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Abstract
In this paper we explore the use of an adaptive
search technique (genetic algorithms) to construct a
system GABIL which continually learns and refines
concept classification rules from its interaction with
the environment. The performance of the system is
measured on a set of concept learning problems and
compared with the performance of two existing sys-
tems: ID5R and C4.5. Preliminary results support
that, despite minimal system bias, GABIL is an
effective concept learner and is quite competitive
with ID5R and C4.5 as the target concept increases
in complexity.

1 Introduction
An important requirement for both natural and artificial
organisms is the ability to acquire concept classification
rules from interactions with their environment. In this
paper we explore the use of an adaptive search technique,
namely Genetic Algorithms (GAs), as the central mechan-
ism for building a system which continually learns and
refines concept classification rules from its interaction
with the environment. We show how concept learning
tasks can be represented and solved by GAs, and we pro-
vide empirical results which illustrate the performance of
GAs relative to more traditional methods. Finally, we dis-
cuss the advantages and disadvantages of this approach
and describe future research activities.

2 Concept Learning Problems
Supervised concept learning involves inducing concept
descriptions for the concepts to be learned from a set of
positive and negative examples of the target concepts.
Examples are represented as points in an n-dimensional
feature space which is defined a priori and for which all
the legal values of the features are known. Concepts are
therefore represented as subsets of points in the given n-
dimensional space.

A concept learning program is presented with both
a description of the feature space and a set of correctly

classified examples of the concepts, and is expected to
generate a reasonably accurate description of the
(unknown) concepts. Since concepts can be arbitrarily
complex subsets of a feature space, an important issue is
the choice of the concept description language. The
language must have sufficient expressive power to
describe large subsets succinctly and yet be able to cap-
ture irregularities. The two language forms generally
used are decision trees [Quinlan, 1986] and rules [Michal-
ski, 1983].

Another important issue arises from the situation
that there is a large (possibly infinite) set of concept
descriptions which are consistent with any particular
finite set of examples. This is generally resolved by intro-
ducing either explicitly or implicitly a bias (preference)
for certain kinds of descriptions (e.g., shorter or less com-
plex descriptions may be preferred).

Finally, there is the difficult issue of evaluating and
comparing the performance of concept learning algo-
rithms. The most widely used approach is a batch mode
in which the set of examples is divided into a training set
and a test set. The concept learner is required to produce
a concept description from the training examples. The
validity of the description produced is then measured by
the percentage of correct classifications made by the sys-
tem on the second (test) set of examples during which no
further learning takes place.

The alternative evaluation approach is an incremen-
tal mode in which the concept learner is required to pro-
duce a concept description from the examples seen so far
and to use that description to classify the next incoming
example. In this mode learning never stops, and evalua-
tion is in terms of learning curves which measure the
predictive performance of the concept learner over time.

This incremental and continuous model of concept
learning matches more closely the kind of concept learn-
ing that an organism performs as it explores a complex
and changing world. Consequently, we use predictive
learning curves as our evaluation methodology.
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3 Genetic Algorithms and Concept Learning
In order to apply GAs to a particular problem, we need to
select an internal representation of the space to be
searched and define an external evaluation function which
assigns utility to candidate solutions. Both components
are critical to the successful application of the GAs to the
problem of interest. 1

3.1 Representing the Search Space

The traditional internal representation used by GAs
involves using fixed-length (generally binary) strings to
represent points in the space to be searched. However,
such representations do not appear well-suited for
representing the space of concept descriptions which are
generally symbolic in nature, which have both syntactic
and semantic constraints, and which can be of widely
varying length and complexity.

There are two general approaches one might take to
resolve this issue. The first involves changing the funda-
mental GA operators (crossover and mutation) to work
effectively with complex non-string objects [Rendell,
1985]. This must be done carefully in order to preserve
the properties which make the GAs effective adaptive
search procedures (see [DeJong, 1987] for a more detailed
discussion). Alternatively, one can attempt to construct a
string representation which minimizes any changes to the
GAs.

We are interested in pursuing both approaches. Our
ideas on the first approach will be discussed briefly at the
end of the paper. In the following sections we will
describe our results using the second approach in which
we try to apply classical GAs with minimal changes.

