
Simulated Annealing for Hard Satisfiability Problems†

William M. Spears
AI Center

Naval Research Laboratory
Washington, D.C. 20375-5320

E-mail: SPEARS@AIC.NRL.NAVY.MIL

Abstract

Satisfiability (SAT) refers to the task of finding a truth assignment that makes an
arbitrary boolean expression true. This paper compares a simulated annealing algorithm
(SASAT) with GSAT (Selman et al., 1992), a greedy algorithm for solving satisfiability
problems. GSAT can solve problem instances that are extremely difficult for traditional
satisfiability algorithms. Results suggest that SASAT scales up better as the number of
variables increases, solving at least as many hard SAT problems with less effort. The
paper then presents an ablation study that helps to explain the relative advantage of
SASAT over GSAT. Finally, an improvement to the basic SASAT algorithm is
examined, based on a random walk suggested by Selman et al. (1993).

1 Introduction

Satisfiability (SAT) refers to the task of finding a truth assignment that makes an
arbitrary boolean expression true. For example, the boolean expression a & b is true iff
the boolean variables a and b are true. Satisfiability is of interest to the logic, operations
research, and computational complexity communities. Due to the emphasis of the logic
community, traditional satisfiability algorithms tend to be sound and complete.
However, Selman et al. (1992) point out that there exists a class of satisfiability
problems that are extremely hard for these algorithms. Their response has been to create
a greedy algorithm (GSAT) that is sound, yet incomplete (i.e., there is no guarantee that
GSAT will find a satisfying assignment if one exists). The advantage of GSAT is that it
can often solve problems that are extremely difficult for the traditional algorithms.

Other recent work has also concentrated on incomplete algorithms for satisfiability
(De Jong and Spears, 1989; Spears, 1990; Young and Reel, 1990; Gu, 1992). However,

† This is an expanded version of NCARAI Technical Report #AIC-93-015.

comparisons between the algorithms have been difficult to perform, due to a lack of
agreement on what constitutes a reasonable test set of problems. One nice feature of the
Selman et al. (1992) paper is that a class of hard problems is very precisely defined. In
this paper we compare GSAT with a novel simulated annealing approach (SASAT) on
that class of hard problems. The results suggest that SASAT solves at least as many
problems with much less effort. Next, we modify the simulated annealing algorithm, to
illustrate why SASAT outperforms GSAT. Finally, the paper examines an enhancement
to SASAT, based on a random walk feature described in Selman et al. (1993). First,
however, we provide an overview of GSAT and introduce the simulated annealing
algorithm.

2 GSAT and SASAT

GSAT assumes that the boolean expressions are in conjunctive normal form
(CNF). After generating a random truth assignment, it tries new assignments by flipping
the truth assignment of a variable that leads to the largest increase in the number of true
clauses. GSAT is greedy because it always tries to increase the number of true clauses.
If it is unable to do this it will make a "sideways" move (i.e., change the truth assignment
of a variable although the number of true clauses remains constant). GSAT can make a
"backwards" move, but only if other moves are not available. Furthermore, it can not
make two backwards moves in a row, since the backwards move will guarantee that it is
possible to increase the number of true clauses in the next move. The algorithm for
GSAT is presented in Figure 1.

Procedure GSAT;
Input: A set of clauses, MAX_FLIPS, and MAX_TRIES;
Output: A satisfying truth assignment of the clauses, if found;

for i = 1 to MAX_TRIES {
T = a random truth assignment;
for j = 1 to MAX_FLIPS {

if T satisfies the clauses then return T;

flip a variable that results in the largest increase
δ in the number of clauses made true;

T = the new assignment after the flip is made;
} }

Figure 1: The GSAT algorithm.

Recently, Spears (1993) showed that a neural network with simulated annealing
outperforms GSAT on hard satisfiability problems. The neural network algorithm makes
no assumptions about the form of the boolean expression. By specializing to CNF
expressions, the neural network can be dropped, resulting in a simulated annealing
algorithm we call SASAT. The algorithm for SASAT is presented in Figure 2.

