
Probabilistic Satisfiability

William M. Spears
Navy Center for Applied Research in Artificial Intelligence

Code 5510
Naval Research Laboratory

Washington, D.C. 20375-5320
E-mail: SPEARS@AIC.NRL.NAVY.MIL

1 Introduction

Given an arbitrary boolean expression, satisfiability (SAT) refers to the task of finding a
truth assignment to the boolean variables that makes the expression true. For example,
the boolean expression a & b is true if and only if the boolean variables a and b are true.
Satisfiability is of interest to the logic, operations research, and computational
complexity communities. Due to the emphasis of the logic community, satisfiability
algorithms tend to be sound and complete. However, a current trend is to relax some of
these requirements. For example, recent work on satisfiability examines incomplete
algorithms (Spears, 1990; Young and Reel, 1990; Mitchell, 1992; Gu, 1992). These
algorithms are sound in that, if they discover satisfying assignments, these assignments
are correct. However, if a satisfying assignment does not exist, the algorithm will never
prove this. Furthermore, there is no guarantee that the algorithm will find a satisfying
assignment if one exists (i.e., incompleteness). Despite these obvious drawbacks, such
algorithms are advantageous for certain classes of problems (Mitchell, 1992).

A related issue arises from the fact that any algorithm for satisfiability will exhibit
exponential complexity on some boolean expressions (problems), since satisfiability is
NP-Hard. In lieu of this, it is often necessary to terminate an algorithm before a
satisfying solution is found, or before it is proven that none exists. Under such
circumstances it can often be useful to make probabilistic claims. For example, given
that a certain amount of time has elapsed for some given algorithm, can we estimate the
probability that a problem is unsatisfiable? Similarly, can we estimate the probability
that a problem is satisfiable, without actually finding a solution?

We will examine these issues for two satisfiability algorithms. The first algorithm, the
Davis Putnam (DP) algorithm, is sound and complete. The second algorithm uses a
Hopfield neural network (NN) to stochastically search for satisfying assignments. This
algorithm is sound, but incomplete. One class of hard satisfiability problems, suggested

by recent work (Mitchell, 1992), is investigated. First, we confirm the difficulty of these
problems using the Davis Putnam algorithm. Then we measure the probability that
random problems from this class are satisfiable (and unsatisfiable). Finally, we
investigate the distribution of time for solving satisfiable and unsatisfiable problems (i.e.,
how many problems can be solved within some time period). This is also done for the
NN algorithm, although in this case we can only investigate satisfiable problems, since
the NN algorithm will never terminate if the expression is unsatisfiable.

The remainder of this paper is organized as follows. First, we describe the Davis Putnam
algorithm. Second, we describe the NN algorithm. The essentials of Bayesian analysis
are summarized in the fourth section. Section 5 explains the particular class of problems
investigated, outlines the experiments performed, and describes the results. These
results will enable us to make probabilistic claims concerning the satisfiability (or
unsatisfiability) of problems from the problem class investigated, using the Bayesian
analysis. We present an example of this analysis. Finally, we conclude with a summary
and some remarks.

2 The Davis Putnam Algorithm

The DP algorithm receives as input a boolean expression in conjunctive normal form
(CNF), with a set of clauses C defined over a set of variables V. The algorithm is
summarized as follows:

(1) If C is empty, return "satisfiable" (and the solution).
(2) If C contains an empty clause, return "unsatisfiable".
(3) Unit-Clause Rule: If C contains a unit clause c, assign

to the variable mentioned the truth value which satisfies
c, and return the result of calling DP on the simplified
formula.

