Using Genetic Algorithms For Supervised Concept Learning

William M. Spears
Navy Center for Applied Research in Al
SPEARS@AIC.NRL.NAVY.MIL

Abstract

Genetic Algorithms (GAs) have traditionally been
used for non-symbolic learning tasks. In this paper
we consider the application of a GA to a symbolic
learning task, supervised concept learning from
examples. A GA concept learner (GABL) is imple-
mented that learns a concept from a set of positive
and negative examples. GABL is run in a batch-
incremental mode to facilitate comparison with an
incremental concept learner, ID5R. Preliminary
results support that, despite minimal system bias,
GABL is an effective concept learner and is quite
competitive with ID5R as the target concept
increases in complexity.

1. Introduction

There is a common misconception in the machine
learning community that Genetic Algorithms (GAs) are
primarily useful for non-symbolic learning tasks. This
perception comes from the historically heavy use of GAs
for complex parameter optimization problems. In the
machine learning field there are many interesting parame-
ter tuning problems to which GAs have been and can be
applied, including threshold adjustment of decision rules
and weight adjustment in neural networks. However, the
focus of this paper is to illustrate that GAs are more gen-
eral than this and can be effectively applied to more tradi-
tional symbolic learning tasks as well. T

To support this claim we have selected the well-
studied task of supervised concept learning [Mitchell 78,
Michalski83, Quinlan86, Rendell89]. We show how con-
cept learning tasks can be represented and solved by GAs,
and we provide empirical results which illustrate the per-
formance of GAs relative to a more traditional method.
Finally, we discuss the advantages and disadvantages of
this approach and describe future research activities.

For an introduction to Genetic Algorithms,
[Goldberg89].
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2. Supervised Concept Learning Problems

Supervised concept learning involves inducing con-
cept descriptions from a set of examples of a target con-
cept (i.e, the concept to be learned). Concepts are
represented as subsets of points in an n-dimensional
feature space which is defined a priori and for which all
the legal values of the features are known.

A concept learning program is presented with both
a description of the feature space and a set of correctly
classified examples of the concepts, and is expected to
generate a reasonably accurate description of the
(unknown) concepts. Since concepts can be arbitrarily
complex subsets of a feature space, an important issue is
the choice of the concept description language. The
language must have sufficient expressive power to
describe large subsets succinctly and yet be able to cap-
ture irregularities. The two language forms generally
used are decision trees [Quinlan86] and rules [Michal-
ski83].

Another important issue arises from the problem
that there is a large (possibly infinite) set of concept
descriptions which are consistent with any particular
finite set of examples. Thisisgeneraly resolved by intro-
ducing either explicitly or implicitly a bias (preference)
for certain kinds of descriptions (e.g., shorter or less com-
plex descriptions may be preferred).

Finally, there is the difficult issue of evaluating and
comparing the performance of concept learning ago-
rithms. The most widely used approach is a batch mode
in which the set of examplesis divided into atraining set
and atest set. The concept learner is required to produce
a concept description from the training examples. The
validity of the description produced is then measured by
the percentage of correct classifications made by the sys-
tem on the second (test) set of examples with no further
learning.

The aternative evaluation approach is an incremen-
tal mode in which the concept learner is required to pro-
duce a concept description from the examples seen so far
and to use that description to classify the next incoming
example. In this mode learning never stops, and evalua-
tion is in terms of learning curves which measure the



predictive performance of the concept learner over time.

3. Genetic Algorithms and Concept L earning

In order to apply GAs to a particular problem, we
need to select an internal representation of the space to be
searched and define an external evaluation function which
assigns utility to candidate solutions. Both components
are critical to the successful application of the GAsto the
problem of interest.

3.1. Representing the Search Space

The traditional internal representation used by GAs
involves using fixed-length (generally binary) strings to
represent points in the space to be searched. This
representation maps well onto parameter optimization
problems and there is considerable evidence (both
theoretical and empirical) as to the effectiveness of using
GAs to search such spaces [Holland75, DeJong85, Gold-
berg89, Spears90]. However, such representations do not
appear well-suited for representing the space of concept
descriptions which are generally symbolic in nature,
which have both syntactic and semantic constraints, and
which can be of widely varying length and complexity.