3.2 Defining Fixed-length Classifier Rules

Our approach to choosing a representation which
results in minimal changes to the standard GA operators
involves carefully selecting the concept description
language. A natural way to express complex concepts is
as a disjunctive set of (possibly overlapping)
classification rules. The left-hand side of each rule (dis-
junct) consists of a conjunction of one or more tests
involving feature values. The right-hand side of a rule
indicates the concept (classification) to be assigned to the
examples which match its left-hand side. Collectively, a
set of such rules can be thought of as representing the
(unknown) concepts if the rules correctly classify the ele-
ments of the feature space.

If we allow arbitrarily complex terms in the con-
junctive left-hand side of such rules, we will have a very
powerful description language which will be difficult to
represent as strings. However, by restricting the complex-
ity of the elements of the conjunctions, we are able to use
____________________________________

1 Excellent introductions to GAs can be found in [Holland, 1975]
and [Goldberg, 1989].

a string representation and standard GAs, with the only
negative side effect that more rules may be required to
express the concept. This is achieved by restricting each
element of a conjunction to be a test of the form:

return true if the value of feature i of the example
is in the given value set; return false otherwise.

For example, a rule might take the following symbolic
form: "if (F2 = large) and (F5 = tall or thin) then it’s a
widget". Since the left-hand sides are conjunctive forms
with internal disjunction, there is no loss of generality by
requiring that there be at most one test for each feature
(on the left hand side of a rule).

With these restrictions we can now construct a
fixed-length internal representation for classifier rules.
Each fixed-length rule will have N feature tests, one for
each feature. Each feature test will be represented by a
fixed-length binary string, the length of which will depend
of the type of feature (nominal, ordered, etc.). For simpli-
city, the examples used in this paper will involve features
with nominal values. In this case we use k bits for the k
values of a nominal feature. So, for example, if the legal
values for F1 are the days of the week, then the pattern
0111110 would represent the test for F1 being a weekday.

As an example, the left-hand side of a rule for a 5
feature problem would be represented internally as:

F1 F2 F3 F4 F5
0110010 1111 01 111100 11111

Notice that a feature test involving all 1’s matches any
value of a feature and is equivalent to "dropping" that
conjunctive term (i.e., the feature is irrelevant). So, in the
above example only the values of F1, F3, and F4 are
relevant. For completeness, we allow patterns of all 0’s
which match nothing. This means that any rule contain-
ing such a pattern will not match (cover) any points in the
feature space. While rules of this form are of no use in
the final concept description, they are quite useful as
storage areas for GAs when evolving and testing sets of
rules.

The right-hand side of a rule is simply the class
(concept) to which the example belongs. This means that
our "classifier system" is a "stimulus-response" system
with no message passing.

3.3 Evolving Sets of Classifier Rules

Since a concept description will consist of one or
more classifier rules, we still need to specify how GAs
will be used to evolve sets of rules. There are currently
two basic strategies: the Michigan approach exemplified
by Holland’s classifier system [Holland, 1986], and the
Pittsburgh approach exemplified by Smith’s LS-1 system
[Smith, 1983]. Systems using the Michigan approach
maintain a population of individual rules which compete
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with each other for space and priority in the population.
In contrast, systems using the Pittsburgh approach main-
tain a population of variable-length rule sets which com-
pete with each other with respect to performance on the
domain task.

Very little is currently known concerning the rela-
tive merits of the two approaches. In this paper we report
on results obtained from using the Pittsburgh approach.2

That is, each individual in the population is a variable-
length string representing an unordered set of fixed-length
rules (disjuncts). The number of rules in a particular indi-
vidual is unrestricted and can range from 1 to a very large
number depending on evolutionary pressures.

Our goal was to achieve a representation that
required minimal changes to the fundamental genetic
operators. We feel we have achieved this with our
variable-length string representation involving fixed-
length rules. Crossover can occur anywhere (i.e., both on
rule boundaries and within rules). The only requirement
is that the corresponding crossover points on the two
parents "match up semantically". That is, if one parent is
being cut on a rule boundary, then the other parent must
be also cut on a rule boundary. Similarly, if one parent is
being cut at a point 5 bits to the right of a rule boundary,
then the other parent must be cut in a similar spot (i.e., 5
bits to the right of some rule boundary).