(4) Splitting Rule: Select from V a variable v which has not
been assigned a truth value. Assign it a value, and call DP
on the simplified formula. If this call returns "satisfiable",
then return "satisfiable". Otherwise, set v to the opposite
value, and return the result of calling DP on the re-simplified
formula

Let us illustrate the DP algorithm on an example. Suppose we are given the boolean
expression (a

_
 v b) & (a v b

_
) & (a

_
 v b

_
). Since conditions (1), (2), and (3) of the DP

algorithm do not apply, we apply the splitting rule. Suppose the variable a is chosen.
Then we set a to true, simplify the boolean expression to (v b) & (v b

_
), and recursively

call DP with the simplified expression. We now use the unit clause rule to make b true.
But this yields a contradiction. The algorithm backtracks and makes a false, simplifies
the boolean expression to (v b

_
), and recursively calls DP. The unit clause rule makes b

false, and the problem is satisfied. Since we have exhausted all possibilities, the boolean
expression is satisfied if and only if both a and b are false. Note that, in general, the DP
algorithm considers partial assignments as it proceeds. Thus a contradiction may occur
before every variable has been assigned a truth value.

3 A Neural Network SAT Algorithm

The DP algorithm terminates when a solution is found, or it exhausts all possibilities if
no solution is possible. It is sound and complete. In this section we will briefly describe
a sound, but incomplete stochastic Hopfield neural network algorithm for satisfiability.
Unlike the DP algorithm, the NN algorithm can handle arbitrary boolean expressions.
However, in this paper we will concentrate only on CNF expressions, since this is what
the DP algorithm requires. A full description of the neural network algorithm can be
found in Spears (1990). Figure 1 illustrates the neural network for our previous example.
We will refer to this figure as we explain the algorithm.

True

TrueTrueTrue

(a
_

v b) & (a v b
_

) & (a
_

v b
_

)

a
_

v b a
_

v b
_

ba

Figure 1: Example Neural Network for Satisfiability

Any application of a Hopfield neural network involves selection of an appropriate
network representation. Furthermore, a constraint satisfaction approach requires a
specification of the domain specific constraints. For the specific problem at hand (SAT),
however, this task is relatively straightforward. The parse tree of the boolean expression
describes a directed graph network representation. Each node represents some particular
subexpression. Leaf nodes represent individual boolean variables. Each node is a leaf
node, an AND node, or an OR node. Each node can be true or false. NOTs are
represented by dashed edges between nodes (see Figure 1).

Figure 1 illustrates how a parse tree for our example can be represented as a network.
The top node is the root node representing the boolean expression. Its three children
represent the three conjuncts (clauses). Finally, the bottom two leaf nodes represent the
two boolean variables. Notice how the (a

_
 v b

_
) node is connected via dashed edges

(NOTs) to the variables a and b.

Each node in the network is bound by boolean constraints. Since we are only
concentrating on CNF boolean expressions, the constraints are simple. First, the root
node must be true, since we wish to satisfy the boolean expression. Second, each node
representing a conjunct must also be true. Finally, each leaf node can be constrained by
its parents and its siblings. Since each conjunct is a disjunction, then each conjunct node
is true if and only if one of its children are true. This information is used to
probabilistically decide the truth values of each variable.

For our example, suppose node a is true. Then the first conjunct constrains b to be true,
while the third conjunct constraints b to be false. The second conjunct adds no
information. In this case we choose b to be true with a 50% probability. However,
suppose a is false. Then the second conjunct constrains b to be false, while the other two
conjuncts add no information. In a greedy approach we would make b true with a 100%
probability. However, a Hopfield neural network softens this with a temperature
controlled annealing schedule. The details of this are contained in Spears (1990), but in
summary we can say that b will still become true with a high probability. This less
greedy approach allows the algorithm to escape from local minima in the search process.
Unfortunately, there is no guarantee that a solution will be found (if one exists), and the
algorithm is therefore incomplete.

