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Abstract. We are becoming increasingly dependent on large intercon-
nected networks for the control of our resources. One important issue is
resource protection strategies in the event of failures and/or attacks. To
address this issue we investigated the effectiveness of evolving finite-state
machine (FSM) strategies for winning against an adversary in a challeng-
ing Competition for Resources simulation. Although preliminary results
were promising, unproductive cyclic behavior lowered performance. We
then augmented evolution with an algorithm that rapidly detects and re-
moves this cyclic behavior, thereby improving performance dramatically.

1 Introduction

We are becoming increasingly dependent on large interconnected networks for
the control of our resources, such as the Internet, communications networks, and
power grids. The advantage of these networks is the ability to route resources
in a reasonably optimal fashion. However, their interconnectivity, coupled with
the lack of global view of what is happening in these networks, can lead to
tremendous problems in network reliability. For example, small local failures
can easily propagate to entire networks, causing loss of service and corruption of
data. Also, deliberate attacks (such as “denial of service” [3] attacks) can easily
cause widespread havoc, as poignantly demonstrated recently [11].

Thus one important issue is the development of effective network traversal
strategies to protect as many resources as possible from failure and/or attacks,
i.e., to maximally restrict the number of resources damaged. To address this
issue we have decided to create a “resource protection” simulation that captures
the essential aspects of this problem. A “defender” attempts to protect resources
before they are damaged by an intentional (or unintentional) “adversary”.

Our primary goal then is to create sophisticated reactive strategies for the
defender. We use finite-state machines (FSMs) for our strategies, since there
are a number of precedents for FSMs being effective strategies for adversarial
situations. We use evolutionary algorithms (EAs) to create the FSMs, since there
is ample evidence for the effectiveness of this approach [4,5].! This paper serves
to summarize and highlight the results we have obtained thus far.

! The evolution of FSMs is often referred to as “evolutionary programming” or “EP”.



2 The Competition for Resources Problem

Our current Competition for Resources simulation is a novel two-player game
on a toroidal board of squares. Each square corresponds to a resource, and
the two players (the “defender” and “adversary”) compete for squares on the
board. If the board is of size N x N, then the defender will start at square
(1,1) and the adversary will start at square (N,N). The remaining squares are
initially unoccupied. Since the board grid represents real networks, such as power
grids or communication networks, and in the real world networks may be highly
interconnected and will have few geophysical boundaries, our board is toroidal
(has no edges). In this paper we assume N = 10, which is quite challenging.

Each player can only perceive limited information, namely, the status of the
north, south, east, and west squares neighboring the current position of the
player. The diagonal squares can not be seen. The status of each neighboring
square will be one of the following: unoccupied, occupied by that player, or
occupied by the opponent. Due to the toroidal nature of the board, the defender
and the adversary are close to one another at the beginning of the game. However,
because they can not see along diagonals, they can’t see one another initially.

Each time step the players alternate taking an action, which consists of mov-
ing to a neighboring resource to control /protect that resource. A player can move
to an unoccupied square or back to a square that it has previously occupied, but
not to a square occupied by the opponent. The player isn’t allowed to “stand
still” and make no move. However, because each player must follow a path of
“owned” resources to its current position, it will always be able to make a move
at every time step (it can always back up along the path it has taken). Thus a
player can not be “trapped” at a square, i.e., it can not be completely surrounded
by the opponent. Once an agent occupies a resource, it controls/protects that
resource forever. A game ends when all squares are occupied or time runs out.
The agent with the most resources at the end of the game wins.

Throughout this paper the adversary will have a fixed stochastic strategy
that the defender must “learn” to defeat. The strategy we have chosen for the
adversary is simple, but is surprisingly hard to beat. If the adversary detects
any unoccupied neighboring squares, it uniformly randomly moves to one of
them. Otherwise it uniformly randomly backtracks to a neighboring square it has
previously occupied. Given the game and our adversary, we focus on developing
effective strategies for the defender.

3 Overview of Finite State Machines

FSMs can be effective representations of agent plans/strategies, e.g., see [1] or
[10]. The type of machine used here allows for indeterminate-length action se-
quences. Recall from Hopcroft and Ullman [9] that the usual acceptance criterion
for finite-length strings is termination in a “final” state. Here we assume that
there are no final states, i.e., action sequences of any length are allowed. This
provides a good model of embedded agents that are continually responsive to
their environment.