There are two general approaches one might take to
resolve thisissue. The first involves changing the funda-
mental GA operators (crossover and mutation) to work
effectively with complex non-string objects [Rendell85].
This must be done carefully in order to preserve the pro-
perties which make the GAs effective adaptive search pro-
cedures (see [DeJong87] for a more detailed discussion).
Alternatively, one can attempt to construct a string
representation which minimizes any changes to the GAs
without adopting such a convoluted representation as to
render the fundamental GA operators useless.

We are interested in pursuing both approaches. Our
ideas on the first approach will be discussed briefly at the
end of the paper. In the following sections we will
describe our results using the second approach.

3.2. Defining Fixed-length Classifier Rules

Our approach to choosing a representation which
results in minimal changes to the standard GA operators
involves carefully selecting the concept description
language. A natural way to express complex concepts is
as a digunctive set of (possibly overlapping)
classification rules (DNF). The left-hand side of each rule
(disunct) consists of a conjunction of one or more tests
involving feature values. The right-hand side of a rule
indicates the concept (classification) to be assigned to the
examples which match its left-hand side. Collectively, a
set of such rules can be thought of as representing the
(unknown) concepts if the rules correctly classify the ele-
ments of the feature space.

If we allow arbitrarily complex terms in the con-
junctive left-hand side of such rules, we will have a very
powerful description language which will be difficult to
represent as strings. However, by restricting the complex-
ity of the elements of the conjunctions, we are able to use
a string representation and standard GAs, with the only
negative side effect that more rules may be required to
express the concept. Thisis achieved by restricting each
element of aconjunction to be atest of the form:

return true if the value of feature i of the example
isin the given value set, else return false.

For example, rules might take the following symbolic
forms:

if F1 =Dblue then it'sablock
or
if (F2=large) and (F5 = tall or thin)
then it'sawidget
or
if (F1=red or white or blue) and (10 < F4 < 20)
then it'saclown

Since the left-hand sides are conjunctive forms with inter-
na digunction, there is no loss of generality by requiring
that there be at most one test for each feature (on the left
hand side of arule).

With these restrictions we can now construct a
fixed-length internal representation for classifier rules.
Each fixed-length rule will have N feature tests, one for
each feature. Each feature test will be represented by a
fixed length binary string, the length of which will depend
of the type of feature (nominal, ordered, etc.).

For nominal features with k values we use k bits, 1
for each value. So, for example, if the legal values for F1
are the days of the week, then the pattern 0111110 would
represent the test for F1 being a weekday.

Intervals for features taking on numeric ranges can
also be encoded efficiently as fixed-length bit strings, the
details of which can be seen in [Booker82]. For simpli-
city, the examples used in this paper will involve features
with nominal values.

So, for example, the left-hand side of arule for a5
feature problem would be represented internaly as:

F1 F2 F3 F4 F5
0110010 1111 01 111100 11111

Notice that a feature test involving al 1's matches any
value of a feature and is equivalent to "dropping" that
conjunctive term (i.e., the feature isirrelevant). So, in the
above example only the values of F1, F3, and F4 are
relevant. For completeness, we alow patterns of al 0's



which match nothing. This means that any rule contain-
ing such a pattern will not match (cover) any pointsin the
feature space. While rules of this form are of no use in
the final concept description, they are quite useful as
storage areas for GAs when evolving and testing sets of
rules.

The right-hand side of a rule is simply the class
(concept) to which the example belongs. This means that
our "classifier system' is a "stimulus-response’ system
with nointernal memory.

3.3. Evolving Sets of Classifier Rules

Since a concept description will consist of one or
more classifier rules, we till need to specify how GAs
will be used to evolve sets of rules. There are currently
two basic strategies. the Michigan approach exemplified
by Holland's classifier system [Holland86], and the Pitts-
burgh approach exemplified by Smith's LS-1 system
[Smith83]. Systems using the Michigan approach main-
tain a population of individual rules which compete with
each other for space and priority in the population. In
contrast, systems using the Pittsburgh approach maintain
a population of variable-length rule sets which compete
with each other with respect to performance on the
domain task.

Very little is currently known concerning the rela-
tive merits of the two approaches. As discussed in a later
section, one of our goals is to use the domain of concept
learning as atestbed for gaining more insight into the two
approaches. In this paper we report on results obtained
from using the Pittsburgh approach.t That is, each indivi-
dual in the population is a variable length string
representing an unordered set of fixed-length rules (dis-
juncts). The number of rules in a particular individual is
unrestricted and can range from 1 to a very large number
depending on evolutionary pressures.