4 Bayesian Analysis

Either the DP algorithm or the NN algorithm may run for a long time on a given
problem, given the NP-Hardness of satisfiability. Suppose we are limited in time. Then
we may need to terminate the algorithms before a solution can be found. However, we
may still be interested in estimating the probability that a solution exists (or does not
exist). Let S represent the event that a problem is satisfiable. Let T represent that a
certain length of time has elapsed. Then P (S | T) represents the conditional
probability that a problem is satisfiable given that some time T has elapsed. Similarly
P (S

_
 | T) represents the probability that a problem is unsatisfiable given that some time

T has elapsed. Using Bayes theorem we can calculate these from:

P (S | T) =
P (S) P (T | S) + P (S

_
) P (T | S

_
)

P (S) P (T | S)_______________________________

P (S
_

 | T) =
P (S

_
) P (T | S

_
) + P (S) P (T | S)

P (S
_

) P (T | S
_

)_______________________________

P (S
_

 | T)

P (S | T)_________ =
P (S

_
) P (T | S

_
)

P (S) P (T | S)_______________

Clearly, then, we need to estimate a number of quantities. P (S) is the probability that a
problem is satisfiable in general. P (S

_
) is the probability that a problem is unsatisfiable.

P (T | S) represents the probability that a certain length of time will elapse given the
problem is satisfiable. P (T | S

_
) represents the probability that a certain length of time

will elapse given the problem is unsatisfiable.

In the following experiments we will use the Davis Putnam algorithm to estimate the first
two quantities for a particular class of problems. These quantities do not depend on any
particular algorithm. The third and fourth quantities are algorithm dependent. In the

results we will illustrate probability distributions for the DP algorithm on both satisfiable
and unsatisfiable problems, allowing us to compute estimates for P (T | S) and
P (T | S

_
). Probability distributions for the NN algorithm will be presented only for

satisfiable problems. Since P (T | S
_

) = 1.0 for the NN algorithm (i.e., it doesn’t
terminate if there is no solution), we can simplify our equations for the NN algorithm to:

P (S | T) =
P (S) P (T | S) + P (S

_
)

P (S) P (T | S)______________________

P (S
_

 | T) =
P (S

_
) + P (S) P (T | S)

P (S
_

)______________________

P (S
_

 | T)

P (S | T)_________ =
P (S

_
)

P (S) P (T | S)_______________

In the next section we outline the class of problems examined, the experiments
performed, and the results. Although we could investigate arbitrary problem classes, in
some sense it is more interesting to investigate those that are hard, since easy problems
will be solved quickly anyway.

5 Hard Problems, Experiments, and Results

Although satisfiability is NP-Hard, it is somewhat misleading to refer to hard
satisfiability problems, since for any "hard" problem, an algorithm can be written to
quickly solve it. However, particular classes of problems appear, on the average, to be
difficult for a wide range of satisfiability algorithms. In this paper we will concentrate on
one such class, a fixed clause-length model referred to as Random L-SAT (Mitchell,
1992). This model contains three parameters: V for the number of variables, C for the
number of clauses, and L for the number of literals per clause. To create problems in this
class, C clauses are generated by randomly choosing L variables from the V, for each
clause. The variables are negated with probability 0.5.†

For the sake of simplicity, we concentrate on 50 variable, 3-SAT problems. The number
of clauses ranges from 100 to 300. According to Mitchell (1992), the ratio of clauses to
variables is crucial in determining the average difficulty of problems in this class. His
results indicate that a ratio of 4.3 yields the hardest problems, while higher and lower
ratios yield easier problems. Thus, we will expect to see harder problems when there are
roughly 215 clauses.

In the first experiment the DP algorithm is used to solve a number of 50 variable, 3-SAT
problems. The number of clauses ranges from 100 to 300, in steps of 10. For each
number of clauses 100 problems are randomly generated. For each problem, the DP
algorithm is run until a solution is found, or it is proven that none exists. Since the DP
algorithm is a recursive algorithm, the number of calls to the algorithm is used as the
measure of time. Figure 2 illustrates the results. The horizontal axis is the number of
clauses. The vertical axis is the number of DP calls. As can be seen, problems with 200
to 250 clauses are harder on average.

† Mitchell did not investigate probabilities other than 0.5, although this would appear to be an important
consideration.

