A NN Algorithm for Boolean Satisfiability Problems

William M. Spears
AT Center - Code 5514
Naval Research Laboratory
Washington, D.C. 20375-5320
202-767-9006 (W) 202-767-3172 (Fax)

spears@aic.nrl.navy.mil

ABSTRACT

Satisfiability (SAT) refers to the task of finding a truth assignment that makes an arbitrary
boolean expression true. This paper compares a neural network algorithm (NNSAT) with
GSAT [4], a greedy algorithm for solving satisfiability problems. GSAT can solve problem
instances that are difficult for traditional satisfiability algorithms. Results suggest that NNSAT
scales better as the number of variables increase, solving at least as many hard SAT problems.

1. Introduction

Satisfiability (SAT) refers to the task of finding a truth assignment that makes an arbitrary boolean
expression true. For example, the boolean expression a A b is true if and only if the boolean variables a
and b are true. Satisfiability is of interest to the logic, operations research, and computational complexity
communities. Due to the emphasis of the logic community, traditional satisfiability algorithms tend to
be sound and complete!. However, [4] point out that there exist classes of satisfiability problems that
are extremely hard for these algorithms and have created a greedy algorithm (GSAT) that is sound, yet
incomplete (i.e., there is no guarantee that GSAT will find a satisfying assignment if one exists). The
advantage of GSAT is that it can often solve problems that are difficult for the traditional algorithms.

Other recent work has also concentrated on incomplete algorithms for satisfiability ([1], [6], [8], [2])-
However, comparisons between the algorithms have been difficult to perform, due to a lack of agreement on
what constitutes a reasonable test set of problems. One nice feature of [4] is that a class of hard problems
is very precisely defined. This paper compares GSAT with a novel neural network approach on that class
of hard problems. The results indicate that the neural network approach (NNSAT) scales better as the
number of variables increase, solving at least as many hard problems.

2. GSAT and NNSAT

GSAT assumes that the boolean expressions are in conjunctive normal form (CNF)?2. After generating a
random truth assignment, it tries new assignments by flipping the truth assignment of the variable that
leads to the largest increase in the number of true clauses. GSAT is greedy because it always tries to
increase the number of true clauses. If it is unable to do this it will make a “sideways” move (i.e., change
the truth assignment of a variable although the number of true clauses remains constant). GSAT can
make a “backwards” move, but only if other moves are not available. Furthermore, it can not make two
backwards moves in a row, since the backwards move will guarantee that it is possible to increase the
number of true clauses in the next move.

Since SAT is a constraint satisfaction problem, it can be modeled as a Hopfield neural network [3]. This
paper describes NNSAT, a Hopfield network algorithm for solving SAT problems. NNSAT is not restricted

1Soundness means that any solution found must be correct. Completeness means that a solution must be found if one
exists.

2CNF refers to boolean expressions that are a conjunction of clauses, each clause (conjunct) being a disjunction of negated
or non-negated boolean variables. For example, (a V b) A (a Vb) A (@ V b) is in CNF.

@vb)A(avb)A@vb)

Fig. 1: The neural network for (@ V b) A (a Vb) A (aV b)

to CNF and can handle arbitrary boolean expressions. The neural network graph is based on the AND/OR
parse tree of the boolean expression. It is not necessarily a tree, however, because each instance of the
same boolean variable is represented by only one leaf node, which may have multiple parents. The resulting
structure is a rooted, directed, acyclic graph. All edges in the graph are directed toward the root node
(i.e., there are no symmetric edges). An edge has weight w;; = —1 if there exists a NOT constraint from
node 7 to node 7, otherwise it has weight 1. Each node ¢ can be true or false, which is represented using
an activation a; of 1 and —1, respectively. See Figure 1 for an example, where NOT's are represented by
dashed edges. It is important to note that the “arrows” in Figure 1 are directed from children to parents.

