
Using Neural Networks and Genetic Algorithms as
Heuristics for NP-Complete Problems

William M. Spears
Naval Research Laboratory, Code 5510

Washington, D.C. 20375-5000
and

Kenneth A. De Jong
George Mason University

Fairfax, VA 22030

ABSTRACT

Paradigms for using neural networks (NNs) and genetic algorithms (GAs) to heuristically solve boolean
satisfiability (SAT) problems are presented. Since SAT is NP-Complete, any other NP-Complete problem can be
transformed into an equivalent SAT problem in polynomial time, and solved via either paradigm. This technique is
illustrated for hamiltonian circuit (HC) problems.

INTRODUCTION

NP-Complete problems are problems that are not currently solvable in polynomial time. However, they are
polynomially equivalent in the sense that any NP-Complete problem can be transformed into any other in polyno-
mial time. Thus, if any NP-Complete problem can be solved in polynomial time, they all can [Garey]. The canoni-
cal example of an NP-Complete problem is the boolean satisfiability (SAT) problem: Given an arbitrary boolean
expression of n variables, does there exist an assignment to those variables such that the expression is true? Other
familiar examples include job shop scheduling, bin packing, and traveling salesman (TSP) problems.

GAs and NNs have been used as heuristics for some NP-Complete problems. Unfortunately, the results have
been mixed because NP-Complete problems are not equivalent with respect to how well they map onto NN (or GA)
representations. The TSP is a classic example of a problem that does not map naturally to either NNs [Gutzmann]
or GAs [De Jong].

This observation suggests the following intriguing technique. Suppose we are able to identify an NP-
complete problem that has an effective representation in the methodology of interest (GAs or NNs) and develop an
efficient problem solver for that particular case. Other NP-complete problems which do not have effective represen-
tations can then be solved by transforming them into the canonical problem, solving it, and transforming the solu-
tion back to the original one.

This paper outlines GA and NN paradigms that solve SAT problems, and uses hamiltonian circuit (HC) prob-
lems to illustrate how either paradigm can be used to solve other NP-Complete problems after they are transformed
into equivalent SAT problems. The remainder of the paper is divided into four sections. The first section discusses
the GA paradigm. The second section discusses the NN paradigm. The third section provides some experimental
results and discusses the technique of solving HC problems using both paradigms after polynomial transformation
into equivalent SAT problems. The final section summarizes the paper.

GEN ETIC ALGORITHMS

GAs consist of a population of individuals competing on a survival-of-the-fittest basis in an environment. The
algorithm proceeds in steps called generations. During each generation, a new population of individuals is created
from the old via application of genetic operators (crossover, mutation, etc.), and evaluated as solutions to a given
problem (the environment). Due to selective pressure, the population adapts to the environment over succeeding
generations, evolving better solutions [Goldberg].

If the environment is a function, GAs can be used for function optimization. In this case, each individual in a
population is a sample point in the function space. Classically, an individual in a GA is represented as a bit string of
some length n. Each individual thus represents one sample point in a space of size 2n .

Any application of GAs involves a selection of an appropriate representation of sample points in the function
space, and the creation of a function that describes the behavior of the space to be searched. Unfortunately, many
NP-Complete problems have constrained spaces that do not map well to bit string representations. The TSP is a

- 2 -

classic example of such a problem. However, a SAT problem consists of a search over n boolean variables, result-
ing in a solution space of size 2n . Suppose we denote true by 1 and false by 0. Then each bit in a bit string
represents the truth value of one boolean variable. In summary, the bit string representation is natural for SAT.

Given the representation, the problem is to create an evaluation function that adequately describes each point
in a SAT search space. For example, suppose we simply create a function that returns 1 when the expression is
satisfied, and 0 when it is not. Although the function is logically correct, the solution space that results is simply a
plateau with spikes. Any search algorithm degenerates to random search.

GAs derive their power from differential feedback. Non-solutions that are better than other non-solutions
should have higher function values (if we are maximizing). For SAT, variable assignments that nearly satisfy the
boolean expression should have higher function values than those assignments that barely satisfy the expression.
This is achieved by basing the SAT function on the parse tree of the boolean expression. The assignment to the
boolean variables is done at the leaf nodes. The function value at the root node is determined recursively as follows.

The value of each node in the parse tree is based on the children of that node. If the node is a NOT, its value
is opposite that of its child (ie., 1 − value). If the node is an OR, its value is the maximum of the children. Finally,
the value of an AND node is the average of the children. This treatment of AND provides differential feedback that
rewards better non-solutions. The result is a function space that is smoothed in the sense that progressively better
non-solutions receive higher function values.

