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DISSERTATION ABSTRACT

The Role of Mutation and Recombination in Evolutionary Algorithms

William M. Spears
George Mason University, 1998
Thesis Director: Dr. Kenneth A. De Jong

Despite decades of work in evolutionary algorithms (EAs), there remains a lot of
uncertainty as to when it is good or bad to use recombination or mutation. This
thesis provides a theoretical and empirical study of recombination and mutation in
EAs, in order to better characterize the roles of these operators.

The main theme of the thesis is as follows. First a static, component-wise analysis
of recombination and mutation is performed. This analysis highlights some of the
strengths and weaknesses of both operators. The analysis also suggests that increasing
the number of peaks in a fitness landscape (i.e., its multimodality) can have a highly
deleterious effect on an EA with recombination. This suggestion is confirmed via
a dynamic Markov chain analysis of an EA on very small problems. The dynamic
analysis also suggests that the relative heights of the peaks can influence the utility
of recombination. Finally, these results are empirically confirmed on real problems
through the use of a novel multimodality problem generator that produces random
problems with a controllable amount of multimodality. When all peaks have equal
heights, increasing the number of peaks has an increasingly deleterious effect on the
performance of an EA with recombination. However, gradually lowering the heights of

the suboptimal peaks is beneficial to the performance of recombination. Interestingly,



the EA with mutation (and no recombination) is almost completed unaffected by the
number of peaks or their heights.

As well as following the main theme, the thesis also takes occasional excursions
into related theoretical areas, in order to unify the existing theoretical techniques more
closely. Using a static analysis, a No-Free-Lunch theorem is proven for recombination,
demonstrating a tight relationship between the disruptive and constructive aspects
of recombination. An intriguing relationship is also demonstrated between uniform
recombination and mutation, when the cardinality of the representation is two and
there is maximum population diversity. The thesis also shows a close relationship
between the static analyses and a dynamic analysis of a population undergoing re-
combination and/or mutation, by demonstrating that the more disruptive an operator
is (a static concept), the faster the population approaches an equilibrium distribution
(a dynamic concept).

Finally, the thesis introduces new techniques for studying EAs. First it introduces
a model of an EA with selection and mutation that involves iterating equations of
motion. It then defines a class of functions under which this model can be naturally
aggregated. This produces an identical model with far fewer equations of motion,
allowing the model to be applied to realistic fitness functions. Finally, a novel ag-
gregation algorithm is created to automatically aggregate a more complex Markov
model of an EA that includes selection, mutation, and recombination. Since this ag-
gregation algorithm works for general Markov chain models it has a potential scope

well beyond that examined in this thesis.



Part 1

Setting the Stage



Chapter 1

Introduction

1.1 Evolutionary Algorithms

Evolutionary computation uses computational models of evolutionary processes as
key elements in the design and implementation of computer-based problem solving
systems. There are a variety of evolutionary computational models that have been
proposed and studied — all of which are referred to as evolutionary algorithms (EAs).
EAs share a common conceptual base of simulating the evolution of individual struc-
tures via processes of selection and reproduction. These processes depend on the
perceived performance (fitness) of the individual structures as defined by an environ-
ment.

More precisely, evolutionary algorithms maintain a population of structures that
evolve according to rules of selection and other operators, such as recombination and
mutation. Each individual in the population is evaluated, receiving a measure of
its fitness in the environment. Selection focuses attention on high-fitness individu-
als, thus exploiting the available fitness information. Recombination and mutation
perturb those individuals, providing general heuristics for exploration. Although
simplistic from a biologist’s viewpoint, these algorithms are sufficiently complex to
provide robust and powerful adaptive search mechanisms.

Figure 1.1 outlines a typical evolutionary algorithm (EA). A population of P
individual structures is initialized and then evolved from generation ¢ to generation

t + 1 by repeated applications of fitness evaluation, selection, recombination, and



procedure EA;

t = 0; /* Initial Generation */

initialize_population(t);

evaluate(t);

until (done) {
t =t+1; /* Next Generation */
select_parents(t);
recombine(t);
mutate(t);
evaluate(t);
select_survivors(t);

Figure 1.1: The outline of an evolutionary algorithm.

mutation. The population size P is generally constant in an evolutionary algorithm,
although there is no a priori reason (other than convenience) to make this assumption.

An evolutionary algorithm typically initializes its population randomly, although
domain specific knowledge can also be used to bias the search. Evaluation measures
the fitness of each individual according to its worth in some environment. Fitness
evaluation may be as simple as computing a mathematical function or as complex as
running an elaborate simulation. Selection is often performed in two steps, parent
selection and survival. Parent selection decides who becomes parents and how many
children the parents have. Children are created via recombination, which exchanges
information between parents, and mutation, which further perturbs the children.
The children are then evaluated. Finally, the survival step decides who survives in
the population.

The origins of evolutionary algorithms can be traced to at least the 1950’s (Fraser
1957; Box 1957). However, the three dominant methodologies are “evolutionary pro-
gramming” (Fogel, Owens, and Walsh 1966), “evolution strategies” (Rechenberg 1973;
Schwefel 1981), and “genetic algorithms” (Holland 1975).



1.1.1 Evolutionary Programming

Evolutionary programming (EP), developed by Fogel et al. (1966), traditionally has
used representations that are tailored to the problem domain. For example, in real-
valued optimization problems, the individuals within the population are real-valued
vectors. Similarly, ordered lists are used for traveling salesman problems, and graphs
for applications with finite-state machines. EP is often used as an optimizer, although
it arose from the desire to generate machine intelligence.

After initialization, all P individuals are selected to be parents, and then are
mutated, producing P children. These children are evaluated and P survivors are
chosen from the 2P individuals, using a probabilistic tournament selection. The best
individual always survives, ensuring that once an optimum is found it cannot be lost
(this is referred to as “elitism”). The form of mutation is based on the representation
used, and is often adaptive. For example, when using a real-valued vector, each
variable within an individual may have an adaptive mutation rate that is normally
distributed with a zero expectation. Recombination is not generally performed since
the forms of mutation used are quite flexible and can produce perturbations similar
to recombination, if desired.

The theoretical foundations for this algorithm stem from a proof of the global
convergence (with probability 1) for EP. This result is derived by defining a Markov
chain over the discrete state space that is obtained using the numbers represented
on a digital computer. By combining all possible populations that contain the grid
point having fitness closest to the true global optimum, an absorbing state is defined

in which the process will ultimately be trapped, due to elitism.

1.1.2 Evolution Strategies

Evolution strategies (ESs) were developed by Rechenberg (1973), using selection, mu-
tation, and a population of size one. Schwefel (1981) introduced recombination and

populations with more than one individual, and provided a nice comparison of ESs



with more traditional optimization techniques. Due to initial interest in hydrody-
namic optimization problems, evolution strategies typically use real-valued, vector
representations.

After initialization and evaluation, individuals are selected uniformly randomly to
be parents. In the standard recombinative ES, pairs of parents produce children via
recombination, and the children are further perturbed via mutation. The number of
children created is greater than the number of parents P. Survival is deterministic
and is implemented in one of two methods. The first method allows the P best
children to survive, and replaces the parents with these children. This is referred to
as (P,)\) survival, where P corresponds to the population size and A refers to the
number of children created. The second method is referred to as (P + A) survival,
which allows the P best children and parents to survive. The (P + A\) method is
elitist, while the (P,\) method is not. ! Like EP, considerable effort has focused
on adapting mutation as the algorithm runs by allowing each variable within an
individual to have an adaptive mutation rate that is normally distributed with a
zero expectation. Unlike EP, however, recombination does play an important role in
evolution strategies, especially in adapting mutation.

Most of the theory for ESs is concerned with convergence velocity, i.e., trying to
maximize the rate at which the ES converges to the optimum. There are also proofs
of global convergence (with probability 1) for the elitist (P + A) ES, but not for the
(P,)\) ES.

1.1.3 Genetic Algorithms

Genetic algorithms (GAs), developed by Holland (1975), have traditionally used a
more domain independent representation, namely, binary strings. However, many
recent applications of GAs have focused on other representations, such as graphs

(neural networks), Lisp expressions, ordered lists, and real-valued vectors.

Tt is more traditional to refer to these methods as (u,A) and (u + ), but this conflicts with
the common use of p for the mutation rate in EAs.



After initialization, parents are selected according to a probabilistic function based
on relative fitness, referred to as “fitness-proportional selection”. With this selection
method the average fitness of the population is monitored. Those individuals that
have higher than average fitness produce (on the average) more than one child, while
those that have less than average fitness produce (on the average) less than one
child. This is normalized appropriately to produce P children, which are created via
recombination from the P parents. The P children are then mutated and replace the
P parents in the population. This form of selection is not elitist and can be considered
to be a (P,P) selection strategy.

The theoretical foundation of GAs is considerably different from that used in ES
or EP. Holland (1975) concentrates on “schemata”, which are sets of individuals. Hol-
land likens these schemata to the random variables associated with K-armed bandit
problems, and argues that the GA maximizes accumulated payoff by optimizing the
allocation of trials to those random variables.

It is interesting to note that the relative emphasis on mutation and recombination
in a GA is opposite to that in EP. Historically, in a GA, mutation is considered to be
a background operator that flips alleles with some small probability. Recombination
is considered to be the primary search operator. Despite this emphasis on recombi-
nation, interest in mutation has increased recently, partly due to the influence of the
ES and EP communities. Schaffer and Eshelman (1991) have experimentally shown
that mutation is a powerful search operator in its own right, while still maintaining

the usefulness of recombination in certain situations.

1.1.4 Summary

As one can see, the three dominant EA methodologies vary considerably with respect
to representation, selection, population management (e.g., how many children are cre-

ated), and their use of recombination and mutation. ? This thesis will focus primarily

2For a more extensive overview see Spears et al. (1993).



on recombination and mutation. Note that the relative importance of recombination
and mutation in particular EAs varies enormously. In EP the emphasis is on muta-
tion, whereas with GAs the emphasis is on recombination. ESs make extensive use
of both mutation and recombination. Despite decades of work with these algorithms,
however, there still remains a lot of uncertainty as to when it is good or bad to use
recombination or mutation. The goal of this thesis is to provide a theoretical and
empirical study of recombination and mutation in EAs, in order to better characterize
the roles of these operators.

Almost all the prior theoretical and empirical analyses of recombination have been
performed in the GA community, and have assumed fixed-length, linear representa-
tions over finite-cardinality alphabets. Such representations include the binary-string
representation often used in GAs, the ordered-list representation in EP, and even the
real-valued, vector representation in ESs (since the values are represented in a digital
computer). We will continue to make these assumptions throughout this thesis, since
they hold in most applications of EAs. It is possible that the analyses in this thesis
could be extended to variable-length and non-linear representations, however, this
will not be attempted in the current work.

This thesis will make use of “piece-wise” component analyses (of recombination
and mutation in isolation) as well as full analyses of the complete dynamics of se-
lection, recombination, and mutation. It will be shown that the component analyses
provide useful insights into the dynamics of the complete analyses. Finally, the thesis
will confirm those insights by use of a novel experimental methodology that uses a
problem generator to create random problems within a well-defined class.

Before delving fully into the thesis, however, it is important to summarize the
characterizations of recombination and mutation that have appeared in the literature,
discuss related issues, summarize the goals of the thesis, and provide an outline for

the remaining chapters.
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Figure 1.2: A second-order hyperplane H,.

1.2 Background and Related Work

This section provides an overview of recombination and mutation theory. First, how-
ever, some useful terminology must be defined. An EA operates on a population of
P strings, which are generally fixed length. The strings are of length L and are often
referred to as “chromosomes” with L “genes”. Each gene can take on one of C values,
which are often referred to as “alleles”. C' can be thought of as the cardinality of
the alphabet of the strings. Thus, there are C* possible strings. This representation
includes the real-valued representations used by the EP and ES methodologies (since
the real values are represented in a digital computer), however, it maps most natu-
rally to the discrete binary-string representations used in GAs. For this reason we
borrow extensively from the terminology of the GA community.

“Schemata” (Holland 1975) represent sets of strings by using an additional symbol
in the alphabet: “#”. For example, let us consider the schema “AB##”, defined
over a fixed-length chromosome (individual) of four genes, where each gene can take
on one of 26 alleles {A, ..., Z}. The “#” is defined to be a “don’t care” (i.e. wildcard)
symbol, and schema “AB#+#” represents all chromosomes that have an “A” for their
first allele and a “B” for their second. Since each of the “#” symbols can be filled in
with any one of the 26 alleles, this schema represents 262 chromosomes.

Schemata are also referred to as “hyperplanes” and “building blocks” in the lit-

erature (Goldberg 1987). Hyperplanes are described by “defining positions” d;, that
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Figure 1.3: A third-order hyperplane Hs.

indicate where the non-# symbols occur. The “order” k is the number of defining
positions (non-# symbols) in the hyperplane, and thus the hyperplane of order % is
often designated as Hjy. Also, since there are k defining positions, they are labeled
dy through dy. The “defining length” L, of a hyperplane is the distance between the
outermost non-# symbols (d; and di). For example the schema “ABC#” has order
three and defining length two, while the schema “A##D” has order two and defining
length three. As further examples, consider Figure 1.2 and Figure 1.3, which picto-
rially depict second-order and third-order hyperplanes. In both figures the length of
the individuals is L, and the defining length of the hyperplanes is L;. The second-
order hyperplane Hs has two defining positions d; and dy, whereas the third-order
hyperplane has three defining positions d;, do, and d3. The small squares represent

the alleles at those defining positions.

1.2.1 Recombination

Although Holland (1975) was not the first to suggest recombination in an evolutionary
algorithm (EA) (e.g. see Fraser (1957) or Fogel et al. (1966)), he was the first
to place theoretical emphasis on this operator. According to Holland, an adaptive
system must persistently test and incorporate structural properties associated with
better performance. The object, of course, is to find new structures which have a

high probability of improving performance significantly.
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Holland concentrated on schemata, which provide a basis for associating combina-
tions of attributes with potential for improving current performance. Suppose every
chromosome has a well-defined fitness value (also called “utility” or “payoff”). Now
suppose there is a population of P individuals, p of which are members of the schema
“AB#+#”. The “observed average fitness” of that schema is the average fitness of
those p individuals in that schema. It is important to note that these individuals will
also be members of other schemata, thus the population of P individuals contains
instances of a large number of schemata (all of which have some observed fitness).
Holland (1975) stated that a good heuristic is to generate new instances of those
schemata whose observed fitness is higher than the average fitness of the whole pop-
ulation, since instances of those schemata are likely to exhibit superior performance.

Suppose the schema “AB#+#” does in fact have a high observed fitness. The
heuristic states that new samples (instances) of that schema should be generated.
Selection (reproduction) does not produce new samples — but recombination or mu-
tation can. The key aspect of recombination is that if one recombines two individuals
that start with “AB”, their offspring must also start with “AB”. Thus one can re-
tain what appears to be the promising building block “AB#+#”, yet continue to test
that building block in new contexts. Mutation will not necessarily preserve the “AB”
alleles.