After generating a random truth assignment, SASAT tries new assignments by
probabilistically flipping each variable individually, based on the improvement this flip
would bring. If the improvement is positive the flip is likely to be performed. If the
improvement is negative the flip is unlikely to be performed. SASAT differs from GSAT
in that it can make arbitrary sequences of "backwards" moves, which is a necessary
feature for escaping local optima in the search space. The search characteristics of
SASAT are heavily influenced by the maximum temperature (MAX_TEMP), minimum

temperature (MIN_TEMP), and the annealing schedule. The probabilistic moves (flips)
are determined using the standard logistic function for simulated annealing. When the
temperature is high the moves are almost random, and when the temperature is low
SASAT is similar to GSAT. The annealing schedule is calculated using:

temperature = MAX_TEMP * e−j * decay_rate

We used our experience with the neural network algorithm (Spears, 1993) to roughly
estimate the temperature parameters. We set MAX_TEMP to 0.3, MIN_TEMP to 0.01,
and the decay rate to be:

decay_rate =
i * V

1_____

where V is the number of variables and i is a loop variable in the SASAT algorithm.
Thus, each time i is incremented the decay rate decreases. Also, the decay rate is
dependent on the number of variables in the problem to be solved. SASAT will use
smaller decay rates on problems with more variables, because dropping the temperature
more slowly is a good heuristic for larger problems.

Procedure SASAT;
Input: A set of clauses, MAX_TRIES, MAX_TEMP, and MIN_TEMP;
Output: A satisfying truth assignment of the clauses, if found;

i = 0; tries = 0;
loop {

i++;
T = a random truth assignment; j = 0;
loop {

if T satisfies the clauses then return T;

temperature = MAX_TEMP * e−j * decay_rate ;
if (temperature < MIN_TEMP) then exit loop;

for v = 1 to the number of variables V in the clauses {
Compute the increase (decrease) δ in the number of
clauses made true, if v were flipped;

flip variable v with probability defined by the

logistic function:

1 + e
−

temperature
δ___________

1______________ ;

T = the new assignment if the flip is made;
}
j++; tries++;
if (MAX_TRIES = tries) terminate algorithm;

} }

Figure 2: The SASAT algorithm.

3 Experiments and Results

In comparing two (or more) algorithms, one difficult choice is in the selection of
problem instances to solve. Since traditional satisfiability algorithms already work well
on many problems, it is useful to consider those problems where the traditional
algorithms run into difficulty. Furthermore, to avoid the risk of overfitting an algorithm
to a particular problem, it is important to either select a large number of problems or to
draw problems from a particular problem class (or distribution). Fortunately, classes of
problems that are difficult for traditional satisfiability algorithms have already been
identified. In this paper we will concentrate on one such class, a fixed clause-length
model referred to as Random L-SAT (Mitchell et al., 1992). The performance of GSAT
on Random L-SAT problems has already been reported in Selman et al. (1992).
Although we could not obtain the specific problems used in their experiments, we
generated random problems using their random problem generator.

Another difficult choice is in how to measure and compare the performance of the
two algorithms. Clearly, one important measure is the average amount of computation
performed by both algorithms. For both GSAT and SASAT, the bulk of the computation
lies in two operations, the computation of the δs and the manipulation of the data
structures when the flip is made. Although both a flip and the computation of each δ can
be performed fairly efficiently through the use of carefully chosen data structures, the
complexity increases with the number of clauses. Other steps in the algorithms, such as
calls to a random number generator, the check for termination, the computation of the
logistic function, or the determination of the best variable (in GSAT) appear to be less
computationally intensive.

Because they are the computationally intensive steps, we will report both the
number of δs computed and the number of flips performed by GSAT and SASAT.
Selman et al. (1992) did not report the number of δs computed by GSAT, but they can be
estimated from the reported number of flips. At first blush the number of δs computed
would appear to be the number of flips multiplied by the number of variables V, since an
obvious way to find the best variable is to compute the δ for each variable, selecting a
variable with the highest δ. However, as Selman points out (personal communication),
after each flip it is only necessary to compute the δs of those variables that share one or
more clauses with the flipped variable.

Random L-SAT problems are in conjunctive normal form, with L literals per
clause, and C clauses per variable. Thus a problem contains L * C * V literals and a
variable occurs in approximately L * C clauses. From this we can conclude that a given
variable shares clauses with at most L * C * (L − 1) variables, which is independent of
V. In other words, at most L * C * (L − 1) δs are computed for every flip in GSAT.