Formally, we define the machine M to be a six-tuple (Q, X, A, 5, A, q1). Q is
the set of vertices (states) of M, X is the alphabet of input symbols (which are
agent sensory inputs), and A is the alphabet of output symbols (which are agent
actions). § is the transition function from a state and an input to a next state,
ie., 6(¢i, ;) = ¢i41 where q;, ¢i11 € @ and x; € X is a sensory input. A is the
transition function from a state and an input to an output, i.e., A(g;, z;) = a;
where ¢; € @), x; € X, and a; € A is an action. The initial state is ¢;.

We assume that the FSMs are deterministic and complete. The FSMs are
deterministic because § and A are functions, i.e., for every state and input there
is a unique next state and action. The FSMs are complete because there exists
a next state and action for every state and input, i.e., § and A are fully defined.
Deterministic and complete FSMs are strategies that tell the agent precisely
what to do in every situation it perceives.

For an FSM strategy for the Competition for Resources simulation, the sen-
sory input z; shows the status of the neighboring resources immediately to the
north, east, south, and west of the agent. The status of each resource can be 0
(unoccupied), 1 (occupied by the defensive agent), or 2 (occupied by the adver-
sary). Thus an input of “2100” specifies that the north resource is owned by the
adversary, the east resource is owned by the defensive agent, and that the south
and west resources are unoccupied.

4 Evolution of Finite State Machines

In an EA a population of P individual structures is initialized and then evolved
from generation ¢ to generation ¢t + 1 by repeated applications of fitness evalua-
tion, selection, recombination, and mutation. In the context of the Competition
for Resources simulation, each individual in the population is an FSM. Each
FSM is evaluated by playing the game numerous times, to obtain an estimate
of how well that FSM is defending the resources against the adversary. Those
FSMs that perform the task better are allowed to have more children, which
are created through the processes of mutation and recombination. This process
continues generation by generation, until termination.
Representation. For efficiency we chose a simple tabular representation for the
FSMs. Rows in a table correspond to states, and columns correspond to inputs.
For each state ¢; and input z;, table entry (i,j) has two elements. The first
element is the next state, i.e., it is 6(g;, z;). The second element is the action to
take given the agent is in this state ¢; and sees input z;, i.e., it is X(g;, %;).
The number of states S is user defined. The maximum number of inputs
is 3* = 81, since the status of each of the four neighboring squares may have
three values (0, 1, and 2). However, the input “2222” will never occur, since that
implies that the defender is surrounded by the adversary. This is impossible, since
the defender must have been able to get to the square it currently occupies. Thus
there are 80 possible inputs and we require a table of size S x 80. Each entry in
the table is an “allele” that represents a next-state/action pair. Since each allele



is defined uniquely, the FSM is guaranteed to be deterministic and complete.
The initial state is always state 1.

Initialization. Throughout this paper a population size of P = 100 is assumed,
since it produced good results. Each of the P FSMs at generation zero is initial-
ized by using domain-specific knowledge. For any given state (row) and input
(column) the next state is chosen uniformly randomly from the set of all S
states. However, the choice of action is somewhat more complex. The number
of possible actions is maximally four, since the defender may potentially move
north, east, south, or west. However, in practice, some of these moves might be
impossible, if the adversary owns the neighboring squares.

For example, suppose again that the input is “2100”. In this case the north
resource is owned by the adversary, and there are only three legal moves: east,
south, and west. Moving north is illegal, since the adversary owns that square.
Actions are restricted to those that are legal, and every input has a set of legal
moves that are possible. However, since the goal of the game is to capture re-
sources, we also found it useful to define preferred moves — those that capture
previously unoccupied squares. When the input is “2100”, moves to the south or
west capture new territory and are thus preferable. During initialization actions
are always chosen uniformly randomly from the set of preferred actions, if there
are any. If there are no preferred actions, then a legal action is randomly chosen.?
Adapting the Number of States. Standard methods for evolving FSMs adapt
the number of states [4]. State adaptation raises a number of issues. When a state
is deleted, should one really erase the state from the table, or should it simply
be made inaccessible? Our prior experience in similar areas has shown that it
is often best to make the information inaccessible [2]. Since information has
been learned, keeping the information stored serves as a useful memory, which
can be re-activated at a later time (if the state is added back to the FSM).
Thus we added a “tag bit” to each row of the FSM table. If the tag is 1 the
state is accessible. If the tag is 0 the state is inaccessible, but is not destroyed.
When a state is added, it is accomplished simply by turning on the tag. Tag
bits are subject to an independent mutation operation, that flips the tags with
probability 0.001. Since state 1 is always the initial state, it can not be made
inaccessible.