Holland (1975) provided one of the earliest analyses of a recombination operator,
called “one-point” recombination. Suppose there are two parents: “AABB” and
“ABAB”. Randomly select one point at which to separate (“cut”) both parents. ® For
example, suppose they are cut in the middle: “AA|BB” and “AB|AB”. The offspring
are created by swapping the tail (or head) portions to yield “AAAB” and “ABBB”.
Holland analyzed one-point recombination by examining the probability that various
schemata will be disrupted when undergoing recombination. A schema is disrupted if

neither offspring is in that schema. For example, consider the two schemata “AA##”

3Since the individuals have a fixed length, the cut-point will necessarily be the same for both
parents.
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Figure 1.4: How one-point recombination can disrupt a second-order hyperplane.

and “A#+#A”. Each schema can be disrupted only if the “cut-point” falls between its
two A’s. However, this is much more likely to occur with the schema “A##A” than
with “AA#+#". In fact, the probability of disrupting either schema is proportional to
the distance between the A’s. Thus, one-point recombination has the bias that it is
much more likely to disrupt “long” schemata (those with a large defining length) than
“short” schemata (those with a small defining length). Figure 1.4 provides a pictorial
example. The two parents are labeled “P1” and “P2”. Suppose P1 is a member of a
particular second-order hyperplane Hy, which has defining positions d; and do, while
P2 is some other arbitrary individual. Then H, can be disrupted if the cut-point falls
between the two defining positions (see the dashed line, which represents the cut-
point in one-point recombination). This becomes more likely as the distance between
those defining positions (the defining length) increases.

De Jong (1975) extended this analysis to include so-called “n-point” recombina-
tion. In m-point recombination n cut-points are randomly selected and the genetic
material between cut-points is swapped. For example, with two-point recombination,

suppose the two parents “AAAA” and “BBAB” are cut as follows: “A|AA|A” and
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“B|BA|B”. Then the two offspring are “ABAA” and “BAAB”. De Jong noted that
two-point (or n-point where n is even) recombination is less likely to disrupt “long”
schemata than one-point (or n-point where n is odd) recombination.

Syswerda (1989) introduced a new form of recombination called “uniform” re-
combination. Uniform recombination does not use “cut-points” but instead creates
offspring by deciding, for each allele of one parent, whether to swap that allele with
the corresponding allele in the other parent. That decision is made using a coin-flip
(i.e. the swap is made with probability denoted as P,). Syswerda compared the prob-
ability of schema disruption for one-point, two-point, and uniform recombination. *
Interestingly, while uniform recombination is somewhat more disruptive of schemata
than one-point and two-point, it does not have a length bias (i.e. the defining length
of a schema does not affect the probability of disruption). Also, Syswerda showed
that the more disruptive nature of uniform recombination can be viewed in another
way — it is more likely to “construct” instances of new higher-order schemata from
lower-order schemata than one-point and two-point recombination. Chapters 2 — 7 of
this thesis extend the earlier work greatly, by providing a common framework upon
which to compare all n-point recombination and P, uniform recombination opera-
tors with mutation, on hyperplanes of arbitrary order, under varying conditions of
population homogeneity.

Eshelman et al. (1989) considered other characterizations of recombination. They
introduced two biases, the positional and distributional bias. A recombination op-
erator has positional bias to the extent that the creation of any new schema by
recombining existing schemata is dependent upon the location of the alleles in the
chromosome. This is similar to the length bias introduced above. A recombination
operator has distributional bias to the extent that the amount of material that is ex-
changed is not uniformly distributed. For example, one-point recombination has high

positional (length) bias. However, it has no distributional bias, since one-point re-

4Syswerda (1989) only considered uniform recombination where Py = 0.5.
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combination will exchange anywhere from one to L alleles uniformly with probability
1/L. Two-point recombination has slightly lower positional bias and still no distri-
butional bias. Uniform recombination has no positional bias but high distributional
bias because the amount of material exchanged is binomially distributed. Chapter 8
re-examines and extends this work by providing a comparison with mutation, under
varying conditions of population homogeneity.

All of the analyses mentioned thus far are “static” in the sense that they do not
attempt to model the time evolution of an EA. A more dynamic characterization is
Geiringer’s Theorem (Geiringer 1944), which describes the equilibrium distribution
of an arbitrary population that is repeatedly undergoing recombination, but no se-
lection or mutation. To understand Geiringer’s Theorem, consider a population of
ten strings of length four. Five of the strings are “AAAA” while the other five are
“BBBB”. If these strings are recombined repeatedly, eventually 2* = 16 strings will
become equally likely in the population. In equilibrium the probability of a particular
string will approach the product of the probabilities of the individual alleles — thus as-
serting a condition of independence between alleles. Booker (1992) suggests that the
rate at which the population approaches equilibrium is the significant distinguishing
characterization of different recombination operators. Chapter 9 extends this ear-
lier work by attempting to perform that characterization for different recombination

operators. Chapter 9 also provides a related analysis for mutation.

1.2.2 Mutation

As one can see, recombination theory has centered around the GA model of evolu-
tionary computation. The theory for mutation has centered around the ES model.
Rechenberg (1973) investigated the (1+1) ES on corridor and sphere models of fit-
ness and computed the expected rates of convergence, given the standard deviation
(“step size”) of the normally distributed mutation operator. The standard deviations

were then optimized to yield the fastest rates of convergence. It was then possible
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to compute the probability that a given mutation would be “successful” (have better
fitness than the parent). Since this was close to 1/5 for both the sphere and corridor
models, the “1/5 rule” was formed: “The ratio of successful mutations to all muta-
tions should be 1/5. If it is greater than 1/5 increase the standard deviation; if it is
smaller, decrease the standard deviation.”

Schwefel (1981) extended the analysis to population sizes greater than one, and
computed the expected progress of the population average for the (P + \) and (P,\)
ES. This allowed Schwefel to estimate that having a A/P ratio of roughly six yields
the best compromise between the computational effort of having a large number of
offspring and the convergence rate.

It might be possible to extend these analyses to include recombination, by com-
puting the “success probability” (i.e., the probability that offspring will be better
than parents) for various recombination operators on various problem classes. This
will not be pursued in this thesis, however, although it is clearly an interesting avenue

for future research.

1.2.3 Differences between Recombination and Mutation

Although prior work has helped to distinguish between different recombination op-
erators in GAs and to select good step sizes for mutation in ESs, it has not helped
to illustrate the differences between recombination and mutation. However, the no-
tion of building blocks has led Fogel (1995) to hypothesize that recombination will
perform poorly for most naturally evolved systems, because (so he claims) they are
extensively pleiotropic (a gene may influence multiple traits) and highly polygenic (a
trait may be influenced by multiple genes), since such systems will not have many
high-fitness building blocks for recombination to exploit. Fogel argues that mutation
will be superior for these systems.

The biological concepts of pleiotropy and polygeny are related to another con-

cept called “epistasis”. A system has low (high) epistasis if the optimal allele for
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any locus depends on a small (large) number of alleles at other loci. Systems with
independent loci (the optimal allele for each locus can be decided independently of
the alleles at the other loci) have no epistasis. A small amount of evidence exists
that recombination is most useful for medium epistasis problems, but not for high
epistasis problems (Schaffer and Eshelman 1991; Davidor 1990). This is consistent
with Fogel’s hypothesis. Thus the concept of epistasis would appear to be useful
for exploring the differences between recombination and mutation. This is explored
further in Chapter 13.

Another useful concept is the “operator landscapes” of Jones (1995). In this
model the fitness landscape is treated from an operator point of view. Landscapes
are commonly described in Hamming space, which is an ideal view for mutation, since
the mutation of a parent yields a child that is nearby in Hamming space. However,
Hamming distance is not necessarily useful when considering recombination, since
the recombination of two parents can yield children arbitrarily far in Hamming space.
Jones argues that in order to study any operator one needs to consider how far apart
points are in operator space, not just Hamming space. For example, if one considers
standard notions of multimodality, these notions are generally embedded firmly in
Euclidean or Hamming space. However, when seen from the point of view of recom-
bination, the space may look entirely different. This indicates that multimodality
might also be a useful concept for exploring the differences between recombination

and mutation. This is explored further in Chapter 11 and Chapter 13.

1.3 Issues and Goals

As pointed out above, one of the central unanswered issues in EAs is a useful char-
acterization of the strengths and weaknesses of recombination and mutation. What
are the similarities and differences between mutation and recombination? When will
recombination or mutation help or hurt performance? In order to answer these ques-

tions, this thesis will use both theoretical and empirical approaches.
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1.3.1 1Issues in Theoretical Approaches

Rather than pick a particular theoretical tool for addressing these questions, this
thesis will take a more eclectic approach. There is a continuum of levels for mod-
eling complex systems, ranging from the simple to the complex. Simple theoretical
models are generally easy to analyze, but are approximations to the real system. As
the approximations are improved, the models generally become more complex, in-
creasing the analytical burden. This thesis will examine the full continuum — simple,
component-size models (schema and limiting distribution models of recombination
and mutation), intermediate models of selection and mutation, and complete mod-
els of EAs using Markov chains. The point is that, as with a good set of Craftsman
tools, it is often necessary to have many different levels of modeling in order to address
different questions.

One criticism of simple models is that they often include too few details of a
system, resulting in a model that is totally non-predictive in nature. This criticism
is often levied against one of the most common theoretical techniques for studying
recombination — so-called “schema” theories, in which the disruptive and constructive
aspects of recombination on hyperplanes (schemata) are compared. On the other
hand, very complete models are also problematic due to their analytical complexity.
For example, Markov chain models of EAs can have enormous numbers of states,
raising a criticism concerning the usefulness of Markov chain theories for EAs.

This thesis will address both criticisms. It will show that Markov theories can in
fact provide quite useful insights — the behavior of an EA on small (computationally
tractable) problems can in fact be observed in larger problems (Chapter 11 and Chap-
ter 13). Furthermore it is possible to provide automatic tools for simplifying these
complete models to make them far more computationally manageable (Chapter 12).
Finally, it will be shown that the results from the simple schema theories (Chapter 7)
provide the inspiration for the experiments performed in the Markov model of an EA

(Chapter 11), indicating that a theory need not be totally predictive to be useful.
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1.3.2 1Issues in Empirical Approaches

As mentioned above, the theories developed in this thesis either make simplifying as-
sumptions, or (when simplifying assumptions are not made) are analytically tractable
only on small problems. Thus it is necessary to test these theories empirically, in or-
der to ensure that the theoretically derived conclusions and hypotheses hold with
real evolutionary algorithms on large, realistic problems. One weakness with stan-
dard empirical studies in which search algorithms are compared is that their results
may not generalize beyond the test problems used. A classic example of this is a
study in which a new algorithm is carefully tuned to the point that it outperforms
some existing algorithms on a few ad hoc problems (e.g., the De Jong (1975) test
suite). The results of such studies typically have only weak predictive value regarding
relative performance on new problems. Thus the central issue here is in how to per-
form better empirical studies, in order to better characterize when EAs will perform
well or poorly.

There are two ways to strengthen the results obtained from empirical studies. The
first is to remove the opportunity to hand-tune algorithms to a particular problem or
set, of ad hoc problems. This can be done by using “test-problem generators”, which
produce random problems from within a well-specified class of problems. Having
problem generators allows one to report results over a randomly generated set of
problems that have well-controlled characteristics, rather than a few hand-chosen,
ad hoc examples. Thus, by increasing the number of randomly generated problems,
the predictive power of the results for the problem class as a whole has increased.
An advantage of problem generators is that in most cases they are quite easy to
parameterize, allowing one to design controlled experiments in which one or more
properties of a class of problems can be varied systematically to study the effects on
particular search algorithms. Chapter 13 gives empirical results using a test-problem
generator inspired by the theoretical results obtained with the complete Markov model

from Chapter 11.
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On a related issue, it is common practice to run EAs to some fixed termination
criteria, and then to report the results only after termination. However, this ignores
the dynamic aspects of an EA, and can lead to overly general conclusions. For ex-
ample, as we will see, conclusions can often turn out to be surprisingly dependent on
the termination criteria, often reversing if a different cutoff is used. Thus, a second
way to improve empirical methodology is to always include results throughout the
running of an algorithm. This thesis will always show results over the whole running

time of an EA.

1.4 OQOutline

This thesis has a central theme with occasional excursions into related areas. The cen-
tral theme proceeds as follows. First, the thesis will generalize the traditional static
schema theory for recombination, in order to compute the disruptive aspects that
n-point recombination and P, uniform recombination have on kth-order hyperplanes
Hy. Then the theory will be generalized further to include the constructive aspects of
recombination. At this point a schema theory for mutation can be derived, which also
takes into account the disruptive and constructive aspects of mutation. Population
homogeneity and arbitrary cardinality alphabets will be taken into account in a nat-
ural fashion. Mutation and recombination can thus be fairly compared, and various
general hypotheses will be made concerning the relative aspects of recombination and
mutation.

The thesis then introduces a complete dynamic model of an EA, which uses
Markov chains. The experiments performed with the Markov chain model are in-
spired by the insights gained from the static schema theories. The results of the
Markov chain approach yield further hypotheses concerning the role of mutation and
recombination on simple test functions.

Finally, the thesis confirms those hypotheses by examining the performance of an

actual EA on real functions. A test-problem generator is created, motivated by the
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results from the Markov chain approach. The results of the experiments validate the
results from the schema and Markov chain theories, completing the central theme.

However, this thesis also takes a number of interesting excursions, which often help
to clarify the roles of mutation and recombination in EAs. First, we use the math-
ematical technique for handling population homogeneity to generalize prior static
analyses of the distributional and positional biases of recombination, and provide a
comparison with mutation. Then we examine simple dynamic theories concerning the
distribution of populations undergoing recombination and mutation (in the limit of
large time) and connect these theories with the prior static schema theories. We also
provide a simple dynamic model that includes selection and mutation, and illustrate
that for certain classes of problems an expectation model of a simple EA (without
recombination) can be built that handles realistically large problems. These excur-
sions shed more insight into the roles of recombination and mutation, and provide
new theoretical tools for examining simple EAs.

Finally, the thesis (in perhaps its most important excursion), gives an automatic
algorithm for simplifying Markov chain theories in general. Although motivated by
a study of EAs, the algorithm will work on arbitrary Markov chains that are derived
from other complex systems, and hence has a scope well beyond that examined in

this thesis.
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Chapter 2

A Survival Schema Theory for Recombination

2.1 Introduction

The motivation for the original schema analysis of Holland (1975) was to compute the
expected number of instances of hyperplanes at time t+1, given their number at time
t. To use the notation of Goldberg (1987), let m;(H) be the number of individuals
in hyperplane H at time ¢. Then let f;(H) be the observed average fitness of the
hyperplane at time ¢ and let f;, be the observed average fitness of the population at

time ¢. Then the expected number of individuals in H at time ¢ + 1 is given by:

mt—l—l(H) > mt(H)@Psuruiual(H)

Tt
where Pyyrviva(H) is the probability that the hyperplane will not be disrupted by

either mutation or recombination (i.e., it survives). The inequality refers to the fact
that not only may a hyperplane H survive, it also may be constructed from other
hyperplanes. See Holland (1975) or Goldberg (1987) for further discussions of this
equation. The key point to be made here, however, is that computing the expected
number of individuals in a hyperplane will yield a framework upon which to compare
recombination and mutation.