One interesting feature of the Random L-SAT problems is that the hardest
problems (for traditional algorithms) occur where the clause to variable ratio is roughly
4.25. Furthermore, when C is 4.25, roughly 50% of the random problems appear to be
satisfiable.† Since we are generating random problems from this distribution, it is
insufficient to simply report the average number of δs and flips required to satisfy those
problems that were actually satisfied. This is because different algorithms may actually
solve a different percentage of the satisfiable problems. In order to have a more
meaningful comparison, then, it is important to report the percentage of problems
satisfied, as well as the amount of effort required to satisfy them.

Following Selman et al. (1992), we generated random 3-SAT problems ranging
from 100 to 500 variables, where C is 4.25. All results are averaged over 100 random

† Crawford and Auton (1993) believe that a better estimate is 4.25 V + 6.21.

instances for each choice of the number of variables. We monitored the number of δs
computed and flips performed by SASAT, and estimated the number of δs computed by
GSAT, based on the results in Selman et al. (1992). Since C is 4.25, roughly
3 * 4.25 * 2 = 25.5 δs are computed for every flip in GSAT, and we will use this result
to estimate the number of δs computed by GSAT. We also present the percentage of
problems satisfied by SASAT. The percentages of problems satisfied by GSAT are not
reported, however Selman (personal communication) states that GSAT satisfies roughly
20% - 33% of the 500 variable problems. We will assume that GSAT satisfies roughly
50% of the easier problems.

Variables Clauses δs Flips % Solved MAX_FLIPS†__

100 425 541,875 21,250 ˜50% 500___
200 850 12,673,500 497,000 NR† 2,000___
300 1275 35,465,400 1,390,800 NR 6,000___
400 1700 89,943,600 3,527,200 NR 8,000___
500 2125‡ 253,929,000 9,958,000 20-33% 10,000___

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Table 1: GSAT on hard problems.

Variables Clauses δs Flips % Solved MAX_TRIES__

100 425 581,400 31,863 58/100 200,000___
200 850 7,735,000 396,341 44/100 400,000___
300 1275 37,474,500 1,924,040 48/100 800,000___
400 1700 42,951,600 2,269,500 45/100 1,000,000___
500 2125 86,680,500 4,438,820 41/100 1,600,000___

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Table 2: SASAT on hard problems.

Tables 1 and 2 present the percentage of problems actually satisfied by the
algorithms. They also give the number of δs computed and flips performed, averaged
over the problems that were satisfied. Given all this data, how do we compare the two
algorithms? Should we use flips, δs, or some combination of the two? Fortunately we
can finesse this decision. As mentioned before, due to clever design, GSAT computes
roughly 25.5 δs for each flip, for this particular class of problems. Interestingly, if we
compare the ratio of δs to flips in SASAT we see a similar pattern. For all choices of the
number of variables, the ratio is roughly 20. Although not a result of design, this rather
fortuitous ratio allows us to assume that both GSAT and SASAT do roughly the same
amount of work per flip. For this reason we will concentrate on comparing the two
algorithms on the percentage of problems satisfied and the average number of flips
required to satisfy those problems.

Figure 3 graphs the number of flips for both algorithms. Thus, in terms of flips,
although GSAT may have some advantage on the easier problems, SASAT appears to

† NR means that this datum has not been reported. MAX_TRIES is also not reported, but is at least
10(Flips / MAX_FLIPS).

‡ Selman et al. (1992) report in their table that they used 2150 clauses, yet they also state that they use
4.25V clauses on the harder problems. We follow the 4.25V guideline.

100 200 300 400 500

-0

5

10

Millions
of Flips

Variables

SASAT

GSAT

Figure 3: Comparison of GSAT and SASAT.

scale better. A comparison on percentages is harder. The percentage of problems solved
by GSAT was not strictly monitored. Also, when the number of variables were high the
results for GSAT were averaged over only 10 satisfied problems. However, in general
SASAT appears to solve a higher percentage of problems with fewer flips.