Once a state g; has been made inaccessible, how should the remainder of the
FSM (that points to that state) be “repaired”? We investigated two solutions:
(1) if state g; points to ¢;, change the pointer so that it points back to ¢; and
(2) change the pointer to point to any state that is accessible, chosen uniformly
randomly. The latter solution performed better.

Adapting FSM Table Entries. Adaptation of the FSM table entries is ac-
complished with mutation and recombination. Mutation is reasonably straight-
forward. Each allele (next-state/action pair) in the FSM is chosen with prob-
ability p,,. Once an allele is chosen a coin is flipped to see whether the action
or the next state is mutated. With probability p the next state is mutated by
uniformly randomly choosing a state from the set of all accessible states. With

2 The emphasis on preferred actions enormously helps the initial search of the EA.



probability 1 — p the action is mutated. If there are any preferred actions the
algorithm uniformly randomly chooses one of those. If there are no preferred
actions the algorithm uniformly chooses any legal action. Note that this could
result in no change (e.g., if there is only one legal action). Experiments indicated
that performance was remarkably insensitive to p,, and we use p,, = 0.001/5
throughout this paper. Setting p to 0.5 worked well.

We also use Py uniform recombination [12]. A proportion p, of pairs of parents
in the population are chosen for recombination. For each pair of parents, a coin
is flipped for each of the S x 80 alleles. The allele at the table location (i,j)
in the first FSM is swapped with the corresponding allele in the second FSM,
with probability Fy. If alleles are swapped, both the next state and the action
are swapped. Since only corresponding alleles are swapped, there is no need to
worry about possible illegal actions. If an action is legal for one FSM at location
(4,7) it must be legal for any other FSM at location (4,5), since the input j is the
same. Since parents may have different sets of accessible states, recombination
may swap alleles in such a fashion that a next state that was accessible in one
child FSM is now inaccessible in the other FSM. In this situation a new next
state is chosen uniformly randomly from the set of accessible states (in that
FSM). Experiments indicated that performance was very sensitive to p, and Py.
Using recombination to its fullest extent (p, = 1.0 and Py = 0.5) worked best.

Fitness Evaluation. Since the adversary in the Competition for Resources
game is stochastic, each defender FSM will have to play the game multiple times
in order to obtain an estimate of how well it defends the resources. Recall that
the player with the most resources at the end of the game wins. In case of a tie,
the adversary wins. Given G games, the fitness of a defender FSM is the fraction
of games that it wins. This fitness function returns values from 0.0 to 1.0, with
1.0 representing an FSM that won all the games it played. Setting G properly
proved to be difficult. Prior work [7] concluded that the overall efficiency of the
EA may often be improved by reducing G and by running for more generations.
This did not work for us. A low value of G resulted in unacceptable sampling
error and a high value was too CPU intensive. We were unable to balance these
constraints with an intermediate value.

To solve this difficulty we took a two-phase approach. Initially, we use a low
value of G, so that each individual can get a quick evaluation. If that individual is
promising (it did better than the best individual seen thus far), it is re-evaluated
using a high value of G. If it still beats the best individual thus far, it becomes the
new best individual. The idea was to carefully evaluate only those individuals
that appeared promising. This approach worked quite well. We used a value
of G = 500 for the initial evaluation and G = 10,000 for the subsequent re-
evaluation (if it was performed). Since most individuals were unable to beat the
best individual seen thus far, they were not re-evaluated.

Selection and Termination. We use standard fitness-proportional selection
[8] with elitism (i.e., the population contains a copy of the best individual that
has ever been seen). For a termination criterion we ran the EA for a user-defined
number of generations (2500).