Our goal was to achieve a representation that
required minimal changes to the fundamental genetic
operators. We fed we have achieved this with our
variable-length string representation involving fixed-
length rules. Crossover can occur anywhere (i.e., both on
rule boundaries and within rules). The only requirement
is that the corresponding crossover points on the two
parents "match up semantically”. That is, if one parent is
being cut on a rule boundary, then the other parent must
be also cut on arule boundary. Similarly, if one parent is
being cut at a point 5 bits to the right of a rule boundary,
then the other parent must be cut in a similar spot (i.e., 5
bits to the right of some rule boundary).

The mutation operator is unaffected and performs
the usua bit-level mutations.

Previous GA concept learners have used the Michigan approach.
See[Wilson87] and [Booker89] for details.

3.4. Choosing a Payoff Function

In addition to selecting a good representation, it is
important to define a good payoff function which rewards
the right kinds of individuals. One of the nice features of
using GAs for concept learning is that the payoff function
is the natural place to centralize and make explicit any
biases (preferences) for certain kinds of concept descrip-
tions. It also makes it easy to study the effects of different
biases by simply making changes to the payoff function.

For the experiments reported in this paper, we
wanted to minimize any a priori bias we might have. So
we selected a payoff function involving only classification
performance (ignoring, for example, length and complex-
ity biases). The payoff (fitness) of each individua rule set
is computed by testing the rule set on the current set of
examples and letting:

payoff (individual i) = (percent correct)?

This provides a non-linear bias toward correctly classify-
ing all the examples while providing differential reward
for imperfect rule sets.

3.5. The GA Concept Learner

Given the representation and payoff function
described above, a standard GA can be used to evolve
concept descriptions in severa ways. The simplest
approach involves using a batch mode in which afixed set
of examples is presented, and the GA must search the
space of variable-length strings described above for a set
of rules which achieves a score of 100%. We will cal this
approach GABL (GA Batch concept Learner).

Due to the stochastic nature of GAs, arule set with
a perfect score (i.e., 100% correct) may not aways be
found in a fixed amount of time. So as not to introduce a
strong bias, we use the following search termination cri-
terion. The search terminates as soon as a 100% correct
rule set is found within a user-specified upper bound on
the number of generations. If a correct rule set is not
found within the specified bounds or if the population
loses diversity (> 70% convergence [De Jong75]), the GA
simply returns the best rule set found. This incorrect (but
often quite accurate) rule set is used to predict (classify)
future examples. T

The simplest way to produce an incremental GA
concept learner is to use GABL incrementaly in the fol-
lowing way. The concept learner initially accepts asingle
example from a pool of examples. GABL is used to
create a 100% correct rule set for this example. Thisrule
set is used to predict the classification of the next exam-
ple. If the prediction is incorrect, GABL is invoked to

In our experiments our upper bound was high enough that the GA
aways found arule set with a perfect score. However, this slowed down
running time dramatically.



evolve a new rule set using the two examples. If the pred-
iction is correct, the example is simply stored with the
previous example and the rule set remains unchanged. As
each new additional instance is accepted, a prediction is
made, and the GA is re-run in batch if the prediction is
incorrect. We refer to this mode of operation as batch-
incremental and we refer to the GA batch-incremental
concept learner as GABIL.

4, Empirical Studies

4.1. Evaluating Concept L earning Programs

As suggested in the introduction, there are many
ways to evaluate and compare concept learning programs:
in either batch or incremental modes. We tend to favor
incremental learning systems since the world in which
most learning systems must perform is generally dynamic
and changing. In this context we prefer the use of learn-
ing curves which measure the change in a system's perfor-
mance over timein a (possibly) changing environment.

In the domain of supervised concept learning, this
means that we are interested in situations in which exam-
ples are accepted one at a time. In this mode, a concept
learner must use its current concept descriptions to clas-
sify the next example. The concept learner then compares
its classification with the actual class of the example.
Based on this comparison the concept learner may add
that example to the existing set and attempt to reformulate
new concept descriptions, or it may leave the current
descriptions unchanged.