3.1 Distributions of Results

One of the difficulties in dealing with the above 400 and 500 variable problems is
that there are no known techniques for practically determining which of the problem
instances are in fact satisfiable. Thus, the results given above could be sensitive to the
choices of cutoffs for the algorithms. For example GSAT is run with specific choices for
the cutoff parameters MAX_TRIES and MAX_FLIPS. SASAT is run with specific
choices for the parameters MAX_TEMP, MIN_TEMP, and MAX_FLIPS. With the
parameters set as given above, SASAT appears to solve a higher percentage of problems
with less work. However, it is unlikely that SASAT satisfied all the satisfiable problems.
Thus, it is conceivable that the situation could reverse if the cutoffs were increased to
such an extent that both algorithms solved more (or all) of the problems. In other words,
the remaining unsatisfied but satisfiable problems could be much more difficult for
SASAT then GSAT.

Thus, if we don’t know which problems are satisfiable, conclusions will
necessarily be tentative. An alternative would be to solve only problems with less than
300 variables, since the satisfiable problems can be determined by sound and complete
techniques. Unfortunately, our experience has shown that is also hard to draw any
conclusions about the behavior of algorithms at 500 variables from their behavior at 300
variables. In either case we would have to draw tentative conclusions.

Although it is impossible to firmly resolve this issue with the current state of sound
and complete algorithms, we can provide the distribution of problems actually satisfied
by SASAT. This distribution graphs the number of problems solved within a certain
amount of work. Although not a complete distribution (i.e., it is very likely to not
include some satisfiable problems), this distribution will be helpful in comparing other
algorithms with SASAT in the future. Before providing the distributions, however, it is

instructional to consider the variance of the results given above. Table 3 provides the
standard deviation of the flips for SASAT.

Variables Clauses Flips Standard Dev.__

100 425 31,863 88,117___
200 850 396,341 795,558___
300 1275 1,942,040 2,911,738___
400 1700 2,269,500 3,718,480___
500 2125 4,438,820 7,970,972___

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Table 3: Standard deviation of flips for SASAT.

In each case the standard deviation is higher than the mean, indicating the presence of
outliers in the data. In other words, we will expect that the distribution will contain a
small number of problems that are much more difficult than average. In order to confirm
this we graphed the distribution - showing the number of satisfied problems solved
within a certain number of flips. Figures 4, 5, and 6 give the distributions for the 100,
300, and 500 variable problems.

-0 10 20 30 40 50

-0

200000

400000

600000

Satisfiable problems solved

Flips

• •
• • •

•

•

Figure 4: Distribution for SASAT on 100 variable problems.

In Figures 4, 5, and 6 we represent the mean number of flips by a solid horizontal
line. As expected, the majority of the problems were solved with less than the mean
number of flips, and the presence of the outliers dramatically increases both the mean
and the standard deviation. This agrees with conventional wisdom, which states that
most NP-Complete problem classes are dominated by a small number of truly difficult
problems.

One interesting use of these distributions is in deciding whether an unsatisfied
problem is satisfiable or not. If there is any reason to believe that a problem has been
drawn from a distribution similar to a Random L-SAT distribution, and SASAT has been
attempting to satisfy that problem without success, Bayesian analysis can be used to
estimate the probability that the problem is in fact unsatisfiable. Details of this technique
can be found in Spears (1992).

-0 10 20 30 40

-0

5e+06

1e+07

Satisfiable problems solved

Flips

• •
• • • • • • • • • • • •

• • • •
• •

•

•
•

•

•

•

•

Figure 5: Distribution for SASAT on 300 variable problems.

-0 10 20 30 40

-0

1e+07

2e+07

3e+07

Satisfiable problems solved

Flips

• •
• • • • • • • • • •

•

•

•

•

Figure 6: Distribution for SASAT on 500 variable problems.

4 A Modification to SASAT

As stated above, comparisons of SASAT with GSAT are at best difficult to make.
Selman also has reported comparisons of GSAT with simulated annealing. The results
have been mixed (Selman and Kautz, 1993; Selman et al. 1993). Given the difficulty in
making a comparison it is reasonable to wonder if SASAT is really doing better than
GSAT, and if so, why? To help answer these questions we modified SASAT to make it
more similar to GSAT. This is easily done by using a zero temperature logistic function,
that never makes a backwards move (see Figure 7), Although SASAT would still not be
choosing the best variable to flip, it would nevertheless only make sideways or forwards
moves, as GSAT primarily does.

flip variable v with probability defined by the
logistic function:

if (δ < 0) return 0.0;
else if (δ == 0) return 0.5;
else return 1.0;

Figure 7. Zero temperature logistic function for SASAT.