Let Energy be the global energy state of the network, representing the degree to which the boolean
constraints are satisfied. Energy is the combination of local energy contributions at each node: Energy =
>, Energy; = >, net;a;. If all boolean constraints are satisfied, then each local energy contribution will
be maximized, and the total energy of the system will be maximized. In this formulation net; represents
the net input to a node i from its immediate neighbors. If the net input is positive, then a; must be 1 in
order to have a positive energy contribution. If the net input is negative, then a; must be —1.

In NNSAT net; is normalized to lie between —1 and 1. Because of this Energy; = 1 if and only if all
constraints are satisfied at node i. If a node ¢ violates all constraints, then Energy; = —1. The energy
of a solution is simply Energy = >, Energy; = n, where n is the number of nodes in the network. All
solutions have this energy, and all non-solutions have lower energy.

The computation of net; for SAT problems is reasonably complex. Informally, the net input net; is
computed using upstream and downstream net inputs to node i. Downstream net inputs flow from children
of a node, while upstream net inputs flow from the parents of a node. If a node is a leaf node, there is no
reason to consider the downstream net input. If a node is an interior node, and there is no upstream net
input, only the downstream net input in considered. If, however, there is upstream net input, it is averaged
with the downstream net input (this will be expressed formally at the end of this section). Finally, the root
node must always be true, since the goal is to satisfy the boolean expression.

The downstream (upstream) net inputs are based on downstream (upstream) constraints. Downstream
constraints flow from the children of a node. An AND (OR) node is constrained to be true (false) if and
only if all of its children are true (false). An AND (OR) node is constrained to be false (true) if and only
if at least one child is false (true). Upstream constraints flow from the parent of a node. If the parent of
node 7 is an AND and the parent is true, then node 7 is constrained to be true. However, if the parent is
an AND and the parent is false, then node i is constrained to be false if and only if all siblings (of node
i) are true. Other situations are possible, but they do not constrain the node. Finally, if the parent of
node 7 is an OR and the parent is false, then node i is constrained to be false. However, if the parent is an
OR and the parent is true, then node ¢ is constrained to be true if only if all siblings (of node 3) are false.
Again, other situations do not constrain the node.

These rules can be illustrated with a simple example (Figure 1). Suppose we have the following CNF

boolean expression of two variables and three conjuncts: (@ V b) A (a V b) A (@ V b). Each node is bound by
boolean constraints. Since the root must be true, the conjuncts are constrained to be true. This information
is used to probabilistically determine the truth values of each boolean variable. For example, suppose a
is true. Then an upstream constraint from the first conjunct constrains b to be true, while an upstream
constraint from the third conjunct constrains b to be false. Due to the conflicting constraints, it is not clear
whether b should be true or false, so b is true with 50% probability. However, suppose a is false. Then
the only constraint is an upstream constraint from the second conjunct, which constrains b to be false.
Therefore b is false with high probability.

More formally, the net input net; is a function of two contributions: Unet; and Dnet;. Unet; represents
the upstream net input to node ¢ from all its parents. Since some nodes may have multiple parents, Unet;
will be computed using contributions from each parent. Dmnet; represents the downstream net input to
node 4 from its children. Define AND; (OR;) as a predicate that is true if and only if node ¢ is an AND
(OR). Tt is now possible to define the downstream constraint D; for node 4 as:

D; =(AND; A Vj(ajwji =1))V(OR; A Elj(ajwji =1))

D; is true if and only if node i is an AND node and has all children true, or it is an OR node and has
at least one child true. To be precise, the truth of a child j is the product of the activation of the child and
the weight from the child to node ¢ (a;w,;). If the weight wj; is —1, a NOT constraint is implied, reversing
the truth value of the child®. Given this definition, the rules for Dnet; are:

Vi[(Dnet; = 1) < D;], Vi[(Dnet; = —1) « D]

To see how this affects local energy, consider the case were D, is true (Dnet; = 1). This states that
node 7 should be true. If we assume there are no upstream constraints, then net; = Dnet; = 1 and
Energy; = net;a; = a;. If i is true (a; = 1) there is a positive energy contribution; if it is false (a; = —1)
there is a negative energy contribution. As an example, consider Figure 2. If a is true and b is false, a node
i representing a A b (note that Dnet; = 1) will contribute positive energy if and only if that node is true.
If D; is false (Dnet; = —1) then Energy; = —a; and a similar situation exists.