An incremental concept learner will make a predic-
tion for each new instance seen. Each prediction is either
correct or incorrect. We are interested in examining how
an incremental system changes its predictive performance
over time. Suppose each outcome (correct or incorrect) is
stored. We could look at every outcome to compute per-
formance, but this would only indicate the global perfor-
mance of the learner (a typical batch mode statistic).
Instead, we examine a small window of recent outcomes,
counting the correct predictions within that window. Per-
formance curves can then be generated which indicate
whether a concept learner is getting any better at correctly
classifying new (unseen) examples. The graphs used in
the experiments in this paper depict this by plotting at
each time step (after a new example arrives) the percent
correct achieved over the last 10 arrivals (recent
behavior).

4.2. Implementation Details

All of our experiments have been performed using a
C implementation of the GAs. In all cases the population
size has been held fixed at 100, the variable-length 2-
point crossover operator has been applied at a 60% rate,
the mutation rate is 0.1%, and selection is performed via

Baker's SUS algorithm [Baker87].

4.3. Initial Experiments

The experiments described in this section are
designed to demonstrate the predictive performance of
GABIL as afunction of incremental increases in the size
and complexity of the target concept. We invented a 4
feature world in which each feature has 4 possible distinct
values (i.e., there are 256 instances in this world). This
means that rules map into 16-hit strings and the length of
individual rule setsisamultiple of 16.

In addition to studying the behavior of our GA-
based concept learner (GABIL) as a function of increas-
ing complexity, we were also interested in comparing its
performance with an existing algorithm. Utgoff's ID5R
[Utgoff89], which is a well-known incremental concept
learning algorithm, was chosen for comparison. ID5R
uses decision trees as the description language and always
produces a decision tree consistent with the instances
seen.

We constructed a set of 12 concept learning prob-
lems, each consisting of asingle target concept of increas-
ing complexity. We varied the complexity by increasing
both the number of rules (disuncts) and the number of
relevant features per rule (conjuncts) required to correctly
describe the concepts. The number of disuncts ranged
from 1 to 4, while the number of conjuncts ranged from 1
to 3. Each target concept is labelled as nDmC, where nis
the number of disjuncts and m isthe number of conjuncts.

Each target concept is associated with one experi-
ment. Within an experiment the number of disuncts and
conjuncts for the target concept remains fixed. The varia-
tion in target concept occurs between experiments. For
each of the concepts, a set of 256 unique, noise free exam-
ples was generated from the feature space and labeled as
positive or negative examples of the target concept. For
the more complex concepts, this resulted in learning pri-
marily from negative examples.

For each concept, the 256 examples were randomly
shuffled and then presented sequentially as described
above. This procedure was repeated 10 times for each
concept and for each learning agorithm. The perfor-
mance curves presented are the average behavior exhi-
bited over 10 runs.t

ID5R and GABIL use significantly different
approaches to concept learning. Therefore, we expect
their performance behaviors to differ. As the number of
diguncts and conjuncts increases, the target concept
(viewed syntactically as a logical DNF expression)
becomes more difficult. In general, a more complex target

It is not always possible for ID5R to make a prediction based on
the decision tree. If it cannot use the tree to predict we let ID5R make a
random prediction.



concept requires a larger decision tree (although this is
not always true). ID5R relies upon Quinlan’s information
theoretic entropy measure to build its decision trees. This
measure works well when individual features are mean-
ingful in distinguishing an example as positive or nega-
tive. As the number of disuncts and/or conjuncts
increases, individual features become less informative,
resulting in larger decision trees and poorer predictive
performance. ID5R’s information theoretic biases will
therefore perform better on simpler target concepts.

GABIL, however, should perform uniformly well
on target concepts of varying complexity. GABIL should
not be affected by the number of conjuncts, since with our
fixed-length rule representation, large conjunctions are no
more difficult to find than small ones. There is aso no bias
towards a small number of diguncts. Given these biases
(and lack of biases), then, it is natural to expect that while
ID5R will outperform GABIL on the simpler concepts,
there will exist a frontier a which the situation will
reverse.