The motivation behind this modification is the idea that backwards moves are the
primary advantage of SASAT over GSAT. If this is true, we would expect the zero
temperature SASAT to perform more like GSAT, both in terms of the percentage of
problems satisfied, and the amount of work required to satisfy them. In order to test this
hypothesis we reran the above experiments using the zero temperature SASAT. Table 4
provides the results.

Variables Clauses δs Flips % Solved MAX_TRIES__

100 425 422,000 19,853 54/100 200,000___
200 850 8,518,000 376,200 51/100 400,000___
300 1275 43,578,900 1,947,180 38/100 800,000___
400 1700 99,440,400 4,469,170 28/100 1,000,000___
500 2125 246,889,500 11,019,800 23/100 1,600,000___

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Table 4: Zero temperature SASAT on hard problems.

100 200 300 400 500

-0

5

10

Millions
of Flips

Variables

SASAT

GSAT

0 Temp SASAT

Figure 8: Comparison of GSAT, SASAT, and zero temperature SASAT.

Again, we compare on both the percentages and the number of flips (Figure 8).
Tables 1 and 4 suggest that the percentages of problems satisfied by the zero temperature
SASAT fall within the values estimated for GSAT. Furthermore, Figure 8 suggest that

-0 10 20 30 40 50

-0

200000

400000

600000

Satisfiable problems solved

Flips

• •
• • •

•

•

0 Temp SASAT

SASAT

Figure 9: Distribution for zero temperature SASAT on 100 variable problems.

-0 10 20 30 40

-0

5e+06

1e+07

Satisfiable problems solved

Flips

• •
• • • • • • • • • • • •

• • • •
• •

•

•
•

•

•

•

•

0 Temp SASAT

SASAT

Figure 10: Distribution for zero temperature SASAT on 300 variable problems.

GSAT and zero temperature SASAT scale similarly. As expected, the zero temperature
SASAT algorithm appears to behave very much like GSAT. Figures 9, 10, and 11
compare the distributions of the zero temperature SASAT with SASAT. The distribution
of the modified SASAT is presented as a solid line. The distributions indicate that the
relative advantage of SASAT increases as the number of variables increase.

These results highlight a number of interesting points. First, as expected, the zero
temperature performs similarly to GSAT. Second, since SASAT outperforms zero
temperature SASAT, we strengthen our conclusion that SASAT does indeed outperform
GSAT on this class of problems, at least with the given cutoffs. Third, the annealing
schedule is the key to the relative advantage of SASAT. A good annealing schedule

-0 10 20 30 40

-0

1e+07

2e+07

3e+07

Satisfiable problems solved

Flips

• •
• • • • • • • • • •

•

•

•

•

0 Temp SASAT

SASAT

Figure 11: Distribution for zero temperature SASAT on 500 variable problems.

allows SASAT to escape suboptima sufficiently often that SASAT outperforms zero
temperature SASAT (and GSAT) both in the percentage of problems satisfied and the
number of flips required to satisfy them. Finally, the actual annealing schedule used
helps explains the mixed results reported by Selman. In Selman’s experiments relatively
high maximum temperatures were used - namely, 5 or 10. SASAT has a maximum
temperature of 0.3. Clearly temperatures much higher than 0.3 simply result in a lot of
wasted search.

Despite the modification to SASAT, GSAT remains different in one other
important aspect. Unlike SASAT, GSAT always flips the best variable of the V variables
than can be flipped at any time. In other words GSAT bases its decisions on the global
information obtained from all variables. SASAT, on the other hand, bases its decisions
only on the local information associated with one variable. Interestingly, it is not clear
that the global mechanism is very useful, since zero temperature SASAT (which uses
local information) performs in a fashion that is very similar to GSAT. This raises an
intriguing question. Is choosing the best really a good strategy? We plan to pursue this
in more detail in the future.

