthatwebuild to solveany particulartask.

8. Discussion

Oneimportantconsequenceof theseresultsis the deep
connectionbetweendistributed control and natural dis-
tributedcomputation,especiallyif thatcontrolis performed
usingcontrol laws basedon AP laws. This observationhas
two ramifications.First, controlsystemsbasedon AP laws
are likely to display behavior similar to naturalsystems.
Thiswasdemonstratedin thispaperby illustratinga“phase
transition”in theeffect that

.
hasonclustering.Onecould

alsoeasilyimaginethatsuchcontrolsystemswill obey var-
ious conservation laws, as with naturalphysicalsystems.
Thebottomline is thatsystemsbasedonAP arelikely toex-
hibit theknown characteristicsof naturalphysicalsystems,
whichwecanuseto ouradvantage.

The secondramificationis that it is very likely that the
behavior of systemscontrolledby artificial physicswill be
amenableto fairly standardanalysistools alreadyusedby
physicists.Giventhedifficulty in analyzingcomplex adap-
tivesystems,many havealreadytakentheapproachof using
techniquesfrom physics(e.g.,statisticalmechanics).These
techniquesaremorelikely to beappropriateif thesystems
to which they areappliedaresimilar to thenaturalphysical
world. Futurework will exploretheseramifications.
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