Since recombination is typically a two-parent operator, while mutation is a one-
parent operator, this presents some difficulties when trying to compare the two op-
erators. The most important difficulty is that population homogeneity can not be

taken into account if mutation is treated as a one-parent operator (since population
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homogeneity is a relationship between multiple individuals in a population). This
makes a comparison with recombination problematic, since recombination is dramat-
ically affected by population homogeneity. The only apparent solution is to treat
both operators as two-parent operators. Granted, mutation acts on each parent inde-
pendently, but as long as that is taken into account, a fair comparison can be made.
The framework taken in this thesis is to imagine two particular parents that undergo
recombination or mutation (but not both). By computing the expected number of
offspring that will exist in some hyperplane H, after recombination or mutation, the
two operators can be fairly compared. !

This chapter first computes the probability that a hyperplane H will survive
recombination. It then uses this value to compute the expected number of offspring
that will survive recombination. Chapter 3 then considers the constructive aspects of
recombination by computing the probability that a hyperplane H can be constructed
from other hyperplanes, using recombination. This value is then used to compute
the expected number of offspring in H that will be constructed via recombination.
Finally, Chapters 5 — 7 provide similar computations for mutation (that compute the
expected number of offspring in H), allowing for a fair comparison between the two
operators. Again, the key point is that it is the computation of the expected number
of offspring in a hyperplane H that provides the common framework upon which to

compare mutation and recombination.

2.2 Framework

Assume that individuals in an evolutionary algorithm are fixed-length strings whose
characters are from a finite-cardinality alphabet. Let the length be L and the cardi-
nality be C. For example, if the alphabet is the set of lower-case characters from the

English alphabet, then C' = 26 and two possible strings of length L = 5 are “hello”

! This framework does not appear to have obvious limitations — for example it is simple to derive
the one-parent analysis of mutation from the two-parent analysis, if one desires.
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and “world”. For now we assume that there will be C” possible strings.

Let a hyperplane of order k be denoted by H,. Hj represents CT=* possible
strings, where the strings must match on the k defining positions of Hy. For example,
H, = aaaa# is a fourth-order hyperplane that represents the 26 lower-case strings of
length five that start with “aaaa”.

Let recombination be described by the random variable R. For Hj, there are 2*
possible recombination events: {rg,...,r9_1}. Each recombination event r; can be
represented by a bit mask of length & (i.e., the binary representation of i), where a
"1’ at position j indicates that recombination swapped the alleles at position j be-
tween the two parents, and a ’0’ means that recombination did not swap the alleles at
position j. All n-point recombination events and all parameterized uniform recombi-
nation events can be described with these bit masks. By definition, the probability

of all recombination events P(r;) must sum to 1.

2 One is

Assume that the following random experiment is being performed.
given two parents, and one parent is in the schema Hy, while the other parent is an
arbitrary string (which may or may not be in the schema Hy). Figure 2.1 provides a
pictorial example. The two parents are labeled “P1” and “P2”. P1 is a member of
a particular third-order hyperplane Hj, which has defining positions d;, ds, and ds,
and has defining length L. P2 is some other arbitrary individual.

The random experiment consists of performing recombination on these two par-
ents, producing two children. Schema Hj (or Hy in general) can either survive or be
disrupted. A schema survives if either offspring is in Hs (Hy), and it is disrupted if
neither offspring is in H3 (Hy). The probability of survival will be denoted as P,

while the probability of disruption is denoted as P;. Clearly,

2¢A random experiment is simply an experiment in which the outcomes are nondeterministic,
that is, probabilistic.” (Stark and Woods 1986)
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P1: — — —
-] -] -]
dy ds d3
P2:
_ J
Ly
= J
L

Figure 2.1: The setup for the random experiment to be performed. P1 is a member of
a third-order hyperplane, and P2 is an arbitrary string. Recombination is performed,
producing two offspring.

ZP P(Hy, survives | r;) ZP r;) Ps(Hy | i)

ZP P(Hy, disrupted | r;) = > P(r;)Pa(Hy | 13)

Ti

Hyperplanes Hj, will either survive or be disrupted, when subjected to recombi-

nation:
P;(Hy) + Py(Hy) = 1

The remainder of this chapter concentrates on deriving (estimates of) the proba-
bility of disruption (or survival) of arbitrary order hyperplanes Hj under the action
of n-point recombination and P, uniform recombination. These probabilities are then

used to derive the expected number of offspring that will reside in Hy.

2.3 Survival Theory for n-point Recombination

With n-point recombination n cut-points determine the recombination event. It is

convenient to partition these events into even and odd events. An even event means
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P1: — — | | —
] I {——
dy dy dy
P2: ' '
L J
Ly
. J
L

Figure 2.2: An example of an even recombination event for two-point recombination.

that an even number (or none) of the cut-points fall between each pair of adjacent
defining positions of Hy. During an even event none (or all) of the & alleles in Hy, are
exchanged by recombination. In contrast, an odd event means that an odd number
of the cut-points fall between some adjacent pair of defining positions of Hy. In this
case some (but not all) of the k alleles will be exchanged by recombination. Thus,

Pe'uen(Hk) = Z P(T’L)

r; even

Poaa(Hy) = ;idp(ﬁ')

It is important to realize that a particular recombination event r; will be even
or odd only in relation to a particular hyperplane Hy. Figure 2.2 and Figure 2.3
illustrate examples of even and odd recombination events, for two-point recombination
operating on a third-order hyperplane. Clearly, even and odd recombination events

partition the set of all events, so their probabilities must sum to one:

Peven(Hk) + Podd(Hk) =1

Now one can write:
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P1: — | — | —
- ; - ; -
dy do ds
P2: , ,
. J
L,
\ J
L

Figure 2.3: An example of an odd recombination event for two-point recombination.

P,(Hy) = Z P(ry)Ps(Hy | 73) + Z P(r;)Ps(Hy | 73) (2.2)

It is trivial to show that disruption is impossible (and that survival is certain)

under “even” recombination events (De Jong 1975), so:

Py(Hg | 7)) = 0 Vr;even

Py(Hy|7) =1 Vr;even

Thus Equation 2.1 and Equation 2.2 (the probability of disruption and survival)

can be simplified to:

Py(Hy) = Z P(r;) Pa(Hy | 75)
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This allows us to bound the probability of disruption and survival:

Py(Hy) < Y P(ri) =1 = > P(ri) =1 — Peyen(Hy) (2.3)

r; odd T; even

Ps(Hk) > Z P(Tz) = Peven(Hk) (24)

r; even

Thus P.yen(Hy) provides a lower bound for P;(Hy), while 1 — P,,e,(Hy) provides an
upper bound for P,(Hy).
For £ = 2 the probability of drawing even recombination events under n-point

recombination is:

[n/2] n L 2z L—1TL n—2c
Peven(HQ,L,Ll,n) = Z (f) ( L 1) (25)
z=0 2z

The notation Peye,(Ha, L, L1, n) means that one is computing the probability that
an even number of cut-points will fall between the defining positions of Hs, under
n-point recombination. The fraction L, /L is the probability that a cut-point will fall
between the two defining positions, whereas the fraction (L — L1)/L is the probability
that a cut-point will fall outside the two defining positions. * The index 2z is always
even, and thus the summation includes all even numbers from 0 to n. The combina-
torial computes the number of ways that a particular even number of cut-points can
be chosen from the n cut-points. This result was first shown in De Jong (1975), but
it is valid only for second-order hyperplanes.

It is possible to generalize this to higher-order schemata by using a recurrence
relation, and by noting that the sum of even numbers must be even. For k£ = 3 the

probability of drawing even recombination events under n-point recombination is:

3Note that this means that we assume that there are L possible cut-points and that they are cho-
sen with replacement. Booker (1992) assumes L — 1 cut-points that are chosen without replacement,
however, this makes very little difference in the computations.
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P1: — — —
-] -] -]
dy ds d3
P2:
N J
L,
. J
L,
= J
L

Figure 2.4: The defining lengths of a third-order hyperplane Hs.

Pe’uen(H37 La Lla L2a TL) =

[n/2] n L1>2$(L _ L1>n—2m
Z ¥ Peven(H%Ll:LZ:Qx)
z=0 \ 2x (L L

To understand this equation, consider Figure 2.4, in which a third-order hyper-
plane Hj is depicted. The top level of the equation computes the probability that an
even number of cut-points will fall between the two defining positions d; and ds. The
recurrence relation computes the probability that an even number of cut-points will
fall between the defining positions d; and dy. Since the sum of two evens is an even, it
must be the case that an even number of cut-points fall between ds and ds. Thus an
even number of cut-points fall between each pair of adjacent defining positions, and
this equation computes the probability that an even recombination event will occur.

Clearly this formulation can be extended to higher-order hyperplanes through the
recurrence relation — in general the probability of drawing even recombination events

under n-point recombination is:

Peven(HkaLa Lla---akalan) = (26)
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3 L

|_n/2J n Ll 2x L—L1
X, (2 (

n—2x
> Peven(kalaLla---akaI:Zm)
=0 \ 2z

It is important to note that the cardinality C of the alphabet has no effect on this
derivation, since recombination can only swap existing alleles. As it turns out, the
only time when the cardinality has an effect on the schema analysis for recombination
is when population homogeneity is taken into account, as will be explained later in

this chapter.

2.4 Graphing Disruption

Given Equations 2.5 and 2.6, we are now in a position to graph P,,, for schema Hj
under n-point recombination. As mentioned before, these are lower bounds on the
probability of survival for Hy (see Equation 2.4). As we know, Equations 2.5 and 2.6
indicate that the distances between defining positions are relevant when considering
n-point recombination. Thus, Hj is defined by L, Ly, ... , Lx_;. Throughout the
schema analysis in this thesis we assume that L = 30 in order to allow for comparison
with Syswerda (1989) and De Jong (1975). The minimum for the defining length L,
is k —1 (e.g., the closest that 3 defining positions can be is 2), and the maximum for
LiisL—1=29.

Figure 2.5 shows the probability that an even number of cut-points will fall be-
tween the defining positions of schema Hj, under n-point recombination (where n
ranges from one to six). There are four graphs, one each for Hy, Hs, Hy, and Hj.
Clearly it is simple to graph the results for H,, since it only depends on L and
L,. However, H3 depends also on Ly, which adds another dimension. Rather than
attempt to deal with high-dimension graphs we take the alternative solution of graph-
ing the result of averaging over all possible choices for L,. Thus, instead of graphing
P.yen(Hs, L, L1, Ly, n) we graph:

=

L 1 Z Peven(H&La Ll,LQ,TL)
1 —

Lo=1

Peven(HSa L, Lla n) =
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Figure 2.5: P.yen(Hy) of Hy, H3, Hy, and Hs when L = 30, for n-point recombination.

This is also done for the graphs for H, and Hj, where the results are averaged
over all possible choices of the defining positions. This form of averaging is used
throughout this thesis.

Figure 2.5 illustrates a number of interesting results. For all forms of n-point
recombination, P, (the probability that an even number of cut-points will fall
between the defining positions of Hy) is affected by both the defining lengths and the
order k of the hyperplane. All forms of n-point recombination are more disruptive
of higher-order hyperplanes (P.,e, gets lower as k increases). Also, all forms of n-
point recombination are reasonably non-disruptive (P, is reasonably high) of short
schemata, but the higher n is, the greater the disruption. Finally, when the defining

length is long, n-point recombination falls into two classes, depending on whether n
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P1: — ' — ' —
] ; ] {——
d, | dy dy
P2: f — f
1 I_I 1
. J
L,
\ J
L

Figure 2.6: An example of survival under an odd recombination event.

is even or odd. When n is odd, disruption continues to increase as L; increases (one-
point recombination acts linearly with respect to L;, as we would expect). However,
when n is even, disruption eventually decreases as L; increases. Thus, for the longer
defining lengths, n-point recombination when 7 is odd is more disruptive than when

n 1s even.

2.5 Estimates using Population Homogeneity

As seen earlier in Equation 2.4, Py, (Hy) provides a lower bound for the probability of
survival of a hyperplane P;(Hy). It is a lower bound because Hy, may yet survive under
an odd recombination event, if alleles are identical. This can be seen in Figure 2.6,
which shows an odd recombination event. However, the two strings have the same
allele at defining position ds, so in fact the hyperplane Hj survives. Thus, clearly the
population homogeneity plays an important role in estimating the actual probability
of survival Py(Hy). As opposed to concentrating only on even recombination events,

the computation of P;(Hj) examines all possible recombination events r;:

Py(Hy) = ZP(Ti)Ps(Hk | i)
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Figure 2.7: P;(Hy) of Hy, H3, Hy, and Hs when

recombination.

L = 30 and P,, = 0.5, for n-point

For a second-order schemata Hs the probability of survival under n-point recom-

bination is:

" n
PS(H27L7 Llan) = Z

z=0 X

(

Ly

)‘” (ﬂyLis (Ho | i)

L

where the recombination event r; (and hence Py(Hs | ;) ) is determined by x, which is

the number of cut-points falling between the two defining positions of H,. This equa-

tion can be contrasted with Equation 2.5, which considers only even recombination

events r; (in which case Py(Hs | ;) = 1).

Once again the recurrence relation can be used to compute the probability of

survival of a general kth-order hyperplane Hj under n-point recombination:
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Figure 2.8: Py(Hy) of Hy, Hs, H,, and Hs when L = 30 and P,, = 0.75, for n-point
recombination.

PS(Hk,L, Ll,...,Lk_l,’I’L) = (27)

n n Ll T L_Ll)n—w
— _ P,(Hy 1,L1,...,Li_
;) . (L) ( I s( k—1, 41y .-y Lifg 1,.’E)

The recurrence relation ends at:
P(Hy L, Lin) = 3 (f) (T1> Py(Hy | ) (2.8)
=0 A

where once again r; (and hence P;(Hy | r;) ) is determined by how many cut-points

fall between the adjacent defining positions of Hy. *

4Although this is the lowest level of the recurrence relation, we refer to P;(Hj | r;) instead
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The goal now is to compute P;(Hy, | ;), which depends both on the recombination
event and the population homogeneity. Consider Figure 2.3 again. Although this is
an odd recombination event, survival of Hs occurs if the two parents have matching
alleles at position dj or if they have matching alleles at positions d; and dsz. In either
situation the hyperplane Hj survives on one offspring or the other. The probability
that the alleles will match depends on the population homogeneity.

For ease of presentation, let K be the set of k£ defining positions. Suppose that
recombination results in a subset X of the k alleles from parent P1 surviving in the
same offspring. In this case no disruption will occur if: 1) the parents match on the
subset X, or 2) they match on the subset K — X. Hence the most general form for
P(Hy | ry) is:

Py(Hy | 1i) = Poy(X) + Poy(K = X) — Py(K) (2.9)

where P,,(X) represents the probability that the two parents will match on X'’s alleles,
while P,,(K — X) is the probability that the two parents will match on the remaining
alleles. The third term reflects the joint probability that both parents match on all &
alleles, and hence must be subtracted. ® If an even recombination event occurs (i.e.,
7; is even), then X is the null set and Ps(Hy, | r;) = Pey(X) = 1. However, for an odd
recombination event Py(Hy | ;) < 1.

Deriving precise expressions for the values of P,,(X) at a particular point in time
is difficult in general since they vary from generation to generation in complex, non-
linear, and interacting ways. We can, however, get considerable insight into the effects
of shared alleles on disruption analysis by making two simplifying assumptions.

The first assumption is the independence of alleles. Let P.,(d) represent the
probability that both parents have the same allele at a particular defining position d.