5 SASAT with a Random Walk

As mentioned earlier, one characteristic of SASAT is that it allows arbitrary
sequences of backwards moves. Recently, GSAT has been enhanced by a feature
referred to as a random walk (Selman et al., 1993). The purpose of the walk is to allow
GSAT to escape from local optima by making backwards moves. However, the random
walk moves are more specific than those made by SASAT. Periodically, GSAT randomly
chooses an unsatisfied clause, and flips the value of a random literal within that clause
(thus making that clause true). Preliminary results indicate that this is an effective
heuristic for GSAT.

Considering the relative advantages that SASAT appears to have, it is reasonable
to also consider adding a similar heuristic to SASAT. One elegant way is to modify the
logistic function as shown in Figure 12.

flip variable v with probability defined by the
logistic function:

with probability p {
if (v is in an unsatisfied clause) return 1.0;
else return 0.0;

}
else with probability 1 − p {

return

1 + e
−

temperature
δ___________

1______________ ;

}

Figure 12. Random walk logistic function for SASAT.

Thus, with probability p we check to see if a variable is in an unsatisfied clause. If
it is we flip it. If not, we leave it alone. Finally, with probability 1 − p we use the
standard logistic function. The motivation is to add backwards moves to SASAT that are
not simply random. In fact, random walk moves are targeted towards those clauses that
appear to be giving the algorithm difficulty.

Of course, the behavior of this algorithm depends greatly on the value chosen for
p. Results from the genetic algorithm community suggest that such perturbations should
occur roughly once for each pass over the V variables. Drawing on these results, and
some preliminary empirical experiments, we set p to 1 / V and reran SASAT. Table 5
presents the results.

Variables Clauses δs Flips % Solved MAX_TRIES__

100 425 102,900 8,072 55/100 200,000___
200 850 1,833,400 125,239 56/100 400,000___
300 1275 19,202,100 1,236,040 53/100 800,000___
400 1700 34,179,200 2,128,179 46/100 1,000,000___
500 2125 99,556,000 6,016,920 46/100 1,600,000___

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Table 5: SASAT with random walk on hard problems.

Again we compare the algorithms on the percentages of problems solved, and the
number of flips required to solve them (Figure 13). SASAT with the random walk solves
a higher percentage of problems than it did before, achieving almost 50%. In terms of
the average number of flips, it does not appear to scale as well as SASAT. However, this
is somewhat misleading, since SASAT with the random walk is solving more problems.
Figures 14, 15, and 16 compare the distributions of SASAT with the random walk
against SASAT. The distribution for SASAT with the random walk is presented as a
solid line. Note that, with the possible exception at 100 variables, SASAT with the
random walk appears to be a definite improvement over the basic SASAT algorithm.

100 200 300 400 500

-0

5

10

Millions
of Flips

Variables

SASAT

GSAT
SASAT
with walk

Figure 13: Comparison of GSAT, SASAT, and SASAT with random walk.

-0 10 20 30 40 50

-0

200000

400000

600000

Satisfiable problems solved

Flips

• •
• • •

•

•

SASAT
with walk

SASAT

Figure 14: Distribution for SASAT with walk on 100 variable problems.

6 Summary and Discussion

In this paper we considered an application of simulated annealing (SASAT) to a
class of hard problems and compared the resulting algorithm with a greedy algorithm
(GSAT). With the given cutoffs, SASAT appears to satisfy at least as many hard SAT
problems as GSAT, with less work. We then presented evidence confirming that the
relative advantage of SASAT lies in its use of random backward moves. Finally, by
adding a random walk heuristic, SASAT was shown to solve even more problems.

There are a number of important issues that still need to be addressed. First, the
conclusions reached in this paper are necessarily tentative, given that it was impossible
to know which unsatisfied problem instances were in fact satisfiable. One resolution to

-0 10 20 30 40 50

-0

5e+06

1e+07

Satisfiable problems solved

Flips

• •
• • • • • • • • • • • •

• • • •
• •

•

•
•

•

•

•

•

SASAT with walk

SASAT

Figure 15: Distribution for SASAT with walk on 300 variable problems.

-0 10 20 30 40

-0

1e+07

2e+07

3e+07

Satisfiable problems solved

Flips

• •
• • • • • • • • • •

•

•

•

•

SASAT with walk

SASAT

Figure 16: Distribution for SASAT with walk on 500 variable problems.

this problem will be to improve our sound and complete algorithms, allowing us to know
which problems are satisfiable and unsatisfiable. However, at some point the problems
will become too difficult for the sound and complete algorithms. At this point the only
way to ultimately test the incomplete algorithms is to simply run them on the harder
problems and display as much of the problem distribution as is possible.

