
A NN Algorithm for Hard Satisfiability Problems†

William M. Spears
AI Center

Naval Research Laboratory
Washington, D.C. 20375-5320

E-mail: SPEARS@AIC.NRL.NAVY.MIL

Category: Algorithms & Architectures: Combinatorial Optimization, Performance
Comparisons

1 Introduction

Satisfiability (SAT) refers to the task of finding a truth assignment that makes an
arbitrary boolean expression true. For example, the boolean expression a & b is true iff
the boolean variables a and b are true. Satisfiability is of interest to the logic, operations
research, and computational complexity communities. Due to the emphasis of the logic
community, traditional satisfiability algorithms tend to be sound and complete.
However, Selman et al. (1992) point out that there exists a class of satisfiability
problems that are extremely hard for these algorithms. Their response has been to create
a greedy algorithm (GSAT) that is sound, yet incomplete (i.e., there is no guarantee that
GSAT will find a satisfying assignment if one exists). The advantage of GSAT is that it
can often solve problems that are extremely difficult for the traditional algorithms.

Other recent work has also concentrated on incomplete algorithms for satisfiability
(De Jong and Spears, 1989; Spears, 1990; Young and Reel, 1990; Gu, 1992). However,
comparisons between the algorithms have been difficult to perform, due to a lack of
agreement on what constitutes a reasonable test set of problems. One nice feature of the
Selman et al. paper is that a class of hard problems is very precisely defined. This paper
compares GSAT with a novel NN approach on that class of hard problems. The results
indicate that the NN approach (NNSAT) spends more time "thinking" about which
assignment to try next, yet searches far fewer assignments before a satisfying assignment
is found.
__________________

† NCARAI Technical Report #AIC-93-014. July 23, 1993.



2 GSAT and NNSAT

GSAT assumes that the boolean expressions are in conjunctive normal form
(CNF). After generating a random truth assignment, it tries new assignments by flipping
the truth assignment of the variable that leads to the largest increase in the number of
true clauses. GSAT is greedy because it always tries to increase the number of true
clauses. If it is unable to do this it will make a "sideways" move (i.e., change the truth
assignment of a variable although the number of true clauses remains constant). GSAT
can make a "backwards" move, but only if other moves are not available. Furthermore, it
can not make two backwards moves in a row, since the backwards move will guarantee
that it is possible to increase the number of true clauses in the next move.

NNSAT is a Hopfield-network algorithm, with an annealing schedule. Unlike
GSAT, NNSAT can solve arbitrary boolean expressions. NNSAT is not greedy, because
it probabilistically allows assignments that decrease the number of true clauses. Full
details can be found in Spears (1990). However, a simple example illustrates the flavor
of the algorithm.

True

TrueTrueTrue

(a
_

v b) & (a v b
_

) & (a
_

v b
_

)

a
_

v b

a v b
_

a
_

v b
_

ba

Figure 1: Example Neural Network

Suppose we have the boolean expression: (a
_

 v b) & (a v b
_

) & (a
_

 v b
_

). Figure 1
represents the network for this example. In this representation, NOTS are represented by
dashed edges. Each node is bound by boolean constraints. First, the root and conjuncts
must be true, since we wish to satisfy the boolean expression. Second, each conjunct is
false iff all of its literals are false. This information is used to probabilistically determine
the truth values of each boolean variable.



For example, suppose a is true. Then the first conjunct constrains b to be true,
while the third constrains b to be false. In this case b is true with 50% probability.
However, suppose a is false. Then the second conjunct constrains b to be false. Thus b is
false with high probability (controlled by the annealing schedule). The annealing
schedule allows the algorithm to escape from local minima.

3 Results

Particular classes of problems appear to be difficult for satisfiability algorithms. In
this paper we will concentrate on one such class, a fixed clause-length model referred to
as Random L-SAT. According to Selman et al., hard problems are those where the ratio
of clauses to variables is roughly 4.25. Although we could not obtain the specific
problems used in their experiments, we generated random problems using their random
problem generator. Table 1 presents the comparison.

_________________________________________________________________
GSAT NNSAT_________________________________________________________________

Variables Clauses Assignments Assignments # Solved Cutoff__________________________________________________________________________________________________________________________________
100 425 21,250 3,745 18/30 100,000_________________________________________________________________
200 850 497,000 36,000 16/30 200,000_________________________________________________________________
300 1275 1,390,000 24,000 11/30 200,000_________________________________________________________________
400 1700 3,527,200 71,000 8/30 200,000_________________________________________________________________
500 2125 9,958,000 178,000 6/30 400,000_________________________________________________________________

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Table 1: GSAT and NNSAT on Hard Problems

The columns under "Assignments" indicate the average number of assignments
tested before a satisfying assignment was found. Since the problems are not all solvable,
Table 1 also presents how many problems were solved. "Cutoff" indicates the number of
assignments tried before NNSAT decides a problem is unsolvable. The percentage
solved by GSAT is not reported, however Selman (personal communication) states that
GSAT solves roughly 50% of the 100 and 200 variable problems, and roughly 20% -
33% of the 500 variable problems. Although the lack of specific information makes a
comparison difficult, NNSAT appears to solve roughly the same percentage of hard
problems with far fewer assignments. The reason for this performance difference is not
clear. However, Selman et al. report that GSAT performs worse when "sideways" steps
are not allowed. A reasonable hypothesis is that GSAT would perform even better if it
could occasionally take steps backward, as does NNSAT.

In summary, NNSAT appears to solve hard SAT problems with far fewer
assignment tests. NNSAT also makes no assumptions about the form of the boolean
expression, and is highly parallelizable. Each assignment test is computationally more
expensive, however. An intriguing possibility is that the merging of GSAT and NNSAT
could make NNSAT computationally more efficient, or make GSAT more efficient in its
search.

References

De Jong, K.A. & W. Spears (1989) Using Genetic Algorithms to Solve NP-Complete
Problems, International Conference on Genetic Algorithms, George Mason University,
Fairfax, Virginia, June 1989, pgs. 124 - 132.



Gu, J. (1992) Efficient Local Search for Very Large-Scale Satisfiability Problems,
SIGART Bulletin, 3(1), January 1992.

Selman, B., Levesque, H., & M. Mitchell (1992) A New Method for Solving Hard
Satisfiability Problems, Proceedings of the 1992 AAAI Conference, San Jose, CA, 440 -
446.

Spears, W. M. (1990) Using Neural Networks and Genetic Algorithms as Heuristics for
NP-Complete Problems, Masters Thesis, Department of Computer Science, George
Mason University, Fairfax, Virginia.

Young, R. A. & A. Reel (1990) A Hybrid Genetic Algorithm for a Logic Problem",
Proceedings of the 9th European Conference on Artificial Intelligence, pp.744-746,
Editor: Aiello, L.C. Publisher: Pitman, London, UK.