5 Experimental Evaluation

We performed two experiments to judge the efficacy of our method. We were
interested in answering two questions. First, how many states should be acces-
sible initially? Second, does the adaptive-state EA find the optimal range of
accessible states? To address the first question we ran an experiment where each
FSM individual is initialized with S = 10 states. The experiment consisted of
a comparison between the adaptive-state EA in three configurations: one, five,
and ten initially accessible states. The only mechanism for adapting the number
of accessible states is via the independent mutation operation mentioned above,
which flips the accessibility tags. Although we have no “penalty” function per se
(that would penalize the FSMs for having more accessible states), the mutation
operator provides a slight bias towards having S/2 accessible states.
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Fig. 1. “Best-so-far” curves for the adaptive-state EA with one, five and ten initially
accessible states.

Figure 1 shows the best-so-far curves (the fitness of the best individual seen
thus far) for the adaptive-state EA initialized with one, five and ten accessible
states. The log plot emphasizes early behavior. Results are averaged over ten
independent runs per configuration. On average the adaptive-state EA changed
the number of accessible states in the FSMs, from one to five, five to seven, and
ten to nine, respectively. One can see that having fewer initially accessible states
helps early performance.? This is intuitively reasonable, since the adaptive-state
EA is initially searching a smaller space in this situation. However, having too few

3 The difference between one and five initially accessible states is statistically sig-
nificant (p < 0.04) everywhere except between 7,000 and 18,000 evaluations. The
difference between five and ten initially accessible states is significant (p < 0.04)
between 2,000 and 19,000 evaluations. The data may not be normally distributed —
hence we used an exact Wilcoxon rank-sum test with paired data in this paper.



initially accessible states (e.g., one) hurts later performance. With five and ten
initially accessible states performance was quite reasonable, with a final fitness
of 0.898 and 0.899 respectively. These results indicate that if the best number of
states for solving a problem is not known a priori it may be best to err on the
side of having too many, rather than too few.

The second question (whether the adaptive-state EA finds the optimal range
of accessible states) is also important, although we have not seen it addressed in
the literature. To address it we ran a control (ablation) experiment, where we
turned off the adaptation of the number of states. Instead, the EA was run with
a fixed number of states S. There were ten configurations (S ranged from one
to ten) and ten independent runs per configuration. The results are shown in
Table 1. Two points are clear. The first is that for best performance this problem
requires FSMs with at least three states (i.e., state information is useful). The
second is that performance is fairly comparable in the range of three to ten
states.* This agrees with the previous experiment (with the adaptive number of
states), which always ended in the range of five to nine accessible states.

Fixed Number of States
1 2 3 4 5 6 7 8 9 10
Fitness|0.806 0.867 0.893 0.888 0.901 0.903 0.899 0.905 0.896 0.883

Table 1. The final fitness of the best individuals for each configuration, averaged over
ten runs per configuration. The optimum number of states is between three and ten.

In summary, the adaptive-state EA effectively converges to the optimal range
of states. Furthermore, its performance is competitive with the best fixed-state
results (when started with five or ten initially accessible states). The only cause
for concern is that although the adaptive-state EA that started with one initially
accessible state ended with roughly five accessible states, the end performance
was much poorer (0.841) than the fixed-state results (0.901). This suggests that
although states are being made accessible the FSM is not taking full advantage
of them. We investigate this possibility further in Section 7.

6 External Behavior of the Evolved FSMs

In order to understand and improve our results, we watched the agents play
the simulation. The most noticeable feature was unproductive cycling behavior
by the defender. In other words, the defender repeatedly visits a small set of
squares on the board, while the adversary continues capturing new squares.
Unfortunately, evolution alone can not solve this problem because cycles are
inherent to FSMs. Therefore we augmented the FSMs with an auxiliary memory

* The increase in performance from one to two states and two to three states is signifi-
cant (p < 0.003 and p < 0.04, resp.) whereas the other differences are not significant.



and an algorithm to use this memory to detect and eliminate cycles (up to
a user-defined maximum length). To detect cycles, we use behavior checking
(earlier results with model checking are described in [13]). Behavior checking
examines the dynamic run-time behavior of the agent. Run-time checking of
system behavior is a very new topic in the verification community, but some
of the results already appear promising (e.g., [6]). Here, we present the first
algorithm of which we are aware that does a run-time check for an FSM agent’s
cyclic behavior.
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Fig. 2. A comparison of performance with and without cycle checking and repair.