Due to independence:

of Ps(Hy | r;) because we care about the survival of the whole kth-order hyperplane. Also, r; is
introduced here because it is not defined until the lowest level of the recurrence relation is reached.
SIf A and B are events, then P(AV B) = P(A) + P(B) — P(AA B).
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Py(Hy [ 1) = JI Pog(d) + I Pegld) — ]I Peg(d) (2.10)

dex deK—-X deK

Once again, if an even recombination event occurs, then | X| = 0 and Py(Hy, | ;) =
1 (because the product over the null set is 1), as we would expect. However, for an
odd recombination event Py(Hj | ;) < 1 (unless Py(d) =1, Vd € K).

The second assumption is that for the hyperplane Hy, of interest, P,,(d) is identical
for all the defining positions (P.(d) = P, ¥V d € K). ¢ Now suppose that under
recombination event r; that x of the k alleles from parent P1 survive in the same
offspring. In this case no disruption will occur if: 1) the parents match on all z
defining positions, or 2) they match on all the remaining k£ — x defining positions. In

this case:

P,(Hy|m) = P, + P — Pf (2.11)

Under these assumptions, if an even recombination event occurs, then z = 0 and
P;(Hy, | ;) = 1. For an odd recombination event P;(Hj | ;) < 1 unless P,, =1, as
we would expect.

If P,y = 0.0, then Py(Hy, | ;) = 0 for odd events 7, so the previous graphs of Peyen
(see Figure 2.5) are equivalent to graphing Ps(Hj) when P, = 0.0. We can now see
how P,, affects the probability of survival by examining Figure 2.7 and Figure 2.8,
which graph the probability of survival P;(H) when P,, = 0.5 and P,, = 0.75. For a
randomly initialized population any allele has probability 1/C' of being the same as
any other allele, so the minimum P,, is simply 1/C. A value close to 0.5 is a reasonable
estimate for a randomly initialized population consisting of binary strings (C = 2).
A value close to 0 is a reasonable estimate for a randomly initialized population

consisting of strings from a high-cardinality alphabet. Since the population of a

6The two assumptions of independence and identicality are so useful for illustrating the results
that they will be used (often implicitly) throughout the static analyses performed in this thesis.
Syswerda (1989) also implicitly makes these two assumptions and denotes Pp, as P, but only
considers P, = Py, = 0.5.
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traditional EA tends to become more homogeneous with time, values of P,, > 1/C
represent a population that is converging. 7

A comparison of Figure 2.7 and Figure 2.8 with Figure 2.5 indicates that as P,
increases, so does the probability of survival. This is reasonable, since odd recombi-
nation events become less likely to cause disruption. Despite these global changes to
the curves, however, the basic relationships between the curves remain the same. For
example, for the longer defining lengths, n-point recombination when n is odd is still
more disruptive than when n is even.

It is important to emphasize that the two assumptions of independence and identi-
cality have been made in order to gain insight into the disruptive effect that recombi-
nation has on hyperplanes Hy. These assumptions are valid when the population has
been randomly initialized, but generally become less valid as the population evolves.
Despite this, the insights gained are often quite valuable, as will be demonstrated in
the dynamic analyses of this thesis (starting at Chapter 9), where these two assump-

tions are dropped.

2.6 Survival Theory for P, Uniform Recombination

In uniform recombination alleles are exchanged between two parents with probability
Py. In this context an even recombination event occurs only if all £ defining positions
of Hj are exchanged or if all £ defining positions are not exchanged. This can also
be described in terms of bit masks. An even event corresponds to a bit mask of £ 1’s

or k£ 0’s. Thus the probability of an even recombination event is simply:

Peen(Hr, Py) = P¥ + (1—Py)* (2.12)

As before, we can obtain an exact formulation of P;(Hy, Py) if we include the non-

disruptive odd recombination events. For uniform recombination this corresponds

"This is the only effect that the cardinality C' has on the analysis, namely, it determines what
values of P,, are of interest.
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Figure 2.9: Py(Hy) of Hy, H3, Hy, and Hs when L = 30 and P,, = 0.0, for Py uniform
recombination.

to those bit masks which are not either all 0’s or all 1’s on the hyperplane defining
positions, but are non-disruptive because the parents share common alleles on those
particular positions. Once again denote K as the set of k£ defining positions. Let
|K| be the cardinality of the set K, and PS(K) be the power set of K. Then the
probability of survival for Hy under P, uniform recombination is:
P(Hp,Py) = Y (P (- P)EXIP(Hg | )
XePS(K)

where 7; is determined by the set X of alleles that survived in the same offspring.
Once again, the goal is to compute Ps(Hy | 7;), which is a function of population
homogeneity. In this case no disruption will occur if: 1) the parents match on the

subset X, or 2) they match on the subset K — X. Hence, just as with n-point
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Figure 2.10: P;(Hy) of Hy, H3, Hy, and Hs when L = 30 and P,, = 0.5, for P
uniform recombination.

recombination, the most general form for P;(Hy | r;) is:
Py(Hy | i) = Peg(X) + Peg(K — X) — Py(K)

where P,,(X) represents the probability that the two parents will match on X'’s
alleles, while P,,(K — X) is the probability that the two parents will match on the
remaining alleles. As before, the third term reflects the joint probability that both
parents match on all £ alleles, and hence must be subtracted.

As with n-point recombination, assumptions concerning independence and iden-
ticality are useful. Let P.,(d) represent the probability that both parents have the

same allele at a particular defining position d. Then independence implies:
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Figure 2.11: Py(Hy) of Hy, Hs, Hy, and Hs when L = 30 and P., = 0.75, for P,
uniform recombination.

Py(Hy | 1) = H Peq(d) + H Peq(d) - H Peq(d)

dex deK—-X deK

A further assumption that P,,(d) is identical for all defining positions (Pey(d) =
P.,, V d € K) implies:

Ps(Hk ‘ Tz') = Peqa: + Peqkix - Peqk

Given the two assumptions of independence and identicality, the probability of

survival of Hy under P, uniform recombination is simply:
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ko k
Py(Hy, Py) = P®(1 = P))" *(P® + P, — P, (2.13)
=0 ZT

Figures 2.9, 2.10, and 2.11 graph the probability of survival P;(Hy) when P,, =
0.0, Py = 0.5, and P,; = 0.75. Because the disruptive effects of F, uniform re-
combination are symmetric around 0.5 (e.g., 0.2 uniform recombination is the same
as 0.8 uniform recombination), it suffices to examine P, in the range of 0.0 to 0.5.
The previous results from n-point recombination are also included for the sake of
comparison.

The graphs indicate that, as expected, P, uniform recombination is only affected
by the order k of the hyperplanes — it is not affected by defining lengths (unlike n-point
recombination). Also, 0.5 uniform recombination is the most disruptive setting for
Py uniform recombination, and in fact it is (in general) more disruptive than n-point
recombination (especially for higher-order hyperplanes). Furthermore, the amount of
disruption caused by F, uniform recombination can be lowered by simply reducing
P, — when Py = 0.0 there is no disruption at all. These relative results do not appear
to change as the population homogeneity P, changes.

Syswerda (1989) provides a similar graph for Py(Hs) when P,, = 0.5, for one-
point, two-point, and 0.5 uniform recombination. Despite the fact that Syswerda
uses a different derivation, the curves in his graph agree with those provided here,

providing independent confirmation of the results presented thus far in this thesis.

2.6.1 A Special Case: P, = 0.0

As an interesting check on Equation 2.13, consider the case where there is maximum
population diversity (P,, = 0.0). In that case (P.,* + P.,* * — P,,*) is nonzero only

when x =0 and = = k, and:

P,(Hy,P) = P°(1—P)" + PF (1-P)° = (1—PR)* + B (2.14)
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Thus, as would be expected, survival can only occur if all £ alleles are exchanged,

or if all k£ are not. Clearly, this is equivalent to Peyen(Hy, Py) in Equation 2.12.

2.6.2 A Special Case: F, =0.0

As pointed out above, one interesting feature of P, uniform recombination is that
it can be turned off simply by setting P, to 0.0. If P, = 0.0 the only term in

Equation 2.13 that is not zero is when x = 0. In that case:

P,(Hy,Py=00) = P,” + P.,f — P,}f = 1.0 (2.15)

This is as expected, since when uniform recombination is turned off the hyperplane

Hj, must survive.

2.6.3 A Special Case: P, =0.5

A further simplification to Equation 2.13 can be made if Py = 0.5. In that case each

recombination event occurs with probability 1/2* and:

1 & k o
P,(Hy, Py =0.5) = ﬁZ (P + P/ — P9
z=0 Xz

Expanding yields:

1| k

k k k . kk
2_Ic Z Peqw + ZO Peq = Peq Z

z=0 xT xT =0 X

This can be manipulated into a form amenable to the binomial expansion:

P,(Hy, Py =0.5) =

1 k k k

k k k

k— k— k k—

5|2 Pk 4 Y 7P,k — P Y 171k
=0 x =0 x =0 T
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Now applying the binomial expansion yields:
1
Py(Hy, Py =05) = (14 Pp)* + (14 Py)F — 2°P.}]
or:

2(1+ P,,)*
Py(Hy, Py =0.5) = % — Pf (2.16)

Since Py = 0.5 is the most commonly used setting for P, uniform recombina-

tion, Equation 2.16 is very useful, providing a simple equation for computing the

probability of survival of a schema Hy.

2.7 Expected Number of Offspring in Hj

Thus far this chapter has provided a thorough analysis of the probability that a
hyperplane will survive recombination, for n-point and P, uniform recombination.
However, as stated at the beginning of this chapter, a comparison of recombination
with mutation will require the computation of the expected number of offspring in a
hyperplane. Thus, the goal now is to convert the probability analysis in this chapter
into an analysis yielding the expected number of offspring that will reside in Hy, after
recombination has occurred.

In the analyses by both Holland (1975) and De Jong (1975) the probability of
survival (disruption) was based on an implicit assumption that P, = 0.0. In such
cases a disruption must occur if an odd number of cut-points fall between any adjacent
pair of defining positions of the hyperplane H;. Thus only one parent can be an
instance of Hy, and it is impossible for both parents to be instances of Hy. Similarly,
at most one offspring can be an instance of Hy, and it is impossible for both offspring
to be in Hy. Due to this restriction, the expected number of offspring in Hy, is precisely
given by P;(Hy). However, once P, can differ from 0, it now becomes possible for

both parents to be instances of Hy. If that happens then both offspring will be



43

instances of Hj; as well. This complicates the computation of the expected number
of offspring in H; somewhat, as we explore in this section.

Consider A to be a random variable that describes the number of parents (of
the two parents considered for recombination) that are instances of Hy. For survival
analysis it is always assumed that at least one parent is an instance of Hy, so A can
take on values 1 and 2. Let B be a random variable describing the number of offspring

that are instances of Hy. B can take on values 0, 1, and 2. We can write:

P(H) = P(B=1V 2| A=1V 2)

PuH) = P(B=0|A=1V 2)

The expression for P;(Hj) can be expanded:

PS(Hk):
PB=1ANA=1) + PB=1ANA=2) +

P(B=2 N A=1) + PB=2 N A=2)

P,(Hy) =
PB=1|A=1)P(A=1) + P(B=1|A=2)P(A=2) +
P(B=2|A=1)P(A=1) + P(B=2|A=2)P(A=2)
The second and third terms are zero, because if two parents are instances of Hy,

it is impossible for only one offspring to be an instance of Hy (and vice versa). Also,

if both parents are in Hy, both offspring must be in Hy. Thus we get:
P,(Hy) = PB=1|A=1)P(A=1) + P(A=2)

Now the expected number of offspring in Hj, can be computed as follows:
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EBl = Y bxPB=b) = P(B=1) + 2P(B=2)
be{0,1,2}

For the sake of clarity, denote E[B] to be Es[Hy]. Es[Hj] will refer to the expected
number of offspring that will be in Hy. The s subscript is a reminder that the situation

is one in which the survival of an individual in Hj, is at stake.

E,[Hy] =
P(B=1|A=1)P(A=1) + P(B=1| A=2)P(A=2) +
AP(B=2| A=1)P(A=1) + P(B=2| A=2)P(A=2)]
Again, two of the terms disappear:
EJH] = P(B=1|A=1)P(A=1) + 2P(A = 2)
Thus:
E,[HJ = PJ(Hy) + P(A=2)

Now the probability that two parents are in Hj is controlled by P., (assuming
independence and identicality, as stated earlier). Clearly P(A = 2) = P./*, so:

E[H] = Py(Hy) + Pof (2.17)

So, we can see that the computation of the expected number of offspring that will
reside in Hj, after recombination is easily computed from Ps(Hj) and the population
homogeneity P,,. Notice that if P, = 0.0, EjHy] = Ps(Hj), which is what we
expected. Notice also that as P,, approaches one both Py(Hy) and Peqk approach
one, so F;[H| approaches two as we would expect.

For a particular hyperplane H; and population homogeneity F,, the previous
graphs would only need to be offset by P,,* to produce graphs for E,[H;]. Since
the offset would be the same for each recombination operator within each graph, the

relationships between the different recombination operators would not change.
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2.8 Summary

This chapter first computes the probability Ps(Hy) that a kth-order hyperplane Hy
will survive recombination, given that one parent is a member of Hy and that the
other parent is arbitrary. Both n-point and P, uniform recombination are analyzed.
The cardinality of the alphabet and the population homogeneity are taken into ac-
count in a natural fashion. The results indicate that the disruptive aspect of n-point
recombination is affected by both the defining lengths and the order k£ of the hy-
perplane, while Py uniform recombination is only affected by the order. All forms
of recombination are more disruptive of higher-order hyperplanes and become less
disruptive when the population converges.

All forms of n-point recombination are quite non-disruptive of short schemata, but
the higher n is, the greater the disruption. For long schemata, n-point recombination
when n is odd is more disruptive than when n is even.

The disruption of P, uniform recombination varies with P,. The most disrup-
tive setting for P, uniform recombination is when Py, = 0.5. In general this is more
disruptive than n-point recombination (especially for higher-order hyperplanes). Fi-
nally, the amount of disruption caused by F, uniform recombination can be lowered
by simply reducing Py — when F = 0.0 there is no disruption at all.

This chapter concludes by computing the expected number of offspring F[Hj]
that reside in Hy after recombination, and shows that this is a simple function of
P;(Hy), the population homogeneity P, and the order of the hyperplane k. The
computation of E [Hy] is important because it will allow for a fair comparison with
mutation (in Chapters 5 — 7).

As pointed out in the beginning of this chapter, hyperplanes need not only survive
— they also may be constructed from other hyperplanes. This effect is analyzed in the

next chapter.



Chapter 3

A Construction Schema Theory for Recombination

3.1 Introduction

Chapter 2 computed the probability that a hyperplane H;, will survive recombination,
given that one parent is in Hjy and that the other parent is arbitrary. However, as
Syswerda (1989) pointed out, recombination can also be considered to have a more
positive role — that of construction. Construction refers to having recombination
create an instance of a hyperplane Hj, from both parents. As we will see, construction
is a more general concept than simple survival.