For the sake of brevity we present graphs of 7 of the
12 experiments. Figure 1 depicts the comparative results
on target concept 2D1C. It is representative of the results
on al the 1 and 2 disjunct concepts. Figures 2 - 7 present
the comparative results of applying both GABIL and
ID5R to the more difficult concepts (3 and 4 disuncts).
Recall that each point on a curve represents the percent
correct achieved over the previous 10 instances (and aver-
aged over 10 runs). Note that this implies that the curves
can only remain at 100% if the algorithms have learned
the target concept by the 255th instance.

The graphs indicate that, on the simpler concepts,
the predictive performance of ID5R improves more
rapidly than that of GABIL. However, ID5R degrades in
performance as the target concept becomes more com-
plex, and GABIL starts to win on the 4 disunct concepts.
We expect thistrend to continue with even larger numbers
of disiuncts and conjuncts.
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Fig 1. 2D1C

Although it is natural to expect that a ssmple target
concept (from a syntactic viewpoint) would have a small
decision tree representation, thisis only arough generali-
zation. We were surprised to see ID5R suffer the most on
the 4D1C target concept, since syntactically the concept
is only moderately complex. The target concept is of the
form:

if (F1=0001) or (F2=0001) or (F3 = 0001)
or (F4 = 0001) then it s positive

This target concept is represented by ID5R as a
decision tree of over 150 nodes. In fact, each negative
example is represented by a unique leaf node in the deci-
sion tree. For this reason, ID5R cannot generalize over the
negative examples, and has a good chance of predicting
any negative example incorrectly. Furthermore, even the
positive examples are not generalized well, resulting in
prediction errors for positive examples. It is clear that the
decision tree representation (which is also a bias) is poor
for representing this particular concept. Target concept
4D1C represents a worst case, which explains why the
difference between GABIL and ID5R is greatest for this
concept. A similar situation occurs for target concepts
3D1C, 4D2C, and 4D3C, although to alesser degree.

The experiments indicate that ID5R often degrades
in performance as the number of disjuncts and conjuncts
increases. ID5R’s biases favor concepts that can be
represented with small decision trees. The information
theoretic measure favors those concepts in which indivi-
dual features clearly distinguish target class membership.
GABIL does not have these biases, and appears to be less
sensitive to increasing numbers of diguncts and con-
juncts. GABIL does not degrade significantly with
increasing target concept complexity and outperforms
ID5R on 4 disunct concepts. Since the syntactic com-
plexity of a target concept corresponds roughly with the
size of its decision tree representation, we expect this
trend to continue with more difficult target concepts.

5. Further Analysisand Comparisons

We plan to perform additional experiments involv-
ing the comparison of GABIL with other concept learning
programs such as Michaski’'s AQ15 [Michalski86],
Quinlan's C4.5 [Quinlan89], and Clark’s CN2 [Clark89]
on artificial concepts as well as on some of the classical
test sets such as the breast cancer data and the soybean
plant disease data.
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We aso plan to implement and analyze other GA-
based concept learners. The first is a variation of the
current one which is truly incremental rather than batch-
incremental. We fedl that this change will smooth out
many of the bumpsin the learning curves currently due to
completely reinitializing the population when an incorrect
classification is made on a new example.

We are aso very interested in understanding the
difference between using the Pittsburgh approach and the
Michigan approach in this problem domain. The current
fixed-length rule representation can be used directly in
Michigan-style classifier systems. We plan to implement
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such a system and compare the two approaches.

Finally, we noted early in the paper that there were
two basic strategies for selecting a representation for the
concept description language. In this paper we devel oped
arepresentation which minimized the changes to standard
GA implementations. We also plan to explore the alterna-
tive strategy of modifying the basic GA operators to deal
effectively with non-string representations. In particular,
we plan to use Michalski’'s VL1 language and compare
this approach to using GAswith the current work.



6. Conclusions

This paper presents a series of initial results regard-
ing the use of GAsfor symbolic learning tasks. In partic-
ular, a GA-based concept learner is developed and
analyzed. It isinteresting to note that reasonable perfor-
mance is achieved with minimal bias. There is no prefer-
ence for shorter rule sets, unlike most other concept learn-
ing systems. Theinitial results support the view that GAs
can be used as an effective concept learner although they
may not outperform algorithms specifically designed for
concept learning when simple concepts are involved.

This paper also sets the stage for additional com-
parisons between GAs and other concept learning algo-
rithms. We feel that such comparisons are important and
encourage the research community to develop additional
results on these and other problems of interest.
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