100 150 200 250 300

-0

2000

4000

6000

3SAT Clauses

DP Calls

Figure 2: Where the Harder Problems Are

Problems are easier when the number of clauses is less than 200, or greater than 250.
Why does this occur? In Figure 3 we separate the curve in Figure 2 into 2 components.
The first component (see the solid curve) is the average number of DP calls required to
solve satisfiable problems. The second component (see the dashed curve) is the average
number of DP calls required to prove that unsatisfiable problems are indeed
unsatisfiable.†

100 150 200 250 300

-0

5000

10000

3SAT Clauses

DP Calls

Figure 3: Hard Problems Have Two Flavors

As can be seen, problems are hard (on the average) for two reasons. Satisfiable problems
are more difficult as the number of clauses increases (except for a final decrease), and
unsatisfiable problems are more difficult as the number of clauses decreases. If we
investigate the ratio of satisfiable to unsatisfiable problems we have Figure 4.

† The first dashed spike occurs because one unsatisfiable problem was found with 180 clauses, while none
were found with 190 clauses.

100 150 200 250 300

-0

20

40

60

80

100

3SAT Clauses

% Satisfiable

Figure 4: The Probability of Satisfiable Problems

Figure 4 illustrates that almost all problems with less than 200 clauses are satisfiable,
while almost all problems with more than 250 clauses are unsatisfiable. It is reasonable
to conjecture, then, that hard problems are those that have only a few solutions, although
this still remains to be proven. Problems with a small number of clauses are in some
sense underconstrained, and have a large number of solutions. These are easy to solve.
Problems with a large number of clauses are likewise overconstrained and impossible to
solve. However, the more constraints, the easier it is to prove that they are impossible to
solve. The hard problems are the balance between these two extremes, where a large
fraction of the search space must be searched to find one of the rare solutions.

Figure 4, then, allows us to estimate P (S) and P (S
_

) for 50 variable 3-SAT problems.
If the number of clauses is less than 200, we are almost assured of satisfiability. If the
number of clauses is greater than 250, we are almost assured of unsatisfiability. Finally,
when the number of clauses is near 215, problems are satisfiable roughly 50% of the
time.

5.1 Distributions for the DP algorithm

Recall that 100 random problems were generated for each clause length. Figure 2
represents points that are averages over the 100 problems. Figure 3 averages over the
satisfiable and unsatisfiable subsets. We can use Figure 4 to estimate P (S) and P (S

_
).

If we wish to compute P (S | T) and P (S
_

 | T), however, we still need to estimate
P (T | S) and P (T | S

_
). This can be done by graphing the distributions of the amount

of time used to solve the problems for each clause length. Figure 5 gives us this
distribution for satisfiable problems with clause length 220. Figure 6 illustrates the
distribution for unsatisfiable problems with clause length 220. The remainder of the
graphs appear at the end of the paper.

Of the 100 problems with 220 clauses, 36 were satisfiable and 64 were unsatisfiable.
Figure 5 indicates that roughly 50% of the satisfiable problems are solved within 3000
DP calls. Figure 6 indicates that roughly 50% of the unsatisfiable problems are shown to
be unsatisfiable within 7000 DP calls.

Suppose we are solving 220 clause problems and the DP algorithm has not terminated by
5000 calls. Then we can estimate P (S | T) and P (S

_
 | T) easily, using the data from

-0 10 20 30

-0

2000

4000

6000

8000

Satisfiable Problems solved
220 clauses

DP Calls

• • • •
• • • • •

• •
• • • • • • •

• • • •
• •

•
• • • • •

•
•

• •

•

•

Figure 5: Distribution of 220 Clause Satisfiable Problems

-0 20 40 60

-0

5000

10000

Unsatisfiable Problems solved
220 clauses

DP Calls

•••
••

••

•

Figure 6: Distribution of 220 Clause Unsatisfiable Problems

Figures 4, 5, and 6.† We can estimate P (S) as 36/100 and P (S
_

) as 64/100. If T is 5000
calls, then P (T | S) is 6/36, while P (T | S

_
) is 44/64. Then we can estimate that

P (S | T) is .12 (and P (S
_

 | T) is .88). In other words, if we have executed 5000 DP
calls, Bayesian analysis indicates that there is a high probability that the problem is not
satisfiable.