Assume that the following random experiment is being performed. One is given
two parents, and one parent is in the hyperplane H,,, while the other parent is the
hyperplane H,,. Figure 3.1 provides a pictorial example. The two parents are labeled
“P1” and “P2”. P1 is a member of a particular second-order hyperplane H,, described
by the alleles at defining positions d; and ds. P2 is a member of another second-order
hyperplane H,, described by the alleles at defining positions d3 and d4. The goal is to
compute the probability that recombination will produce an offspring that is in the
fourth-order hyperplane H, which has those four alleles at the defining positions dj,
dy, d3, and dy. Thus if P1 is a member of “AA##” and P2 is a member of “##AA”,
the goal is to compute the probability that “AAAA” will be constructed.

In the remaining discussion we will consider the creation of a kth-order hyperplane
Hy from two hyperplanes of order m (H,,) and order n (H,). We will restrict the

situation such that the two lower-order hyperplanes H,, and H,, are non-overlapping,

46
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P1: — —
- -
dl dQ d3 d4
P2: — —
- -
_ J
Ly
= J
L

Figure 3.1: The setup for the random experiment to be performed. P1 is a member of
a second-order hyperplane, while P2 is a member of another second-order hyperplane.
The goal is to construct the fourth-order hyperplane with recombination.

and k£ = m + n. Each lower-order hyperplane is represented by a different parent.

These situations will be described by random variable S. For a kth-order hyper-
plane Hj, there are 2* possible situation events: {sy, ..., sox_1}. Each situation event
s; can be represented by a bit mask of length k. Let s; (0 < j < 2% — 1) represent
the jth situation, in which the binary representation of j represents which parent has
the necessary alleles at the k£ defining positions. There will be m 1’s and n 0’s in
the binary representation of j, indicating H,, and H,. For example, the situation
described in Figure 3.1 can be described with the binary string “1100” (or “00117),
to indicate that one parent has the first two alleles, while the second parent has the
second two alleles of the fourth-order hyperplane.

We denote the probability that the kth-order hyperplane will be recombined from
the two hyperplanes H,, and H,, as P.(Hy, | s;) = P.(Hy | HnAH,,), where s; uniquely

defines the two hyperplanes H,, and H,,.
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3.2 Construction Theory for n-point Recombination

Equation 2.7 and Equation 2.8 of Chapter 2 computed the probability that a hy-
perplane H; will survive n-point recombination by using a recurrence relation on
the order of the hyperplane (until the bottom level of a second-order hyperplane is
reached). A similar formulation can be used to compute the probability of construc-

tion of H; under n-point recombination:

Pc(Hk,L, Ll,...,Lk_l,’l'L ‘ Sj) = (31)
n n Ll T L_L1>n—z
-t P.H, 1, Ly, Ly 1,7 | 5
2. |3 G Attt )

where, for £ = 2 the probability of construction under n-point recombination is:

PC(HQ, L, Ll, n | Sj) = (32)
n n Ll T T Ll n—x
£ (1) () (52 nam

The effect of the recurrence relation is to consider all possible ways of placing
the n cut-points between the k£ defining points of Hy. The recombination event r; is
determined by how many cut-points fall between the adjacent defining positions of
Hj,. Given the situation s; and the recombination event r;, the goal is to compute
P.(Hg | s; Ar;). ' As with the analogous discussion (concerning the probability of
survival) in Chapter 2, this computation clearly depends on population homogeneity,
since as the population becomes more homogeneous, construction of the hyperplane
H;, becomes more likely.

In point of fact, the line of reasoning is essentially identical to that followed in

Chapter 2. Recall that construction will occur if both lower-order hyperplanes survive

! Although this is the lowest level of the recurrence relation, we refer to P.(Hy, | s; Ar;) instead of
P.(H, | s; Ar;) because we care about the construction of the whole kth-order hyperplane. Also, r;
is introduced here because it is not defined until the lowest level of the recurrence relation is reached.
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in the same individual. Let K be the set of £ defining positions in Hy. Suppose that
recombination results in a subset X of the k alleles surviving in the same individual.
In this case construction will occur if: 1) the parents match on the subset X, or 2)

they match on the subset K — X. Hence the most general form for P.(Hy | s; A1;) is:
Pe(Hg | 5j A1) = Pog(X) 4+ Peg(K — X) — Pyy(K)

where P,,(X) represents the probability that the two parents will match on X’s alleles,
while P,,(K — X) is the probability that the two parents will match on the remaining
alleles. The third term reflects the joint probability that both parents match on all &
alleles, and hence must be subtracted.

As with Chapter 2, since the computation of P.,(X) can often be difficult, con-
siderable insight can be gained by assuming independence between alleles. In this
case:

P(Hy | sjAmi) = H Pey(d) + H Pey(d) — H Pey(d)

dex deK—X deK

As usual, a further simplification occurs if one assumes identicality: P.,(d) =
P,,, V d € K. If recombination results in x of the k defining positions surviving in
the same individual (i.e., z is a subset of the k& = m + n defining positions), then
construction will occur if: 1) the parents match on all of the z positions, or 2) if they
match on all £ — z positions. In this case P.(Hy | s; A r;) is more simply expressed

as:

P.Hy | sj A1) = P + P — Pf (3.3)

3.3 Graphing Construction

As mentioned above, we considered the creation of a kth-order hyperplane Hy, from the

following “situation”: two hyperplanes H,, and H,, of order m and n are constructed
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Figure 3.2: P.(Hy) of Hy, Hs, Hy, and H; when L = 30 and P,, = 0.0, for n-point
recombination.

to form Hj, where the two lower-order hyperplanes are non-overlapping and £ = m+n.
Each lower-order hyperplane is represented by a different parent.

There are 2 situations, since each allele at the defining positions of H}, is repre-
sented by one parent or the other. Situations are represented by s; (0 < j < 2F —1),
in which the binary representation of j represents which parent has which defining
position. There will be m 1’s and n 0’s in the binary representation of j, indicating
H,, and H,.

It is important to note that if 7 = 0 then this represents the special situation in
which H,, = Hj. In this situation there is no construction, it in fact is merely survival.
If j = 2% — 1 then H,, = H;, and again there is no construction, but merely survival.

Thus sg and syx_; represent survival situations, and:
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Figure 3.3: P.(Hy) of Hy, Hs, Hy, and H; when L = 30 and P,, = 0.5, for n-point
recombination.

Pc(HIc | 30) = Pc(Hk | S2k—1) = Ps(Hk)

All the other situations (0 < j < 2% — 1) represent true constructions, in which
part of Hj is represented by one parent, while the remainder is represented by the
other parent.

In order to graph the probability of construction, we consider only the 2% — 2
construction situations (leaving out the probability of simply surviving). Each of the
2k — 2 situations is considered to be equally likely, thus an average probability of

construction is given by:
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Figure 3.4 Pc(Hk:) of HQ, H3, H4, and H5

recombination.

P.(Hy) =

2k — 2

1 Sok_2

> P.(Hy | s5)

5j=81

when L = 30 and P,, = 0.75, for n-point

(3.4)

Figures 3.2, 3.3, and 3.4 graph the probability of construction P.(Hj) when

Py = 0.0, P,y = 0.5, and P,; = 0.75. The results indicate that the probability

of construction is affected by both the defining lengths and the order & of the hyper-

plane. All forms of n-point recombination are reasonably non-constructive of short

schemata, but the higher n is, the greater the construction. For long schemata, n-

point recombination when n is odd is more constructive than when n is even. As P,

increases, so does the probability of construction. One can see, however, that despite

these global changes to the curves, the basic relationships between the curves remain
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the same.

Another interesting observation is that the graphs for construction are qualita-
tively the opposite of the graphs for survival given in Chapter 2. That is, if a hy-
perplane is more likely to survive under a particular n-point recombination operator
then it is less likely to be constructed with that recombination operator. This would
appear to make sense, since a more disruptive operator would appear to have a higher
likelihood of construction. In the next section we investigate whether this observation

also holds for P, uniform recombination.

3.4 Construction Theory for P, Uniform Recombination

Chapter 2 showed that the probability of survival of a kth-order hyperplane H; under

P, uniform recombination is:

Py(Hy, Py) =

Z (PO)‘X|(1 - P0)|K7X|(Peq(X) + Peq(K - X) - Peq(K))

XePS(K)

Note that this equation can be divided into three parts. The first part can be
considered to express the probability that a hyperplane H; will survive in the original
string:

Ps,orig(Hka PO) = Z (PO)‘X|(1 - P0)|K_X‘Peq(X)
XePS(K)

The second part expresses the probability that a hyperplane Hj will survive in
the other string:

Ps,othe'r(Hka PO) = z (P0)|X‘(1 - P0)|K7X|PeQ(K - X)
XePS(K)

The final part expresses the probability that a hyperplane H) will exist in both

strings:
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Pyporn(Hi, o) = > (Po)XI(1 — Pp) X ~XIP,(K) = Poy(K)
XePS(K)

Then:
Ps(Hka PO) = Ps,orig(Hka PO) + Ps,other(Hka PO) - s,both,(Hk; PO)

What is nice about this formulation is that it allows us to easily compute the
probability of construction of Hy under P, uniform recombination. Assuming the
construction of two non-overlapping hyperplanes of order n and m into a hyperplane

of order k, the probability of construction is:

P.(Hy, Py | 55) =
Ps,orig(Hm7 PO) Ps,other(Hna PO) + Ps,other(me PO) Ps,orig(Hna PO) -

Ps,both(Hm: PO) Ps,both(Hn7 PO)

This equation reflects the decomposition of construction into two independent
survival events. The first term is the probability that H,, will survive on the original
string, while H,, switches (i.e., both hyperplanes survive on the first offspring). The
second term is the probability that both hyperplanes H,, and H,, survive on the other
offspring. The third term reflects the joint probability that both hyperplanes survive
on both strings, and must be subtracted. If one assumes independence between alleles,
the last term is equivalent to:

Pey(M) Poy(N) = H Pey(d) H Pey(d) = H Pey(d)
deM deN deK

As usual, a further simplification can be made by assuming identicality (Pe,(d) =

P.,, ¥V d € K). In this case:

k k
Ps,orig(Hka PO) = Z P()z(l - P())k_mpeqw

z=0 X
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k k
Ps,other(Hka PO) = Z POw(1 - PO)k_wPeqk_z

z=0 X
. b k T k—z k _ k
Ps,both(kaPO) = Z 50 (1 _PO) Peq - Peq
z=0 X

Making the two assumptions of independence and identicality, the probability of

construction of hyperplane Hy is:

P.(Hy, Py | ;) = (3.5)

Ps,orig(Hm: PO) Ps,othe'r(Hna PO) + Ps,other(Hma PO) Ps,orig(Hna PO) - Peqk

Figures 3.5, 3.6, and 3.7 graph the probability of constructing P.(Hy) for both
n-point recombination and F, uniform recombination, when P,, = 0.0, P, = 0.5,
and P, = 0.75. The graphs indicate that, as expected, P uniform recombination
is only affected by the order k£ of the hyperplanes — it is not affected by defining
lengths. The constructive ability of Py uniform recombination varies with P,. The
most constructive setting for P, uniform recombination is when Py = 0.5. In general
this is more constructive than n-point recombination (especially for higher-order hy-
perplanes). Finally, the amount of construction caused by Py uniform recombination
can be lowered by simply reducing Py — when Py = 0.0 there is minimal construction.
These relative results do not appear to change as the population homogeneity P,
changes.

Finally, once again the graphs for construction are qualitatively the opposite of the
graphs for survival given in Chapter 2. This can be seen, for example, by comparing
Figure 2.9 with Figure 3.5. These results provide strong evidence that more disruptive
recombination operators are more likely to construct. Chapter 4 will analyze this
relationship in more detail. However, before doing this it is instructive to analyze

several special cases of P, uniform recombination.
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Figure 3.5: P.(Hy) of Hy, H3, H,, and Hs when L = 30 and P,, = 0.0, for Py uniform
recombination.

3.4.1 A Special Case: P,, = 0.0

As an interesting check of Equation 3.5, consider the case where there is maximum

population diversity (P, = 0.0). In that case:

Ps,orig(Hka PO) = (1 - PO)k

Ps,other(Hka PO) = POk

Py porn(Hi, Po) = 0

In this simplified case the probability of construction is:
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Figure 3.6: P.(Hy) of Hy, H3, H,, and Hs when L = 30 and P,, = 0.5, for
recombination.

This indicates that the alleles associated with H,, (or H,) move to the other

Pc(Hk,P0|Sj) = (1—P0)mP0n + Pom (]_—Po)n

individual, while the alleles associated with H,, (or H,,) do not.

3.4.2 A Special Case: F, =0.0

As stated earlier in Chapter 2, one nice feature of P, uniform recombination is that

it can be turned off simply by setting P, to 0.0. In that case:

Ps,om'g(Hk: PO = 00)

=1

P,y uniform
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Figure 3.7: P.(Hy) of Hy, H3, Hy, and Hs when L = 30 and P,, = 0.75, for P,
uniform recombination.

Ps,other(Hka PO = 00) = PeqlC

Py porn (Hg, Py = 0.0) = P*

In this simplified case Equation 3.5 (the probability of construction) is:

P.(Hy,Py=0]s;) = P," + P, — P, (3.7)

which only depends on the population homogeneity and the order of the building
blocks H,, and H,,.
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3.4.3 A Special Case: P, =0.5

Once again a further simplification can be made in Equation 3.5 if P, = 0.5. In that

case each recombination event occurs with probability 1/2* and:

1 ‘ k z1k—z
Ps,o'rig(Hk: Py = 05) = ok Z Peq 1k
=0 xT
1 - k T k—z
Ps,other(Hka Py = 05) = 2_k ZO . 1 Peq

Py porn(Hy, Py = 0.5) = P~

Once again the binomial expansion simplifies the equations:

(1+ P,,)*
Ps,orig(Hk, Py, = 05) = Tq

(14 P,)*

Ps,other(Hka PO = 05) ok

Ps,both(Hka PO = 05) = Peqlc

This will then simplify the probability of construction:

P(Hy, Py =05 | s;) =

Ps,orig(Hma PO - 05) Ps,other(Hna PO - 05) +
Ps,othe'r(Hma PO = 05) Ps,o'rig(Hm PO - 05) -

PS,bOth(Hma PO = 0.5) PS,bOth(Hn, PO = 05)

P.(Hy, Py =05 | s5) =

(14 Pe)™ (L4 Peg)" | (14 Peg)™ (1 + Peg)"
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2(1+ P,k

Pc(Hk, P() =0.5 | 8]') = ok

k
— Peq

This result is surprising. For 0.5 uniform recombination, the probability of con-
struction of Hj, from H,, and H, does not depend on the order of H,, and H,! This
even holds if m = 0 or n = 0, which corresponds to simple survival. This can be
seen by noticing that Py(Hy, P, = 0.5), which was computed in Equation 2.16 of
Chapter 2, has precisely the same value as P.(Hy, Py = 0.5 | s;). Thus:

P,(Hy, Py=05) = P(Hy, Py=05]s;) Vs

Since this result is extremely non-intuitive, it is useful to consider the following
alternative proof. It turns out that this result stems from an interesting relationship
between situations and recombination events. Consider the following formulation of

the probability of survival:
P,(Hy) = P.(Hy | so) ZP i) Pe(Hy | S0 A T3)

Now for 0.5 uniform recombination P(r;) = 1/2% V r;, so the probability of

survival is:

P,(H;,, Py =0.5) = P.(H,Py=05|5s) = Qk > P.(Hy,Po=0.5]s0oAT;) (3.8)

Ti

Consider the following formulation of the probability of construction:
P.(Hy | s/) ZP 1) Pe(Hy | sj A1)