Fig. 2: The neural network for a A b
In a similar fashion, define the upstream constraint U;; of a node 4 from a parent j:

Uj = (AND; A((a; = 1)V [(a; = =1) AVkzi(arwr; = 1)])) V
(OR; A ((a; = —1) V [(a; =1) AVkzi(arwe; = —1)]))

The rule for Unet;; is: ViVj[(Unet;; = ajw;;) < U;]*. A constraint can occur if the parent j is an
AND or an OR. If it is an AND, and a; = 1, then node ¢ should have an activation a; = a;w;; = w;;. To
see how this affects local energy, assume for the sake of illustration that there is no downstream constraint
and are no other upstream constraints. Then net; = Unet;; and Energy; = net;a; = w;;ja;. Thus there is
a positive energy contribution if and only if a; and w;; have the same sign. As an example, consider Figure
2 again. If a node j representing a A b is true, then there will be a positive energy contribution at the node
i representing b if and only if b is false (because w;; = —1) and a positive energy contribution at the node
i representing a if and only if @ is true (because for that edge w;; = 1). Similar constraints occur when

3For example, if a is true and b is false, then both children of the node a A b are true.
4See [6] for motivational details.

Input: A boolean expression, Cutof f, Max_temp, and Min_temp;
Output: A satisfying truth assignment for the boolean expression, if found;
restarts = 0; assignments = 0;
loop {
restarts++; j = 0;
Randomly initialize the activations a; for each node 4;
loop {
if the boolean expression is satisfied terminate successfully;
T = Max_temp * e—j*decay_rate;
if (T < Min_temp) then exit loop;
loop through all the nodes 7 randomly {
Compute the net input net;;
probability(a; = 1) = % ;
1+e™ T
}
1++; assignments++;
if (Cutof f = assignments) terminate unsuccessfully;

Fig. 3: The NNSAT algorithm

parent j is an AND, a; = —1 and all siblings are true (arwy; = 1), as well as the case when the parent j
is an OR node (see the definition of U;; above).

It is now possible to combine the separate upstream contributions Unet;; from each parent j into the
total upstream contribution Unet; to node i. Define ¢; as the number of upstream constraints on node
i at some particular time (¢; = |{j|U;;}|). Suppose that a node has no upstream constraints (c; = 0).
Then let Unet; = a;. For illustrative purposes, suppose there are also no downstream constraints. Then
net; = Unet; and Energy; = a;a; = 1. If there are no constraints associated with node 4, there is no reason
to change the activation of that node. In essence, the network is rewarded at node i for having no upstream
constraints. If there are upstream constraints, Unet; is normalized to fall within —1 and 1 (to ensure that
net; is normalized between —1 and 1):

)) > Unet;;
Vi[(c; = 0) — (Unet; = a;)], Vi[(¢; #0) — (Unet; = 17)]

Ci

It is now possible to formally compute net;. Define the predicates Leaf;, Int;, and Root; to be true if
and only if node ¢ is a leaf, an interior node, or the root node, respectively. Then the net input net; is:

Vi[Leaf; — (net; = Unet;)], Vi[Root; — (net; = 1)]

Dnet; + Unet;
et

NNSAT is shown in Figure 3. The above discussion has explained how to compute net; in the innermost
loop. Both GSAT and NNSAT also have outer loops to control restarts — if the search stagnates both algo-
rithms are randomly reinitialized until their respective cutoffs are reached or until a satisfying assignment of
the boolean variables is found. NNSAT uses simulated annealing to help it escape local optima, by allowing
it to make multiple backwards moves in a row (unlike GSAT). A restart occurs when the temperature T'
reaches some minimum. The decay rate for the annealing schedule is reduced each time NNSAT is restarted
and is inversely proportional to the number of nodes n in the network (decay_rate = 1/(restarts * n)). This
allows NNSAT to spend more time between restarts when the problem is large or difficult. Assignments
counts the number of boolean assignments tested during a run of the algorithm. An assignment consists of
evaluating net; and a; (via the logistic function) for all nodes, in random order.