The mutation operator is unaffected and performs
the usual bit-level mutations.

3.4 Choosing a Payoff Function

In addition to selecting a good representation, it is
important to define a good payoff function which rewards
the right kinds of individuals. One of the nice features of
using GAs for concept learning is that the payoff function
is the natural place to centralize and make explicit any
biases (preferences) for certain kinds of concept descrip-
tions. It also makes it easy to study the effects of different
biases by simply making changes to the payoff function.

For the experiments reported in this paper, we
wanted to minimize any a priori bias we might have. So
we selected a payoff function involving only classification
performance (ignoring, for example, length and complex-
ity biases). The payoff (fitness) of each individual rule set
is computed by testing the rule set on the current set of
examples and letting:

payoff (individual i) = (percent correct )2

This provides a non-linear bias toward correctly classify-
ing all the examples while providing differential reward
for imperfect rule sets.

____________________________________

2 Previous GA concept learners have used the Michigan approach.
See [Wilson, 1987] and [Booker, 1989] for details.

3.5 The GA Concept Learner

Given the representation and payoff function
described above, a standard GA can be used to evolve
concept descriptions in several ways. The simplest
approach involves using a batch mode in which a fixed set
of examples is presented, and the GA must search the
space of variable-length strings described above for a set
of rules which achieves a score of 100%. We will call this
approach GABL (GA Batch concept Learner).

The simplest way to produce an incremental GA
concept learner is to use GABL incrementally in the fol-
lowing way. The concept learner initially accepts a single
example from a pool of examples. GABL is used to
create a 100% correct rule set for this example. This rule
set is used to predict the classification of the next exam-
ple. If the prediction is incorrect, GABL is invoked to
evolve a new rule set using the two examples. If the pred-
iction is correct, the example is simply stored with the
previous example and the rule set remains unchanged. As
each new additional instance is accepted, a prediction is
made, and the GA is re-run in batch if the prediction is
incorrect. We refer to this mode of operation as batch-
incremental and we refer to the GA batch-incremental
concept learner as GABIL.

4 Evaluating Concept Learning Programs
As suggested in an earlier section, there are many ways to
evaluate and compare concept learning programs: in
either batch or incremental modes. An incremental con-
cept learner will make a prediction for each new instance
seen. Each prediction is either correct or incorrect. We
are interested in examining how an incremental system
changes its predictive performance over time. Suppose
each outcome (correct or incorrect) is stored. We could
look at every outcome to compute performance, but this
would only indicate the global performance of the learner
(a typical batch mode statistic). Instead, we examine a
small window of recent outcomes, counting the correct
predictions within that window. Performance curves can
then be generated which indicate whether a concept
learner is getting any better at correctly classifying new
(unseen) examples. The graphs used in the experiments in
this paper depict this by plotting at each time step (after a
new example arrives) the percent correct achieved over
the last 10 arrivals (recent behavior).

5 Initial Experiments
The experiments described in this section are designed to
demonstrate the predictive performance of GABIL as a
function of incremental increases in the size and complex-
ity of the target concept. We invented a 4 feature world in
which each feature has 4 possible distinct values (i.e.,
there are 256 instances in this world). This means that
rules map into 16-bit strings and the length of individual
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rule sets is a multiple of 16.

In addition to studying the behavior of GABIL as a
function of increasing complexity, we were also
interested in comparing its performance with an existing
algorithm. ID5R [Utgoff, 1989], which is a well-known
incremental concept learning algorithm, was chosen for
comparison. ID5R uses decision trees as the description
language and always produces a decision tree consistent
with the instances seen.

We constructed a set of 12 concept learning prob-
lems, each consisting of a single target concept of increas-
ing complexity. We varied the complexity by increasing
both the number of rules (disjuncts) and the number of
relevant features per rule (conjuncts) required to correctly
describe the concepts. The number of disjuncts ranged
from 1 to 4, while the number of conjuncts ranged from 1
to 3. Each target concept is labeled as nDmC, where n is
the number of disjuncts and m is the number of conjuncts.