Our behavior checking algorithm is executed while the agents play a game.
For a sliding window of ¢ time steps, the defender saves its current state and loca-
tion on the board (the defender now consists of an FSM and auxiliary memory).
The defender uses this auxiliary memory to make a cycle check before every
move. If all four immediate neighbors are occupied, then the defender checks
whether its current state and location are equal to any other in its window. If
yes, a cycle has been identified and a random alternative action is taken to the
one recommended by the FSM.? We have found that a window size of 2x N = 20
time steps, which identifies cycles up to length 20, works well.

To test the hypothesis that behavior checking and cycle repair will improve
performance, we reran the adaptive-state EA experiment with five and ten ini-
tially accessible states, but added in cycle detection and repair. This hypothesis
is confirmed, as shown in Figure 2. Our best performing defender FSM with
repair wins 96% of the games!

5 Of course, this alternative action could also create a cycle, but the behavior checking
algorithm will immediately detect that cycle, after that move.
% The improvement using detection and repair is statistically significant, p < 0.01.



7 Internal Behavior of the Evolved FSMs

Although we achieved excellent performance with the addition of cycle detec-
tion and repair, we were still concerned that the adaptive-state EA might not be
making good use of newly accessible states. To investigate this further we per-
formed a dynamic internal analysis of the FSMs as they were executed by the
defender. While the FSM was executing we counted the number of times that
each of the n < 10 accessible states was actually the next state of a transition.
The results for the fixed-state experiment were reassuring — the FSM tended to
make reasonably uniform use of all n states. However, this was not true for the
adaptive-state experiment. As stated earlier, on average the adaptive-state EA
changed the number of accessible states in the FSMs from one to five, five to
seven, and ten to nine, respectively. However, the internal analysis shows that
only two, four, and six states (respectively) are actually being used to any ap-
preciable degree. This explains the poor performance of the configuration where
only one state is initially accessible. Although five states became accessible, only
two were actually being used. Clearly the adaptive-state EA is having difficulty
making full use of newly accessible states that have never been seen before.
This raises the serious concern that the addition and deletion of states are
such disruptive operations that they cause noticeable problems for the evolution
of FSMs. Currently we are investigating the application of “gentler” operators
that could perform the same role. Simply deleting states (or turning them off) is
too disruptive, due to the repair that must be performed afterwards. However,
merging two similar states could remove a state in a fashion less deleterious
to evolution. This process would be analogous to generalization. Similarly, as
opposed to adding states (or turning them on), an alternative operator would
clone an existing row of the tabular representation. Accessing this new state
would not be deleterious and evolution could proceed to modify it slowly. This
provides a process of specialization. We are currently exploring these options.

8 Summary and Future Work

To summarize, this paper has empirically explored issues related to evolving
FSMs in the context of the Competition for Resources problem. Qur experiments
yielded some interesting and useful results. For example, given enough initially
accessible states, it was encouraging to find that the adaptive-state EA was able
to successfully converge to the optimal range of number of states and was able to
provide good performance. However, problems arise when starting with too few
initially accessible states, and an analysis indicates that (for the Competition
for Resources problem at least) the adaptive-state EA is having some difficulty
making good use of newly accessible states. We also found that the ubiquitous
presence of cycles hampered the defender’s performance significantly. This latter
difficulty was greatly diminished by augmenting the FSMs with memory and an
algorithm for cycle detection and repair.

Our main focus for the future is to improve the evolution of the FSMs,
to make the Competition for Resources game more realistic, and to continue



our empirical investigations in the context of newer versions of the game. For
example, in the current game resources are all treated equally. In the spirit
of game theory, we would like to consider resources having different numeric
values, and perhaps have the value of a resource differ for each of the agents.
Another possibility is to allow one agent to (with some small probability) “steal”
a resource owned by the other agent. Another possibility is to include multiple
agents and co-evolution. What is most interesting about this game is how easily
it can be changed to represent a wide variety of problems. For example, with
minor modifications we have extended the game to represent the epidemiology
of virus versus anti-virus spread. In the virus version of the game, each square
represents an agent with the virus, anti-virus, or neither. At each time step,
an agent having the virus or anti-virus can spread it to one of its neighbors.
What one sees on the board when watching this version of the game looks like a
“spreading activation”. Further pursuit of the virus version both in simulation
and in a corresponding mathematical model are currently in progress.
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