Vi[(Int; A (¢; = 0)) — (net; = Dnet;)], Vi[(Int; A (¢; #0)) — (net; =

3. Experiments and Results

Particular classes of problems appear to be difficult for satisfiability algorithms. This paper concentrates
on one such class, a fixed clause-length model referred to as Random L-SAT. The Random L-SAT problem
generator creates random problems in CNF subject to three parameters: the number of variables V', the
number of clauses C, and the number of literals per clause L°. Each clause is generated by selecting L of
the V' variables uniformly randomly, negating each variable with probability 50%. Let R denote the ratio of
the number of clauses to the number of variables (C'/V'). According to [4], hard problems are those where R
is roughly 4.25, when L is 3. Although we could not obtain the specific problems used in their experiments,
we generated random problems using their random problem generator (with L = 3 and R = 4.25).

GSAT NNSAT
V C | Assignments | Assignments # Solved Cutoff
100 425 21,000 3,700 18/30 100,000
200 850 497,000 36,000 16/30 200,000
300 1275 1,390,000 24,000 11/30 200,000
400 1700 3,527,000 71,000 8/30 200,000
500 2125 9,958,000 178,000 6/30 400,000

Table: 1: GSAT and NNSAT on hard problems

Table 1 presents the comparison. For NNSAT Min_temp = 0.01 and Max_temp = 0.15. “Assignments”
indicates the average number of assignments tested before a satisfying assignment was found (for those
problems actually solved). Since the problems are not all solvable, Table 1 also presents the number of
problems solved (out of 30). “Cutoff” indicates the number of assignments tried before NNSAT decides a
problem is unsolvable. The results for GSAT are taken from [4]. The percentage solved by GSAT is not
reported, however Selman (personal communication) states that GSAT solves roughly 50% of the 100 and
200 variable problems, and roughly 20% — 33% of the 500 variable problems. Also, the cutoffs for GSAT
are not fully described. Although the lack of specific information makes a comparison difficult, NNSAT
appears to solve roughly the same percentage of hard problems with far fewer assignments.

One problem with the above comparison is that each assignment in NNSAT is computationally more
expensive than it is in GSAT. This occurs for two reasons. First, NNSAT can handle arbitrary boolean
expressions, while GSAT is specifically designed for CNF expressions. The increase in generality comes
at the price of greater overhead. Second, each assignment in GSAT is equivalent to flipping one boolean
variable, while an assignment in NNSAT involves flipping potentially multiple variables (leaf nodes). To
address the first issue a specific version of NNSAT (called NNSAT-CNF) was written for CNF expressions,
enormously increasing the efficiency of the algorithm. To address the second issue, focus was centered on
flips rather than assignments. As described by [7], a flip in GSAT and NNSAT-CNF have almost identical
computational complexity, thus making this an ideal measure for comparison®. Table 2 presents the results
for NNSAT-CNF. Due to the increased efficiency of the algorithm it was possible to average the results over
more problems than when using NNSAT (100 for each choice of V', instead of 30) and to greatly extend the
cutoffs (which are still in terms of “assignments” to facilitate comparison with Table 1). Computational
time is also reported (the results for GSAT are from [4]).

The results for NNSAT-CNF are encouraging. In terms of “flips” (and time) NNSAT-CNF appears to
scale better than GSAT, since it solves a greater percentage of the larger problems with less computational
effort. The reason for this performance difference is not clear. However, [4] report that GSAT performs
worse when sideways steps are not allowed. A reasonable hypothesis is that GSAT would perform even
better if it could occasionally take sequences of backward steps, as does NNSAT and NNSAT-CNF”.