Each target concept is associated with one experi-
ment. Within an experiment the number of disjuncts and
conjuncts for the target concept remains fixed. The varia-
tion in target concept occurs between experiments. For
each of the concepts, a set of 256 unique, noise free exam-
ples was generated from the feature space and labeled as
positive or negative examples of the target concept. For
the more complex concepts, this resulted in learning pri-
marily from negative examples.

For each concept, the 256 examples were randomly
shuffled and then presented sequentially as described
above. This procedure was repeated 10 times for each
concept and for each learning algorithm. The perfor-
mance curves presented are the average behavior exhi-
bited over 10 runs.3

Figures 1 and 2 present the comparative results of
applying both GABIL and ID5R to the 1D1C and 4D1C
concepts. The remainder of the graphs are not shown due
to space limitations. They represent intermediary results
between the 1D1C and 4D1C extremes illustrated in Fig-
ures 1 and 2. Recall that each point on a curve represents
the percentage of correct predictions achieved over the
previous 10 instances presented (and averaged over 10
runs). Note that this implies that the learning curves can
be and are, in general, non-monotonic. In particular, they
will remain at 100% indefinitely only when the algo-
rithms have correctly learned the target concept.

The graphs indicate that, on the simpler concepts,
the predictive performance of ID5R improves more
rapidly than that of GABIL. However, ID5R degrades in
performance as the target concept becomes more com-
plex, with significant deterioration in predictive power
____________________________________

3 It is not always possible for ID5R to make a prediction based on
the decision tree. If it cannot use the tree to predict, we let ID5R make a
random prediction.
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seen as the number of conjuncts and disjuncts are
increased. The performance of GABIL, on the other
hand, is relatively insensitive to the increase in concept
complexity, resulting in significantly better predictive
capability than ID5R already on 4 disjunct concepts. The
analysis below suggests that this trend will continue with
even larger numbers of disjuncts and conjuncts.

We were surprised to see ID5R suffer the most on
the 4D1C target concept, since syntactically the concept
is only moderately complex. The target concept is of the
form:

if (F1 = 0001) or (F2 = 0001) or (F3 = 0001) or
(F4 = 0001) then it’s positive

Although it is natural to expect that a simple target
concept (from a syntactic viewpoint) would have a small
decision tree representation, this is only a rough generali-
zation. This target concept is represented by ID5R as a
decision tree of over 150 nodes. In fact, each negative
example is represented by a unique leaf node in the
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decision tree. For this reason, ID5R cannot generalize
over the negative examples, and has a good chance of
predicting any negative example incorrectly. Further-
more, even the positive examples are not generalized
well, resulting in prediction errors for positive examples.
It is clear that the decision tree representation is poor for
representing this particular concept. Target concept 4D1C
represents a worst case, which explains why the difference
between GABIL and ID5R is greatest for this concept. A
similar situation occurs for target concepts 3D1C, 4D2C,
and 4D3C, although to a lesser degree.

ID5R relies upon Quinlan’s information theoretic
entropy measure to build its decision trees. The informa-
tion theoretic measure favors those concepts in which
individual features clearly distinguish target class
membership. ID5R’s biases also favor concepts that can
be represented with small decision trees. The experi-
ments presented above indicate the effect of these built-in
biases: the predictive power of ID5R can vary dramati-
cally depending on how well-matched the concept is to
these biases.

GABIL, however, performs much more consistently
on target concepts of varying complexity. GABIL is not
significantly affected by the number of conjuncts, since
with our fixed-length rule representation, large conjunc-
tions are no more difficult to find than small ones. There is
also no built-in bias towards a small number of disjuncts,
although this could be achieved if desired by changing the
payoff function, rather than GABIL itself. The overall
effect is similar to what has been noted in other GA appli-
cations, namely that the overhead of using an adaptive
search process is quite evident on simpler problems, but
the payoff is clearly seen as the problem complexity
increases (see, for example, [Spears and De Jong, 1990]).