Again, for 0.5 uniform recombination P(r;) = 1/2F V r;, so the probability of

construction is:

P(Hp, Py =05 s;) = Qk S P.(Hy, Py =0.5 | 55 AT:)

Ti
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To complete this proof one has to understand that:

P.(Hy |sjAri) = P(Hg | sj12ATivy) V2 Vs Yy (3.9)

In other words, since there are 2% situations and 2* recombination events, nothing
changes if both the situation and the recombination event are changed the same
way. For example, suppose one considers the situation sy and recombination event
ro. The situation sq indicates that all of the alleles for hyperplane Hj, are in the first
parent. The recombination event 7y indicates that no alleles are exchanged during
recombination. Now also consider situation s; and recombination event r;. In this
case the second parent contains one of the desired alleles. However, since r; will in fact
exchange that allele, the offspring will be the same as that produced from situation s
and recombination event ry. This example is easily generalized to yield Equation 3.9.
This equation is crucial to the investigation of the disruptive and constructive aspects
of recombination in Chapter 4. For this proof it allows us to express the probability
of construction for 0.5 uniform recombination as an expression containing only the

one situation sg:
1
Pc(Hk,PO =0.5 | Sj) = ﬁTZPC(Hk’POZOE) ‘ SoATi_j)

Since the summation is summing over all recombination events (they are just

shifted by j), this is equivalent to:
1
Pc(Hk,PO =0.5 | Sj) = Q_k ZPC(Hk,PO =0.5 | S()/\TZ')

Note that the right-hand side is equal to the probability of survival, Ps(Hy, Py =

0.5), as shown in Equation 3.8, so:
Ps(Hk,P0:0.5) = Pc(Hk,P():OE) | 8]') VSJ'

Thus, by using Equation 2.16 we get:
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2(1+ P,,)*
Py(Hy, Py =0.5) = P.(Hy, Py=05]s;) = % ~PS Vs (3.10)

Thus the probability of construction of Hy, under 0.5 uniform recombination, and
given some situation s;, does not depend on s;. From this we can also conclude that
the average probability of construction (Equation 3.4) is also the same:

1 Sok_2

2k_2 Z Pc(Hk,P0=O5 | 8]')

5j=81

Pc(Hk;PO = 05) =

2(1 + P,y)*
P.(Hy, Py=0.5) = % — Pt (3.11)

The key to this behavior has both to do with the mapping between situations and
recombination events, as well as the fact that P(r;) is the same for all r; with 0.5

uniform recombination.

3.5 Expected Number of Offspring in H;

Thus far this chapter has provided a thorough analysis of the probability that a hy-
perplane will be constructed via recombination. However, as stated at the beginning
of this chapter, a comparison of recombination with mutation will require the compu-
tation of the expected number of offspring in a hyperplane. Thus, the goal now is to
convert the probability analysis in this chapter into an analysis yielding the expected
number of offspring that will reside in Hy, after recombination has occurred.

Once again consider A to be a random variable that describes the number of
parents (of the two parents considered for recombination) that are instances of Hy.
For survival analysis it is always assumed that at least one parent is an instance of
H,., so A can take on values 1 and 2. However, for construction it is also possible for
neither parent to be in Hy, so for construction A can take on values 0, 1, and 2. Let
B be a random variable describing the number of offspring that are instances of Hy.

B can take on values 0, 1, and 2. We can write:
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P.(Hy|sj)) = PB=1V 2[|A=0V 1V 2)

The expression for P,(Hj | s;) can be expanded:

Pe(Hy | s5) =
PB=1ANA=0) 4+ PB=1AN A=1) + PB=1 AN A=2) +

PB=2ANA=0) + PB=2ANA=1) + P(B=2 N A=2)

Pe(Hy | 55) =
P(B=1|A=0P(A=0) + P(B=1|A=1)P(A=1) +
P(B=1|A=2P(A=2) + P(B=2| A=0)P(A=0) +
P(B=2|A=1)P(A=1) + P(B=2| A=2)P(A=2)

Once again several terms can be removed (the third, fourth, and fifth), since it
is impossible for recombination to construct only one offspring in Hy, if both parents
are in Hy, and it is also impossible to construct two offspring in Hj if less than two
parents are in Hy. Finally if both parents are in Hy, both offspring must be in Hj.
Thus we get:

P.(Hy|sj) = PB=1|A=0PA=0)+PB=1|A=1)P(A=1)+ P(A=2)
Now the expected number of offspring in H;, can be computed as follows:

EB|s] = Y bxPB=b) = P(B=1) + 2P(B=2)
be{0,1,2}
For the sake of clarity, denote E[B | s;] to be E.[Hy, | s;]. E¢[Hy | s;] will refer to

the expected number of offspring that will be in Hy. The ¢ subscript is a reminder

that the situation is one in which the construction of an individual in H}, is at stake.
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Ec[Hy | s5] =
P(B=1|A=0PA=0) + P(B=1|A=1)P(A=1) +
P(B=1|A=2)P(A=2) + 2P(B=2| A= 0)P(A=0) +
9P(B=2|A=1)P(A=1) + 2P(B=2| A=2)P(A=2)

Again, the third, fourth, and fifth terms disappear:

Ec[Hy | s5] =

PB=1|A=0PA=0) + PB=1|A=1)P(A=1) + 2P(A=2)
Thus:
Ec[Hy | s;] = Po(Hi | s;) + P(A=2)

Now the probability that two parents are in Hj is controlled by P., (assuming
independence and identicality, as stated earlier). Clearly P(A = 2) = P.;*, so:

E[Hy | sj] = Pe(Hy | 55) + Peg" (3.12)

Finally we can compute the average E.[H}] over the 2% —2 constructive situations:

1 Sok_2

E.[Hy] = ok _ 3 > EelHy | 5]

55=51

1 Sok_o

ok _ 9 Z [Pe(Hy | 55) + Peqk]

5j=51

Ec[Hk] =

E.[Hy] = P.(Hy) + P (3.13)

So, we can see that the computation of the expected number of offspring that will

reside in Hy, after construction by recombination is easily computed from P.(Hj) and
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the population homogeneity P,,. Notice that if P,, = 0.0, E.[Hy| = P.(Hy), which is
what we would expect. Notice also that as P, approaches one both P,(Hj) and Peqk
approach one, so E.[Hj] approaches two as we would expect.

For a particular hyperplane H; and population homogeneity P, the previous
construction graphs in this chapter would only need to be offset by Peq'c to produce
graphs for E.[Hy]. Since the offset would be the same for each recombination operator
within each graph, the relationships between the different recombination operators

would not change.

3.6 Summary

This chapter first computes the probability P.(Hy) that a kth-order hyperplane Hy
will be constructed via recombination, given that one parent is a member of a lower-
order hyperplane H,, and that the other parent is a member of another lower-order
hyperplane H,. We restrict the situation such that the two lower-order hyperplanes
H,, and H,, are non-overlapping, and &k = m + n.

Both n-point and P, uniform recombination are analyzed. The cardinality of the
alphabet and the population homogeneity are taken into account in a natural fashion.
The results indicate that the constructive aspect of n-point recombination is affected
by both the defining lengths and the order &k of the hyperplane, while P, uniform
recombination is only affected by the order. All forms of n-point recombination
are reasonably non-constructive of short schemata, but the higher n is, the greater
the construction. For long schemata, n-point recombination when n is odd is more
constructive than when n is even.

The constructive ability of Py uniform recombination varies with P;. The most
constructive setting for Py uniform recombination is when Py = 0.5. In general this
is more constructive than n-point recombination (especially for higher-order hyper-
planes). Finally, the amount of construction caused by Py uniform recombination can

be lowered by simply reducing Py — when Py = 0.0 there is minimal construction.
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These relative results do not appear to change as the population homogeneity P,
changes.

This chapter concludes by computing the expected number of offspring E.[Hj]
that reside in H after construction via recombination, and shows that this is a simple
function of P,(Hy), the population homogeneity P.,, and the order of the hyperplane
k. The computation of E.[Hy] is important because it will allow for a fair comparison
with mutation (in Chapters 5 — 7).

A comparison of the graphs from this chapter and Chapter 2 illustrate that the
graphs for construction are qualitatively the opposite of the graphs for survival given
in Chapter 2. These results provide strong evidence that more disruptive recombina-
tion operators are more likely to construct (and vice versa). The natural question is
whether this in fact holds in general. Chapter 4 addresses this question in detail and
shows that a form of No-Free-Lunch theorem (Wolpert and Macready 1995) holds for

construction and survival for recombination operators.



Chapter 4

Survival and Construction Schema Theory for Recombination

4.1 Introduction

Chapter 2 provided an analysis of how likely it is to disrupt hyperplanes via recombi-
nation. Chapter 3 considered the more positive view of recombination as an operator
than can construct hyperplanes from lower-order hyperplanes. One interesting obser-
vation can be made by comparing the graphs for disruption in Chapter 2 to those for
construction in Chapter 3 — namely, that the graphs are qualitatively related in the
sense that if one recombination operator is more disruptive, it is also more construc-
tive. The results are intuitively plausible and hold for every set of graphs we have
been able to generate.

The natural question is whether this qualitative relationship does in fact hold in
general. Furthermore, is the relationship not only qualitative, but quantitative? In
other words, if one knows the probability that a given recombination operator will
disrupt a given hyperplane, can one immediately compute the probability that the
given recombination operator will construct that hyperplane? These questions are

investigated in this chapter.

4.2 Survival and Construction

Suppose one considers both the survival and construction graphs and combines them

to give the probability of construction or survival. This can be done by considering

67
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all 2% situations s; (as defined in Chapter 3):

Sok
1 2F —1
Pc,s(Hk) = ﬁ Z PC,S(H]C | Sj) (41)
5;=50
P, ;(Hy) represents the probability that either offspring of recombination will re-
side in Hy, either via survival or construction. The notation P, (Hy | s;) refers to
P,(Hy) when j =0 or j = 28 — 1 (i.e., when there is really no construction but only

survival), otherwise it refers to P.(Hy | s;), which is an actual construction. * Thus

expanding the above equation yields:

1 Sok _o
Pc,s(Hk) = 2_19 Pc,s(Hk ‘ 80) + Pc,s(Hk | 82k—1) + Z Pc,s(Hk ‘ Sj)
sj=s1

But the first two terms are simply the probability of survival (computed in Chap-
ter 2), while the summation is proportional to the average probability of construction

(see Equation 3.4 in Chapter 3). Thus:

P.,(H,) = 21—k[2Ps(Hk) + (2’€—2)P6(Hk)] (4.2)

This equation illustrates how to compute P.s(Hy) by averaging the disruption
(survival) results from Chapter 2 and the construction results from Chapter 3. Sur-
prisingly, when P, ;(Hj) is computed in this fashion, the results are the same regard-
less of the recombination operator! Figure 4.1 illustrates this for P,, = 0.5, for a
wide range of n-point and F, uniform recombination operators. Similar results are
obtained with P,, = 0.0 and P,, = 0.75 (see Table 4.1).

This chapter will prove that this is true in general. The key point is that the
probability of survival or construction, when averaged over all situations, does not
depend on the form of recombination. It only depends on the population homogeneity.

Consider a breakdown of P, ;(Hj) over all situations s; and recombination events

r; as follows:

! The probability of survival P,(Hy) is defined in Chapter 2 while the probability of construction
P.(Hy | s;) is defined in Chapter 3.
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Figure 4.1: P, ,(Hy) of Hy, Hs, H,, and Hs when L = 30 and P,, = 0.5. The results
are the same regardless of recombination operator.

Table 4.1: P, ;(Hy) values obtained by averaging P;(Hj) and P.(Hy). The results are
the same regardless of recombination operator.

Py =00 P,y=05| P,y=0.75
H, [ 0.5 0.875 0.968750
Hj | 0.25 0.718750 | 0.917969
Hy | 0.125 0.570312 | 0.855957
Hs | 0.0625 | 0.443359 | 0.788513




70

1
Pc,S(Hk) = Q_kZPC,S(Hk | Sj)
sj

Pc,s(Hk) = %ZZP(TZ) Pc,s(Hk | 8j /\Ti)

TP 8

1
Pes(Hy) = @Z P(ri) Y Pes(Hy | 55 A13)

5
Chapter 3 introduced the following important fact that illustrates a tight relation-

ship between situations and recombination events:

P.(Hi | sjAri) = Pos(Hi | Sj32ATivz) V2 Vs; Yy (4.3)

Since this is an important relationship we repeat the discussion in Chapter 3. The
key point is that since there are 2* situations and 2* recombination events, nothing
changes if both the situation and the recombination event are changed the same
way. For example, suppose one considers the situation s, and recombination event
ro- The situation sy indicates that all of the alleles for hyperplane Hj, are in the first
parent. The recombination event 7, indicates that no alleles are exchanged during
recombination. Now also consider situation s; and recombination event 7. In this
case the second parent contains one of the desired alleles. However, since r; will
in fact exchange that allele, the offspring will be the same as that produced from
situation sy and recombination event ry. This example is easily generalized to yield
Equation 4.3. This allows us to rephrase the inner sum in terms of one recombination
event, only:

Poy(Hy) = 2172 P() T Pesl B | 54 A70)
i i
Since the inner summation is summing over all situations (they are just shifted

by i), this is equivalent to:
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1
Pc,s(Hk) = 2_k Z

P(T’Z) ZPc,s(ch | Sj A T’()):|
8
This inner summation can now be separated from the events r;:

1
Pc,s(ch) = ﬁ

%j P.s(Hy | s; A 7“0)] [E P(n)]

Now, the probability of all recombination events must sum to 1.0, so:

1

Pc,s(Hk) = ok

Z Pes(Hg | 55 A 7“0)] (4.4)

Clearly this does not depend on the form of recombination, since the probability of
recombination events is absent. What this says is that P, ;(H}) is the same, regardless
of the form of recombination. Only the population homogeneity will change the value
of P, ;(Hy).

Recall Equation 4.1:

Sok
1 2F —1
Pc,s(Hk) = ﬁ Z Pc,s(Hk | Sj)
8;=80
Since Equation 4.4 has shown that the form of recombination is irrelevant, it
suffices to use the computations for 0.5 uniform recombination from Chapter 3 to

compute Equation 4.1. By making the standard independence and identicality as-

sumptions (see Chapter 2 or Chapter 3 for details) Equation 3.10 proved that:

2(1+ P,k
Po(He By =05 | 5) = 20EEl_pe v,
Thus, for any recombination operator:
2(1+ P,,)k
Py = 2T p (15)

Table 4.2 gives the computationally derived values, using this equation. The

agreement with the empirically derived averaged results (see Table 4.1) is perfect.
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Table 4.2: P, ;(Hj) values obtained by theory.

P,y =00] P,y=05] P,y =0.75

H, | 0.5 0.875 0.968750
Hj | 0.25 0.718750 | 0.917969
Hy | 0.125 0.570312 | 0.855957

H; | 0.0625 0.443359 | 0.788513

This agreement provides nice confirmation of the math and code used to generate the
curves for the graphs in Chapter 2 and Chapter 3.