Second, the issue of fairness with respect to comparisons is still open. Given the
current implementations of SASAT and GSAT, and the problem class explored, flips
appears to be a good measure for comparison. For Random 3-SAT problems where C is
4.25, GSAT computes roughly 25 δs per flip. Fortuitously SASAT computes roughly 20
δs per flip. However, SASAT with random walk computes less than 16 δs per flip. Is the
comparison still fair? Furthermore, on Random L-SAT problems where L is greater than

3, GSAT will compute more than 25 δs per flip. It is unknown how SASAT will behave.

To a large extent, the good performance of GSAT rides on the observation that it is
only necessary to compute the δs of those variables that share one or more clauses with
the last flipped variable. We have not taken advantage of this observation in SASAT.
For example, it is highly unlikely that SASAT needs to recompute the 20 δs that occur
(on the average) between flips. If this is true, it will be possible to reduce the amount of
work required per flip in SASAT. Note that, as with GSAT, this will not change the
semantics of the algorithm. Preliminary experiments indicate that, per flip, the number
of δ computations can be reduced by roughly 35 percent. We will explore this potential
further in the near future.

Finally, it can be argued that the Random L-SAT problems are not of interest,
since they may not occur in realistic problems. We will explore the behavior of SASAT
on other problem classes (or instances) in future research.

Acknowledgements
Thanks to Diana Gordon and Ken De Jong for many helpful comments on this

work and this paper. Diana was also highly influential in my efforts to find a fair
comparison between GSAT and SASAT. I would also like to thank David Johnson, Bart
Selman, Ian Gent, Toby Walsh, and Antje Beringer for provocative and insightful
comments. Any remaining errors are of course the author’s responsibility.

References

Crawford, J. M. & L. D. Auton (1993) Experimental Results on the Crossover Point in
Satisfiability Problems, Proceedings of the 1993 AAAI Conference, Washington, DC,
pgs. 21 - 27.

De Jong, K.A. & W. Spears (1989) Using Genetic Algorithms to Solve NP-Complete
Problems, International Conference on Genetic Algorithms, George Mason University,
Fairfax, Virginia, June 1989, pgs. 124 - 132.

Gu, J. (1992) Efficient Local Search for Very Large-Scale Satisfiability Problems,
SIGART Bulletin, 3(1), January 1992.

Mitchell, D., Selman, B., & H. Levesque (1992) Hard and Easy Distributions of SAT
Problems, Proceedings of the 1992 AAAI Conference, San Jose, CA, pgs 459 - 465.

Selman, B., Kautz, H. A., & B. Cohen (1993) Local Search Strategies for Satisfiability
Testing, paper in preparation for the 2nd DIMACS Challenge, Rutgers University.

Selman, B., & H. A. Kautz (1993) An Empirical Study of Greedy Local Search for
Satisfiability Testing, Proceedings of the 1993 AAAI Conference, Washington, DC, pgs
46 - 51.

Selman, B., Levesque, H., & D. Mitchell (1992) A New Method for Solving Hard
Satisfiability Problems, Proceedings of the 1992 AAAI Conference, San Jose, CA, pgs
440 - 446.

Spears, W. M. (1993) A NN Algorithm for Hard Satisfiability problems, Artificial

Intelligence Center Internal Report #AIC-93-014, Naval Research Laboratory,
Washington, DC 20375.

Spears, W. M. (1992) Probabilistic Satisfiability, Artificial Intelligence Center Internal
Report #AIC-92-026, Naval Research Laboratory, Washington, DC 20375.

Spears, W. M. (1990) Using Neural Networks and Genetic Algorithms as Heuristics for
NP-Complete Problems, Masters Thesis, Department of Computer Science, George
Mason University, Fairfax, Virginia.

Young, R. A. & A. Reel (1990) A Hybrid Genetic Algorithm for a Logic Problem",
Proceedings of the 9th European Conference on Artificial Intelligence, pp.744-746,
Editor: Aiello, L.C. Publisher: Pitman, London, UK.