5A literal is a negated or non-negated boolean variable.

8In [7] NNSAT-CNF is called SASAT, because with CNF the network is simple and the emphasis is on Simulated Annealing.
None of the details of NNSAT as described in Section 2, however, are in that paper.

7TGSAT has recently been modified to make heuristically-driven backwards moves, which do indeed improve performance.
These special backwards moves also improve the performance of NNSAT-CNF. See [7] for details.

GSAT NNSAT-CNF
V C Flips Time Flips # Solved Time Cutoff
100 425 21,000 .1 min 31,000 58/100 .2 min 200,000
200 850 497,000 2.8 min 396,000 44/100 3 min 400,000
300 1275 1,390,000 12 min | 1,924,000 48/100 13 min 800,000
400 1700 | 3,527,000 34 min | 2,269,000 45/100 15 min 1,000,000
500 2125 | 9,958,000 96 min | 4,438,000 41/100 30 min 1,600,000

Table: 2: GSAT and NNSAT-CNF on hard problems

4. Conclusion

In this paper we consider the application of neural networks to boolean satisfiability problems and compare
the resulting algorithm (NNSAT) with a greedy algorithm (GSAT) on a particular class of hard problems.
With the given cutoffs, NNSAT appears to satisfy roughly as many hard SAT problems as GSAT. A
specialized version of NNSAT for CNF expressions performs even better, solving at least as many hard
SAT problems with less work.

There are a number of potential items for future work. NNSAT uses a very simple annealing schedule,
which is not optimized. Recent work in adaptive annealing schedules holds the potential for improved
performance. Second, it should be possible to add domain-dependent operators to NNSAT. For example,
it may be possible to add stochastic operators based on the Davis-Putnam satisfiability algorithm. Third,
NNSAT is intrinsically parallel and is a good match for parallel architectures. Andrew Sohn of the New
Jersey Institute of Technology has ported NNSAT-CNF to a AP1000 multiprocessor [5]. Future work will
concentrate on porting the general NNSAT algorithm to a parallel architecture.

Acknowledgements

I thank Diana Gordon, Ken De Jong, David Johnson, Bart Selman, Ian Gent, Toby Walsh, Antje Beringer,
Andrew Sohn, Mitch Potter, and John Grefenstette for provocative and insightful comments.

References

[1] K. De Jong and W. Spears, “Using Genetic Algorithms to Solve NP-Complete Problems”, International
Conference on Genetic Algorithms, pp. 124-132, June 1989.

[2] J. Gu, “Efficient Local Search for Very Large-Scale Satisfiability Problems”, SIGART Bulletin, 3(1),
January 1992.

[3] J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational Abili-
ties”, Proc. Natl. Acad. Sci, 79, pp. 2554—2558, 1982.

[4] B. Selman, H. Levesque, and M. Mitchell, “A New Method for Solving Hard Satisfiability Problems”,
Proceedings of the 1992 AAAI Conference, pp. 440-446, 1992.

[5] A. Sohn, “Solving Hard Satisfiability Problem with Synchronous Simulated Annealing on the AP1000
Multiprocessor”, Proceedings of the Seventh IEEE Symposium on Parallel and Distributed Processing
San Antonio, Texas, pp. 719-722, October 1995.

[6] W. Spears, “Using Neural Networks and Genetic Algorithms as Heuristics for NP-Complete Problems”,
Masters Thesis, Department of Computer Science, George Mason University, 1990.

[7] W. Spears, “Simulated Annealing for Hard Satisfiability Problems”, to appear in the DIMACS Series
on Discrete Mathematics and Theoretical Computer Science, 1996.

[8] R. Young and A. Reel, “A Hybrid Genetic Algorithm for a Logic Problem”, Proceedings of the 9th
European Conference on Artificial Intelligence, pp. 744-746, 1990.