More importantly, however, is that this result indicates that disruption and con-
struction are tightly related. Consider Equation 4.2 for the probability of construction

or survival:

Pc,s(Hk) = %[2P5(Hk) + (Qk—Q)Pc(Hk)] = 2(1';7kpeq)k - Peqk

Thus, any decrease in disruption (which is an increase in survival), must be coun-
tered by a decrease in construction and vice versa. Disruption and construction are
not only related qualitatively, they are related quantitatively. Since the relationship
is quantitative, it also is useful computationally. Calculating P,.(H}) involves a fair
amount of computation (due to the large number of situations s;) — far more than
the calculation of Py(Hy) and P, (Hy). The above equation indicates that P.(Hy)
can be efficiently derived from P;(Hj) (which depends on the form of recombination
and P,,) and P, 4(Hj) (which depends only on P,,).

What we have shown is essentially a No-Free-Lunch theorem with respect to the
disruption (survival) and construction aspects of recombination operators. When
averaged over all possible situations, all recombination operators are equivalent. Any

loss in disruption (gain in survival) is offset by a loss in construction.
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4.3 Expected Number of Offspring in H;

Thus far this chapter has provided a thorough analysis of the probability that a
hyperplane will be constructed or survive via recombination. The goal now is to
convert that into a computation yielding the expected number of offspring that will
reside in Hj,.

For the sake of clarity, denote E, ;[Hj| to refer to the expected number of offspring
that will be in Hy. The subscript is a reminder that the situation is one in which the
survival or construction of an individual in Hy, is at stake (and that we are considering
all 2F situations). Thus, by definition:

1 Sk
E.s[Hy] = ﬁs-z:so E.[Hy | 4]
i
However, Equation 2.17 in Chapter 2 showed that for the survival situations (after

making the independence and identicality assumptions):
Ec,s[Hk ‘ 80] = Ec,s[Hk | 52’“—1] = ES[Hk] = Ps(Hk) + Peqk

while for the construction situations (0 < j < 2¥ — 1), Equation 3.12 in Chapter 3
showed that:

Ecs[Hy | 5] = E.Hy|s;] = Po(Hi | 55) + P

Thus:

1 Sok 1

Ec,s[Hk] = 2_k Z [Pc,s(Hk | Sj) —+ Peqk]

8;=380

Ec,s[Hk] = Pc,s(Hk) + F)eq]C
By Equation 4.5:

2(1+ P,,)F

Ec,s[Hk] = ok

(4.6)
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So, we can see that the expected number of offspring that will reside in Hj, after
survival or construction by recombination is simply a constant for all recombination
operators. The constant is determined by the order k£ and the population homogeneity
P,.

Notice that if P, = 0.0, E,[Hy] = P.s(Hj), which is what we would expect. In
fact, in that case:

1

E.s[Hy] = ok—1 (4.7)

Notice also that as P, approaches one, both individuals are increasingly likely to

be in Hy, so E, ;[Hy] approaches two as we would expect.

4.4 Summary

This chapter has proven a No-Free-Lunch theorem with respect to the disruption
(survival) and construction aspects of recombination operators. When averaged over
all possible situations, all recombination operators are equivalent. Any loss in dis-
ruption (gain in survival) is offset by a loss in construction. This relationship is not
only qualitative, but quantitative.

Chapter 2, Chapter 3, and this chapter have provided an extensive development of
a schema theory for recombination. Since the focus of this thesis is also on mutation
(in order to compare recombination and mutation), the next several chapters will

focus on developing a schema theory for mutation.



Chapter 5

A Survival Schema Theory for Mutation

5.1 Introduction

Chapter 2 computed the probability Ps(Hy) that a kth-order hyperplane Hj will
survive recombination, given that one parent is a member of Hy and that the other
parent is arbitrary. That chapter concluded by computing the expected number of
offspring E;[Hj| that reside in Hy, after recombination, and showed that this is a
simple function of P;(Hy), the population homogeneity P.,, and the order of the
hyperplane k.

The goal of this chapter is to provide a similar computation for mutation. Mu-
tation will work on alphabets of cardinality C' in the following fashion. An allele is
picked for mutation with probability u. Then that allele is changed to one of the

1 Mutation is performed independently

other C' — 1 alleles, uniformly randomly.
to both parents, since in almost all EAs mutation is applied independently to every
individual in the population.

We omit the intermediary step of computing P;(Hj) for mutation, due to some
differences between mutation and recombination. As stated in Chapter 2, in order to
take population homogeneity into account, mutation needs to be considered to be a

two-parent operator (since population homogeneity is a relationship between multiple

individuals in a population). Now, recall that if only one parent is a member of a

I This form of mutation is reasonable for discrete representations, however, it should be modified
for real-valued representations.
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hyperplane Hj, then survival via recombination means that only one offspring can be
a member of H,. However, survival via mutation means that one or both offspring
may be a member of Hy (due to the independence assumption). This renders the
computation of Ps(Hy) worthless as a comparison between the two operators, because
it obscures information concerning the expected number of offspring that are in Hy.
Instead, in this chapter we will compute E,[Hy| directly.

To summarize — in order to provide for a fair comparison between recombination
and mutation, mutation will be treated as if it were a two-parent operator that
produces two offspring. Precisely the same random experiment will be performed
as with recombination. This chapter will then use this framework to compute the
expected number of offspring E;[Hy] that are in a hyperplane Hy, given that one
parent is in Hy and the other parent is arbitrary, after mutation has changed the

parents.

5.2 Framework

Assume that the following random experiment is being performed. One is given two
parents, and one parent is in the schema Hj, while the other parent is an arbitrary
string (which may or may not be in the schema Hy). Figure 5.1 provides a pictorial
example. The two parents are labeled “P1” and “P2”. P1 is a member of a particular
third-order hyperplane Hj, which has defining positions d;, ds, and d3. P2 is some
other arbitrary individual.

The random experiment consists of performing mutation on these two parents,
producing two children. Schema Hjz (or Hj in general) can either survive or be
disrupted. A schema survives if either offspring is in Hs (Hy), and it is disrupted if
neither offspring is in Hs (Hj). This is the same definition of survival and disruption
that was presented for recombination in the earlier chapters.

As before, let B be a random variable describing the number of offspring that are

instances of H,. B can take on values 0, 1, and 2. We can write:
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P1: — — —
-] -] -]
dy ds d3
P2:
_ J
Ly
= J
L

Figure 5.1: The setup for the random experiment to be performed. P1 is a member
of a third-order hyperplane, and P2 is an arbitrary string. Mutation is performed on
both parents, producing two offspring.

E[B] = Y bxPB=b) = P(B=1) + 2P(B=2)
be{0,1,2}

For the sake of clarity, denote E[B] to be E[Hy, p]. E [ Hg, ] will refer to the
expected number of offspring that will be in Hy, after y mutation has been performed.
The subscript s is a reminder that the experiment being performed is the same as
that performed for the survival analysis under recombination.

Without loss of generality, assume that the first parent is in Hy, while the second
parent is arbitrary. To compute FE [Hy,u| it is convenient to let ) be a random
variable that describes the set of alleles (at the defining positions) in the second

individual that do not match Hy. Then we can write E;[Hy, p] as follows:

E[He,p] = X P@Q[IPB=1[Q) +2P(B=2]Q)]
Q

It will be noted that P(Q) depends on the population homogeneity. Deriving
precise expressions for the values of P(Q) at a particular point in time is difficult

in general since they vary from generation to generation in complex, non-linear, and
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interacting ways. We can, however, get considerable insight into the effects of shared
alleles on disruption analysis by making simplifying assumptions.

First, as opposed to concentrating on sets, let () be a random variable that de-
scribes the number of alleles (at the defining positions) in the second individual that
do not match Hy. () can take on the integer values from 0 to k. For example, if the
first parent is a member of the third-order hyperplane “#AAA#” and the second
parent is a member of “#ABA#”, then @ is 1. Thus we can rewrite E [ Hy, u| as
follows:

k
E;[Hy, p] = ;}P(Q=q)[P(B=1 |Q=0q) + 2P(B=2|Q=q)]

Let P.,(d) represent the probability that both parents have the same allele at a
particular defining position d. Then further assume that P,,(d) is roughly the same
for all the defining positions (Pey(d) = Py, V d). 2 Then P(Q = q) is simply:

k q k—
P(qu)z (1_Peq) P, q
q

Now consider the derivation of the other terms of E[Hg,u|. In order to have
both offspring be in Hj, (i.e., B = 2), the k alleles in the first parent (associated
with the hyperplane Hj) must not be mutated, since the first parent is already in
Hy.. However, the () differing alleles in the second parent must be mutated, while the
remaining k—() alleles in the second parent must not be mutated, in order to place the
second offspring in Hy. Assuming that one is interested in the hyperplane “#AAA#”
(in the previous example), the “A”s in the two parents must not be mutated, while
the “B” must be mutated to an “A”. For a general alphabet of cardinality C, if an
allele is mutated, there is a 1/(C — 1) probability of mutating it to the desired allele.
Thus, the probability of placing both offspring in Hy is simply computed as:

PB=21Q=q) = (1-p" [ () (=w"]

2The same assumptions were made in the recombination analysis.
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where the probability of not mutating the & alleles of the first parent is (1 — ,u)k, and
the remainder of the expression is the probability of mutating the second parent into
the hyperplane Hy.

It is now possible to compute the probability that only one offspring will be in
Hy.. Clearly that will occur if the first parent is kept in Hj while the second parent
is not mutated into Hy, or if the first parent is mutated out of H; while the second
parent is mutated into Hy. This can be simply computed by using the components

of the previous equation:

PB=1|Q=q) =
(-pf 1= (g5) a-w )+

1= 0= (gEs) - w)

With some simplification Eg[Hy, u] can now be expressed for ;1 mutation:

k

k q
ElHen) = X | | (=P PETO =08 + (g2) -0 ] G)
=0\ ¢

Figure 5.2 illustrates E;[Hy, p] when C = 2, for mutation rates ranging from 0.0
to 1.0, for £ € {2,4,6,8}, while P, ranges from 0.0 to 1.0. Figure 5.3 illustrates
the expected number of offspring in Hy, when C' = 5. For a randomly initialized
population any allele has probability 1/C of being the same as any other allele, so the
minimum P, is simply 1/C. Since the populations of traditional EAs tend to become
more homogeneous with time, it is reasonable to examine only those situations where
P,>1/C.?3

A number of observations can be made from the figures. The expected number
of offspring surviving in Hy (E;[Hy, p]) decreases as the order k of the hyperplane

increases. E,[Hg, u| increases as P, increases, for values of p less than 0.5 (higher

3However, it is possible that speciating EAs may have P,, < 1/C.
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Figure 5.2: E [Hy, ] of Hy, Hy, Hg, and Hg for mutation when C = 2.

values are very rare in practice). Both of the observations are intuitively reasonable.
More interestingly, increasing the cardinality C' does decrease Fg[Hy, u], but only to
a small degree, suggesting that mutation is actually not greatly affected by changes
in cardinality.

Inspection of the figures where P., > 1/C indicates that the maximum disrup-
tion (lowest E[Hg, u]) occurs when p = 1.0, while the minimum disruption (highest
Eg[Hg, p1]) occurs when p = 0.0, as would be expected. Furthermore, the minimal
disruption (when p = 0.0) does not appear to depend on the cardinality of the alpha-
bet C. This is intuitively plausible, since if no mutation is occurring, mutation will
never have to choose between the C' — 1 other alleles.

Further insights can be gained by considering special cases.
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Figure 5.3: E [Hy, ] of Hy, Hy, Hg, and Hg for mutation when C = 5.

5.2.1 A Special Case: p=0.0
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One nice feature of © mutation is that it can be turned off simply by setting u to 0.0.

In this case Equation 5.1 is:

When ¢ = 0 then p? =1, else u? = 0. This yields a simplification:

Cc-1

ElH,n=00 = > P@=al1 + (525)"]

E[Hy u=0.0] = 2 P(Q

E[Hp=0.0] = 2 P(Q
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E[Hyp=00] = 1 + P(Q=0)

But P(Q =0) = P.*, so

E,Hy,p=00] = 1 + P* (5.2)

As we would expect, the expected number of offspring in H, depends only on the
population homogeneity F,, and the order k£ of the hyperplane. This is reasonable,
since mutation is in fact turned off. Clearly, C' has no effect on this behavior. Thus
the maximum likelihood of survival for a hyperplane is when mutation is not run at
all, which is intuitively clear. Also, one can see that Fs[Hy, u = 0.0] ranges from 1.0

to 2.0 as P, ranges from 0.0 to 1.0.

5.2.2 A Special Case: ;4 =0.5

Let’s consider the case when y = 0.5. Then Equation 5.1 is:

Ey[Hy, p = 0.5] = ZP q)[ 0.5% + (Co__51>q 0.5"77]
EJ[Hy,p=05] = ZP q)[ 0.5% + %]

" P(Q=0q)
E [Hy,u=05] = 0.5F + 058 S 2 27
[ ks M ] + qg() (C— l)q

For C = 2 this collapses to:

1
E,[Hy, =05 = 055 + 058 = T

Note how E;[Hj, 1 = 0.5] does not depend on P, when C = 2, but does when
C = 5 (compare Figure 5.2 with Figure 5.3). This makes sense, since with a mutation
rate of 0.5 and C' = 2, the offspring are always just randomly re-initialized individuals,

no matter what the parents are. This is not true when C' > 2.
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5.2.3 A Special Case: = 1.0

Finally, consider the situation when mutation is always operating on every allele.

Then Equation 5.1 becomes:

BlH,p=10] = Y PQ=0[0* + (5g) 070]

The expression in brackets is not zero only at ¢ = k. Thus:

BHip=10] = P@=) (5 )
Now P(Q =k) = (1 — P.,)*. Thus:
E,[Hp,p=1.0] = (10__Piq) (5.3)

Note that for C' = 2, E[Hj, p = 1.0] = 1.0 when P,,; = 0.0, regardless of k. This
is true because if C' = 2 and P,; = 0.0 the two individuals are bit-wise complements
of each other (at the k& defining positions). Since a mutation rate of 1.0 will flip every
bit, one offspring will have to be in Hy. Clearly this is not true for C' > 2 (again
compare Figure 5.2 with Figure 5.3). Note also that for reasonable values of P, (i.e.,
> 1/C) this is the minimum possible survival for mutation. Finally, one can see that
E([Hy,pp = 1.0] decreases towards 0.0 as P, ranges from 0.0 to 1.0. All of these

observations are intuitively obvious.

5.3 Summary

This chapter computes the expected number of offspring E;[Hy, p] that reside in
Hy, after mutation, given that one parent is a member of H; and that the other
parent is arbitrary. As would be expected, FE[Hy, u| decreases as the order k of the
hyperplane increases, while E;[Hy, ] increases as P, increases, for reasonable values
of p. Interestingly, increasing the cardinality C' does decrease F[Hy, u1], but only to

a small degree, suggesting that mutation is actually not greatly affected by changes
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in cardinality. The results also indicate that hyperplanes are most likely to survive
(high values of E;[Hy, p]) with low levels of mutation, while high levels of mutation
are most likely to disrupt hyperplanes (low values of E [Hy, u1]). Chapter 2 provided
a similar analysis for recombination using the F[Hj| framework. The comparison
between recombination and mutation (using F[Hy|) will be done in Chapter 7.

As was pointed out in Chapter 2, a more positive role of recombination is that
it may construct hyperplanes from other lower-order hyperplanes. This effect was
analyzed in Chapter 3. The related computation for mutation will occur in the next

chapter, Chapter 6.