6 Further Analysis and Comparisons
Having characterized the behavior of GABIL in this con-
trolled concept world, we have begun to extend the
analysis to more complex and challenging problems. One
of our first steps was to look at the family of multiplexor
problems introduced to the machine learning community
by Wilson [Wilson, 1987]. Multiplexor problems fall into
the general area of trying to induce a description of a k-
input boolean function from input/output examples.
Because no single individual input line is useful in distin-
guishing class membership, information-theoretic
approaches like Quinlan’s ID3 system have a particularly
hard time inducing decision trees for multiplexor prob-
lems. Wilson’s work indicated that his GA-based
classifier system Boole did not have such difficulties.
Some of these issues were addressed by Quinlan in the
development of his C4 system. Quinlan subsequently
reported that C4 outperforms Boole on the multiplexor

problems [Quinlan, 1988].4

Since we had access to C4.5 (a successor to C4
[Quinlan, 1989]), we felt that a direct comparison of
GABIL and C4.5 on multiplexor problems would be
enlightening. Since C4.5 is a batch-mode system, we
have to run it in a batch-incremental mode in the same
manner as GABIL in order to provide meaningful com-
parisons. This can be achieved by running C4.5 in batch
mode for every new instance seen, and using the resulting
decision tree to predict the class of the next instance.

The 6-input multiplexor problem has 6 features in
which each feature has 2 possible distinct values (i.e.,
there are 64 instances in this world). This means that rules
map into 12-bit strings and the length of individual rule
sets is a multiple of 12. For this concept we randomly
generated a set of 200 examples from the feature space,
each example labeled positive or negative. Since there are
only 64 possible unique examples, the set does not con-
tain unique examples, although they are noise free. This
methodology allows for direct comparison with Quinlan’s
reported results [Quinlan, 1988].

The set of 200 examples was randomly shuffled and
then presented sequentially. This procedure was repeated
10 times for both learning algorithms. The performance
curves presented in Figure 3 are the average behavior
exhibited over 10 runs.

GABIL clearly outperforms C4.5 on the 6-input
multiplexor problem. As noted above, the weaker perfor-
mance of C4.5 is not due to the choice of representation
(decision tree). In fact, a compact decision tree can be
created to describe the concept. The problem lies with the
information theoretic bias itself, which makes it hard to
find this compact tree. Preliminary results suggest similar
performance differentials on larger multiplexor problems.
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4 However, dramatic improvements to Boole have been reported
by [Sen, 1988].
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The concept description language and the search
algorithm constitute strong biases for any concept learner.
The above experiments indicate that ID-like systems can
suffer both from their decision tree language bias (see Fig.
2) and from their information theoretic search bias (see
Fig. 3). When the biases are appropriate, ID-like systems
perform quite well. GABIL, however, due to its minimal
system bias, performs uniformly well on target concepts
of varying complexity. These initial results support the
view that GABIL can be used as an effect concept learner
although it may not outperform more strongly biased con-
cept learning algorithms whose bias is appropriate for
learning simpler target concepts.

7 Conclusions and Future Research
This paper presents a series of initial results regarding the
use of GAs as the key element in the design of a system
capable of continuously acquiring and refining concept
classification rules from interactions with its environment.
It is interesting to note that reasonable performance is
achieved with minimal a priori bias. The initial results
support the view that GAs can be used as an effective con-
cept learner although they may not outperform algorithms
specifically designed for concept learning when simple
concepts are involved.

This paper also sets the stage for the design of three
additional GA-based concept learners. First, we wish to
implement a variation of the current system that is truly
incremental. Second, we are also very interested in under-
standing the difference between using the Pittsburgh
approach and the Michigan approach in this problem
domain. The current fixed-length rule representation can
be used directly in Michigan-style classifier systems.
Third, we noted early in the paper that there were two
basic strategies for selecting a representation for the con-
cept description language. In this paper we developed a
representation which minimized the changes to standard
GA implementations. We also plan to explore the alterna-
tive strategy of modifying the basic GA operators to deal
effectively with non-string representations. We feel that
the development and analysis of such systems is an
important direction the research community should follow
in order to develop additional results on these and other
problems of interest.
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