Unfortunately, this mathematical treatment is not truth invariant under boolean transformation. In particular,
it is possible to derive anomalous situations in which a solution receives a function value less than 1. However, the
addition of a simple preprocessing step removes all anomalies. This preprocessing step consists of applying De
Morgan’s theorem to the boolean expression, pushing the NOT nodes to the bottom of the parse tree. The prepro-
cessing step is linear in complexity.

In summary, we have outlined an effective GA representation for SAT problems. The individual bit string
naturally represents the 2n possible assignments to the boolean variables. The evaluation function based on the
parse tree reflects the structure of the SAT problem and has the following properties: 1) it assigns a payoff value of
1 if and only if the assignment satisfies the boolean expression; 2) it assigns values in the range 0 ≤ value < 1 to all
non-solutions; and 3) non-solutions receive differential feedback on the basis of how near their AND clauses are to
being satisfied [De Jong].

A later section provides experimental results of applying the GA to various SAT problems. The next section
indicates how SAT parse trees can also be used in a constraint satisfaction, neural network paradigm.

NEURAL NETWORKS

Any application of neural networks involves selection of an appropriate network representation. Furthermore,
a constraint satisfaction approach requires a specification of the domain specific constraints. These constraints must
be mapped into an energy function that adequately describes the space to be searched [McClelland]. In general,
these tasks can be difficult.

For the specific problem at hand (SAT), however, our previous work in GAs gives us some surprising
insights. First, the parse tree used for the GA SAT function describes a natural network representation that is per-
fectly matched to the structure of the boolean expression. Second, since each node in the network is bound by
boolean constraints, an energy function can be created that fully describes the space of constraints.

In a manner similar to Hopfield nets, we let the activations of the nodes be binary [Hopfield]. The activation
of each node, then, represents the hypothesis that a particular subexpression is true. We denote true as 1 and false
as -1. The fixed weight on each edge represents a boolean constraint between two hypotheses. If the weight is +1,
the boolean constraint is satisfied if both nodes are in the same state. If the weight is -1, the constraint is satisfied if
both nodes are in opposite states.

There are several differences between the proposed network and a Hopfield net. First, since this network is
based on a parse tree of a boolean expression it contains AND, OR, and NOT nodes. The nodes in a Hopfield net are
of one type. Second, the network is directed, with the output node being the root. Each AND, OR, and NOT node
has parents and/or children (not just neighbors). In a Hopfield net, the links are bi-directional and symmetric.

The asymmetries in the proposed network can be explained by a closer analysis of the constraints inherent in
a boolean network. Each node can possibly be influenced by upstream constraints, downstream constraints, and

- 3 -

bias. Upstream constraints represent constraints from nodes that are closer to the root, while downstream con-
straints represent those constraints from nodes further from the root. Bias provides further externally defined con-
straints.

Downstream constraints flow from the children of a node. Suppose that some node is a NOT node. Then its
activation should be opposite that of its child. An AND node should be true if all of its children are true. An OR
node should be true if any of its children is true.

Upstream constraints flow from the parent of a node. Suppose the parent of a node is a NOT. Then the activa-
tion of the node should be opposite that of its parent. If the parent is an AND and it is true, then the node should be
true. However, if the parent is an AND and it is false, then the node should be false if all siblings are true. Other
situations are possible, but they do not constrain the node. The situation with OR is symmetric.

Note from the above that there are two types of constraint implied. In the NOT example, nodes are con-
strained to be different. In the AND and OR examples, nodes are constrained to be similar. In other words, a connec-
tion weight of +1 enforces the idea that two nodes are both true or both false. A connection weight of -1 enforces
the idea that both nodes are not the same. Note that this latter situation occurs only with NOT nodes. In fact, a NOT
node and a negative connection are equivalent, so only AND, OR, and input nodes are necessary in this paradigm.

Bias is used to provide more constraint information. For example, since satisfiability is the goal, the root node
must have an activation of 1. During the parse of the boolean expression, it is sometimes also possible to determine
the activations of subexpressions. If an activation must be 1, the node receives a high bias. If an activation must be
-1, the node receives a low bias. This information, coupled with the above upstream and downstream constraints,
constitutes the maximum information easily derivable from the boolean expression.