† The original data that was used to generate all graphs is available upon request.

5.2 Distributions for the NN algorithm

A similar analysis can be done using the NN algorithm to solve the same class of
problems. There is no easy way to compare the NN algorithm directly with the DP
algorithm because the former searches a space of complete assignments (i.e., all
variables must have truth values assigned to them), while the latter uses partial
assignments. However, the number of complete assignments examined is a natural
measure of the amount of work performed by the NN algorithm. Since each tentative
complete assignment is "evaluated" to see if it in fact satisfies the boolean expression, we
will use "evals" to denote the number of assignments searched before a solution is found.
Figure 7 illustrates the distribution for satisfiable 220 clause problems. A large fraction
of satisfiable 220 clause problems are solved within a few thousand evaluations.

-0 10 20 30 40

-0

5000

10000

Satisfiable Problems solved
220 clauses

Evals

• •

• • • • • • • • • •

•

•

Figure 7: Distribution of 220 Clause Satisfiable Problems

Recall that the NN algorithm will not terminate if given an unsatisfiable problem.
Because of this we use the DP algorithm to filter out the unsatisfiable problems, and then
pass the satisfiable problems to the NN algorithm. The distributions are presented at the
end of the paper, but only for satisfiable problems.

6 Some Concluding Remarks

This paper presents a Bayesian analysis that can be used to estimate the probability that
random problems of a certain class are satisfiable or unsatisfiable, given that some
algorithm has run for a period of time without terminating. This was illustrated for two
algorithms on random 50 variable 3-SAT problems, with the number of clauses ranging
from 100 to 300. For this class of problems a number of interesting results appear. First,
if the number of clauses is less than 200, the problem is almost always satisfiable.
Second, if the number of clauses is more than 250, the problem is almost always
unsatisfiable. Finally, Bayesian analysis is useful for determining the probability of
satisfiability for the "hard" problems, those where the number of clauses ranges from 200
to 250. This was illustrated for problems with 220 clauses.

Although it is hard to compare the DP algorithm and NN algorithm directly using the
average number of DP calls and evaluations, one interesting difference is obvious from
the distributions. If one considers the distributions over satisfiable problems, the DP

algorithm shows a flat distribution when the number of clauses is small, and a rapidly
increasing distribution when the number of clauses is large (see the graphs at the end of
the paper). The NN algorithm shows the opposite effect! The reason for this is unknown
and needs to be investigated.

There are a number of important research issues that should be addressed. First, other
satisfiability algorithms should be considered. For example, similar experiments could
be performed with the genetic algorithm satisfiability procedures described by Spears
(1990) and Young (1990). Similarly, a wider range of problem classes can be
investigated. Finally, more detailed analyses of why certain problem classes are hard
would yield more insight into both the problem classes and the algorithms solving them.

Acknowledgements

I would like to thank Dr. Lehner for suggesting this project.

References

Gu, J. (1992) Efficient Local Search for Very Large-Scale Satisfiability Problems, Sigart
Bulletin, vol 3, #1, 8 - 12.

Mitchell, D., et. al. (1992) Hard and Easy Distributions of SAT Problems, Proceedings of
the 1992 AAAI Conference, San Jose, CA, 459 - 465.

Spears, W. M. (1990) Using Neural Networks and Genetic Algorithms as Heuristics for
NP-Complete Problems, Masters Thesis, Department of Computer Science, George
Mason University, Fairfax, Virginia,

Young, R. A. and Reel, A. (1990) A Hybrid Genetic Algorithm for a Logic Problem,
Proceedings of the 1990 European Conference on AI, Stockholm, Sweden.