Given the set of logical constraints, an energy function can be derived. For SAT, the local energy for each
node is expressed:

Energyi = neti ai

neti = Uneti + Dneti + Biasi

The energy of each node (Energyi) is the product of the net input (neti) and its activation (ai). The activation
is updated probabilistically using the Boltzmann distribution and an exponentially decaying annealing schedule is
used to help avoid local optima. The net input is based on the upstream (Uneti), downstream (Dneti), and bias
(Biasi) constraints. The resulting energy function guarantees that solutions have a predictable maximum energy,
while non-solutions have lower energy.

In summary, the parse tree network appears to be a natural NN representation when used in conjunction with
boolean constraints to define a proper energy function. The next section describes the results of applying the GA
and NN paradigms to some simple SAT problems and some polynomially transformed HC problems.

EXPERIMENTS AND RESULTS

Both paradigms were initially run on two families of boolean expressions with comparison results based on
the number of evaluations needed to solve the problem. For the GA, an evaluation corresponds to the function
evaluation of one individual in the population. For the NN, one evaluation corresponds to updating the activation of
each node in the parse tree exactly once. Since both evaluations use the parse tree, they have equivalent complex-
ity.

The first family selected consists of two-peak expressions of the form:

(AND X1 . . . Xn) OR (AND X1

 . . . Xn

__
)

which have exactly two solutions (all false and all true). The following table indicates the number of evaluations
needed for each paradigm. All results are averaged over 10 trials. The number of variables is n.

- 4 -

n 10 20 30 40 50 60 70 80 90__

GA 164 696 1257 2283 2741 4060 4966 6973 10208
NN 6 13 19 40 45 61 84 101 110___

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

To make things a bit more difficult, we changed the problem slightly by turning one of the solutions into a
false-peak as follows:

(AND X1 . . . Xn) OR (AND X1 X1

 . . . Xn

__
)

so that the previous all false solution is now almost correct and the only correct solution is that of all true. The
results are similar to the previous problem.

So far, the NN paradigm clearly outperforms the GA paradigm on the simple two-peak and false-peak prob-
lems. To generate more realistic and difficult boolean expressions and to illustrate the technique of solving other
NP-Complete problems by mapping them onto SAT problems, we defined a set of hamiltonian circuit (HC) prob-
lems of increasing complexity.

Each problem consists of a ring of N nodes labeled alphabetically. Each node has a directed edge to all nodes
ahead in the alphabet. There are roughly N2 / 2 edges. The resulting problem has only one solution (a circuit around
the ring), with a large number of partial solutions. These problems are easily transformed into equivalent SAT prob-
lems in which each variable in the equivalent boolean expression corresponds to one edge in the HC graph. If the
variable is true, that edge is in the circuit. The expression is satisfied if the assignment to the edges is a hamiltonian
circuit. The following table outlines our initial results.

__
n 6 10 15 21 28 36 45 55__

GA 106 239 803 3559 8680 34417 174706 721525
NN 16 42 202 522 2281 20087 160981 1391601__

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

These results suggest an intriguing hypothesis for further study: that the NN paradigm is better on smaller
and simpler problems, while GAs have better scaling-up properties and are more effective on the larger and more
complex problems.

SUMMARY

This paper presents NN and GA paradigms for heuristically solving SAT problems. Other NP-complete prob-
lems can be solved via polynomial-time transformation into equivalent SAT problems. This technique is illustrated
for HC problems. Preliminary experiments suggest that while both paradigms are effective, the NN paradigm may
be better for smaller problems and GAs more effective on larger ones.

Future work will explore further the limitations of these paradigms by defining even more difficult classes of
SAT problems derived from other NP-Complete problems. We also plan to explore the possibility of merging the
two paradigms, using the GA for global search and the NN as a local optimizer.

Acknowledgements

I would like to thank Diana Gordon for her valuable comments and suggestions.

References

De Jong, K. A. & William M. Spears (1989). Using Genetic Algorithms to Solve NP-Complete Problems, Proc.
Int’l Conference on Genetic Algorithms and their Applications.

Garey, Michael R. & David S. Johnson (1979). Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company, San Francisco, CA.

Goldberg, David E. (1989). Genetic Algorithms in Search, Optimization & Machine Learning, Addison-Wesley
Publishing Company, Inc.

Gutzmann, Kurt M. (1987). Combinatorial Optimization Using a Continuous State Boltzmann Machine, IEEE First

- 5 -

Int’l Conference on Neural Networks, III-721.

Hopfield, J. J. & D. W. Tank (1985). Neural computation of decisions in optimization problems, Biological Cyber-
netics, 52, 141-152.

McClelland, James L. & David E. Rumelhart (1988). Explorations in Parallel Distributed Processing, The MIT
Press, Cambridge, MA.