Chapter 6

A Construction Schema Theory for Mutation

6.1 Introduction

Chapter 3 computed the probability P.(Hy) that a kth-order hyperplane Hj will be
constructed via recombination, given that one parent is a member of a lower-order hy-
perplane H,, and that the other parent is a member of another lower-order hyperplane
H,,. That chapter concluded by computing the expected number of offspring F.[H}]
that reside in Hj, after recombination, and showed that this is a simple function of
P.(Hy), the population homogeneity P.,, and the order of the hyperplane £.

The goal of this chapter is to provide a similar computation for mutation. As
stated in Chapter 5, mutation will work on alphabets of cardinality C' in the follow-
ing fashion. An allele is picked for mutation with probability u. Then that allele

I Mutation is

is changed to one of the other C' — 1 alleles, uniformly randomly.
performed independently to both parents, since in almost all EAs mutation is applied
independently to every individual in the population.

We omit the intermediary step of computing P.(Hj) for mutation, because (as
explained in Chapter 5) P.(Hj) obscures the comparison between mutation and re-
combination. Instead, in this chapter we will compute E.[Hy| directly.

To summarize — in order to provide for a fair comparison between recombination

and mutation, mutation will be treated as if it were a two-parent operator that

! Again, this form of mutation is reasonable for discrete representations, however, it should be
modified for real-valued representations.

85
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produces two offspring. Precisely the same random experiment will be performed
as with recombination. This chapter will then use this framework to compute the
expected number of offspring E.[Hj] that are in a hyperplane Hy, given that one
parent is a member of a lower-order hyperplane H,, and that the other parent is
a member of another lower-order hyperplane H,, after mutation has changed the

parents.

6.2 Framework

Suppose that one is given two parents, and that one parent is in the hyperplane H,,,
while the other parent is in the hyperplane H,,. We will consider the creation of a kth-
order hyperplane Hj from these two hyperplanes. We will restrict the situation such
that the two lower-order hyperplanes H,, and H,, are non-overlapping, and £k = m—+n.

As stated in Chapter 3, these situations will be described by random variable S.
For a kth-order hyperplane Hj there are 2 possible situation events: {so, ..., Sok_1}-
Each situation event s; can be represented by a bit mask of length k. Let s;
(0 < j < 2¥—1) represent the jth situation, in which the binary representa-
tion of j represents which parent has the necessary alleles at the £ defining positions.
There will be m 1’s and n 0’s in the binary representation of j, indicating H,, and
H,.

Figure 6.1 provides a pictorial example. The two parents are labeled “P1” and
“P2”. P1 is a member of a particular second-order hyperplane H,, described by
the alleles at defining positions d; and dy. P2 is a member of another second-order
hyperplane Hs,, described by the alleles at defining positions d3 and ds. Thus this
situation can be described with the binary string “1100” (or “0011”), to indicate that
one parent has the first two alleles, while the second parent has the second two alleles
of the fourth-order hyperplane H,.

The random experiment consists of performing mutation on these two parents,

producing two children. Schema H, (or Hj in general) can either be created or not.
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P1: — —
- -
dl dQ d3 d4
P2: — —
- -
_ J
Ly
= J
L

Figure 6.1: The setup for the random experiment to be performed. P1 is a member of
a second-order hyperplane, while P2 is a member of another second-order hyperplane.
The goal is to construct the fourth-order hyperplane with mutation.

A schema will be created if either offspring is in Hy (Hj). As with recombination
we will refer to this creation as a “construction”. Although clearly mutation does
not swap material between two parents, the term “construction” is a useful reminder
that the random experiment being performed is the same as that performed in the
construction analysis for recombination.

Once again, let B be a random variable describing the number of offspring that
are instances of Hy. B can take on values 0, 1, and 2. We can write:

EB|s;] = Y bxPB=b) = PB=1) + 2P(B=2)
be{0,1,2}

Without loss of generality, assume that the first parent is in H,,, while the second
parent is in H,. For the sake of clarity, denote E[B | s;| to be E.Hy, 1 | s;l.
E.[Hy, p | sj] will refer to the expected number of offspring that will be in Hj, after
4 mutation has been performed. The subscript ¢ is a reminder that the experiment
being performed is the same as that performed for the construction analysis under
recombination.

To compute E [Hy, j1 | s;] it will be convenient to let ) be a random variable that

describes the set of alleles (at the defining positions) in the second individual that do
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not match H,. Similarly, let R be a random variable that describes the set of alleles
(at the defining positions) in the first individual that do not match H,, (R in this
context is not to be confused with the set of recombination events used in the earlier

chapters). Then we can write E.[Hy, it | s;] as follows:

Ec[Hkau‘sj] =
S>> P@QAR)|[P(B=1|QAR) + 2P(B=2|QAR)]
Q R

It will be noted that P(Q A R) depends on the population homogeneity. Deriving
precise expressions for the values of P(Q A R) at a particular point in time is difficult
in general since they vary from generation to generation in complex, non-linear, and
interacting ways. We can, however, get considerable insight into the effects of shared
alleles on construction analysis by making simplifying assumptions.

First, as opposed to concentrating on sets, let () be a random variable that de-
scribes the number of alleles (at the defining positions) in the second individual that
do not match H,. @) can take on the integer values from 0 to n. Similarly, let R be
a random variable that describes the number of alleles (at the defining positions) in
the first individual that do not match H,, (R in this context is not to be confused
with the set of recombination events used in the earlier chapters). R can take on the
integer values from 0 to m. For example, suppose the first parent is “AABA”, which
is a member of the second-order hyperplane “AA##” (H,), while the second parent
is “BAAA”, which is a member of “##AA” (H,,). The goal is to create an individual
in “AAAA”. In this example () is 1 because the second individual differs from H,, at
the first defining position. Also, R is 1 because the first individual differs from H,,

at the third defining position. Thus we can rewrite E.[Hy, p | s;] as follows:

EC[HICMU‘ | Sj] =

S S P(Q=gAR=1)P(B=1|Q=qAR=1) + 2P(B=2|Q=qAR=1)]

q=07r=0
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Let P.,(d) represent the probability that both parents have the same allele at a
particular defining position d. Then further assume that P,,(d) is roughly the same
for all the defining positions (Py(d) = Peg, V d). 2 Then P(Q = gA R =) is simply:

n m
P(Q@=gAR=r7) = (1= P,)"" Pl

q T

Now consider the derivation of the other terms of E.[Hy, it | s;]. In order to have
both offspring be in Hy, (i.e., B = 2), the n alleles in the first parent (associated with
the hyperplane H,) must not be mutated. Also, of the remaining m alleles in the
first parent, R must be mutated (while m — R are not). Finally, the m alleles in
the second parent (associated with the hyperplane H,,) must not be mutated. Of
the remaining n alleles in the second parent, () must be mutated (while n — @ are
not). To consider the example given above, the “A”s in the two parents must not
be mutated, while the “B”s in each parent must be mutated to “A”s (since one is
interested in the hyperplane “AAAA”). For a general alphabet of cardinality C, if an
allele is mutated, there is a 1/(C — 1) probability of mutating it to the desired allele.
Thus, the probability of placing both offspring in Hy is simply computed as:

PB=2|Q=gqAR=r) =

() a=w a=wh 1 (g2) a—wr - )

The first term expresses the probability of placing the first parent in Hy. The
probability of not mutating the n correct alleles of the first parent is (1 — u)". Also,
since R of the remaining m alleles are incorrect, R must be mutated to the correct
allele while m — R are not mutated. The second term expresses the probability of
placing the second parent in Hy.

It is now possible to compute the probability that only one offspring will be in
Hy. Clearly that will occur if the first parent is placed in Hy while the second parent

2The same assumptions were made in the recombination analysis.
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is not, or if the second parent is placed in H; while the first parent is not. This can

be easily computed by using the components of the previous equation:

P(B=1|Q=gAR=r1) =
() e G- - (55) 0w

1= (GE) = -l (gE) o - -

With some simplification Eg[Hy, i1 | s;] can now be expressed for y mutation:

Ec[Hy, p | s5] = (6.1)
Sy P@=anR=" () 0=t + (Gh) a-w")

As stated in Chapter 3, of the 2* situations s;, two of them are considered to
be survival situations, and not construction situations. This occurs when 7 = 0
and when j = 2¥ — 1. In the first situation H,, = H} and in the second situation
H,, = Hy. Thus sy and sox_; represent survival situations. All the other situations
(0 < j < 2F — 1) represent true constructions, in which part of Hy is represented by
one parent, while the remainder is represented by the other parent.

Just as with the analysis of recombination in Chapter 3, it is convenient to average
the results over all 2 — 2 construction situations. Each of the 2¥ — 2 construction
situations is considered to be equally likely. This leads to:

Sok_2

ElHon = 5oy 3 BlHip | s (62)

5j=81

Figure 6.2 illustrates E.[Hy, p] when the cardinality of the alphabet C' = 2, for
mutation rates ranging from 0.0 to 1.0, for k£ € {2,4, 6,8}, while P, ranges from 0.0
to 1.0. Figure 6.3 illustrates this for C = 5. For a randomly initialized population

any allele has probability 1/C of being the same as any other allele, so the minimum
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P., is simply 1/C. Since the populations of traditional EAs tend to become more
homogeneous with time, it is reasonable to examine only those situations where P, >
1/C.

A number of observations can be made from the figures. The expected number
of offspring in Hy (E.[Hy, p]) decreases as the order & of the hyperplane increases.
E.[Hy, p1] increases as P,, increases, for values of 4 less than 0.5 (higher values are very
rare in practice). Both of the observations are intuitively reasonable. More interest-
ingly, increasing the cardinality C does decrease E.[Hy, ], but only to a small degree,
suggesting that mutation is actually not greatly affected by changes in cardinality.

Inspection of the figures where P,, > 1/C indicates that the maximum construc-
tion (highest E.[Hy, p1]) occurs when g = 0.0, while the minimum construction (lowest
E.[Hg, p]) occurs when p = 1.0, as would be expected. Furthermore, the maximum
construction (when g = 0.0) does not appear to depend on the cardinality of the
alphabet C. This is intuitively plausible, since if no mutation is occurring, mutation
will never have to choose between the C' — 1 other alleles.

Further insights can be gained by considering special cases.

6.2.1 A Special Case: = 0.0

One nice feature of y mutation is that it can be turned off simply by setting u to 0.0.

In this case Equation 6.1 is:

EC[Hk,,u=0.O|sj] -
égp(Q:qAR:r)W%)TJF <%)q]

The first term in the brackets is 1 only if » = 0, else it is 0. The second term in

the brackets is 1 only if ¢ = 0 else it is 0. Thus:

m

EHgp=0.0]s;] = iP(quARzO) + Y P(Q=0AR=r)
q=0

r=0
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Figure 6.2: E.[Hy, u| of Hy, Hy, Hg, and Hg for mutation when C' = 2.

E Hpp=0.01s] = >

This is simply:

EHg,p=0.0]s;] =

n n _ n m
Peqmz (1_Peq)quqnq+Peq Z
q:O r=0

q

Ec[Hkau: 0.0 ‘ Sj] =

r

m n
e + [2
q q

(1-

P"ZQ)T equr

(6.3)
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not depend on C, but only on the population homogeneity and the

order of the building blocks H,, and H,,. This is reasonable, since mutation is in fact

turned off.

Now we can average these results over all construction situations:

E[Hy, = 0.0]

Sok_2

5j=51

Z Ec[Hka:u' =0.0 | Sj]

Each situation s; refers to some H,, and H,. For mutation only the order m (or

n) matters, so the above equation can be simplified:

E[Hg,p=0.0] =

k-1

5 2

m=1

m

(Feg™

+ Peqkim)
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1 k—1 k X k—1 k P
Ec[Hk: Mm = 00] = m Z Peqm 1 -m + Z Peq -m 1m
m=1 m m=1 m

Rewriting the sums to range from m = 0 to m = k yields:

Eo[Hy, pp=0.0] =

k k k k
_2 _ 2Peqk + Z Peqm 1k:—m + Z Peqk—m 1m

m=0 m m=0 m

1
2k — 2

Using the binomial expansion yields:

1
Eo[He,n=00] = 55— (=2 = 2P, + 201+ Puy)"]

(6.4)

For reasonable levels of population homogeneity (P, > 1/C') this yields the best
construction for mutation (see Figure 6.2 and Figure 6.3). Note how the value ap-
proaches 2.0 as P,, approaches 1.0.

One other interesting simplification occurs if £ = 2. In that case:
EJ[Hy,p=00] = (1+P,)° — P> — 1 = 2P,

which is a linear function. This can be observed in Figures 6.2 and 6.3.

6.2.2 A Special Case: ¢ =0.5

Again, considerable simplifications to Equation 6.1 can be made in the case where

w=0.5:
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Ec[Hknu =05 | Sj] =

n o m 1 T 1 q
055 P@=ann=ri (51) + (1)
;)TZ:,; Q=g¢q NMle—) +lg27) !
In the case that C' = 2 then:
1
E[Hp,p=05]s;] = 05" +05" = Ty

Note how this does not depend on P,,. This makes sense, since with a mutation
rate u of 0.5 and C = 2 the offspring are always randomly re-initialized, no matter

what the parents are. This is not true when C > 2.

6.2.3 A Special Case: = 1.0

When mutation is always on, Equation 6.1 becomes:

EC[H]C,,LL =1.0 | Sj] =

>3 PQ=anR=1) = + =]

q=07r=0

The first term in the brackets is 1 only if » = k, else it is 0. The second term in
the brackets is 1 only if ¢ = k else it is 0. However, this can only occur in survival

situations, and not during construction. Thus:
E[Hi,u=10]s] = 0.0

Averaged over all construction situations:

E [Hy, p=1.0] = 0.0 (6.5)

This makes sense, since if every allele is mutated, it is impossible to have all k
alleles (of Hy) on either offspring. Thus a mutation rate of 1.0 represents the worst

possible construction.
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6.3 Summary

This chapter computes the expected number of offspring E.[H}, u| that reside in Hy,
after mutation, given that one parent is a member of a lower-order hyperplane H,,
and that the other parent is a member of another lower-order hyperplane H,,. This
is referred to as “construction”, since the framework is the same as that investigated
for construction of hyperplanes via recombination in Chapter 3.

The results indicate that E.[Hy, u| decreases as the order k of the hyperplane
increases, while E [Hy, j1] increases as P, increases, for reasonable values of p. In-
terestingly, increasing the cardinality C' does decrease E.[Hy, ], but only to a small
degree, suggesting that mutation is actually not greatly affected by changes in cardi-
nality.

Chapter 3 found that more disruptive recombination operators achieve higher
levels of construction. However, this is not the case for mutation. Although high
levels of mutation are the most disruptive (low values of E[Hy, p]), they also achieve
the worst levels of construction (lowest values of E.[Hy,u|). This points out an
interesting difference between recombination and mutation. Turning these operators
off results in the lowest levels of disruption (i.e., no disruption at all). Turning on
recombination increases disruption while increasing construction. However, turning
on mutation increases disruption while decreasing construction.

These results indicate that, unlike recombination (see Chapter 4), a No-Free-
Lunch theorem with respect to the disruptive and constructive aspects of mutation
probably does not hold. We investigate this issue further in Chapter 7, which provides

a thorough comparison of recombination and mutation via schema theory.



Chapter 7

Schema Theory: Mutation vs Recombination

7.1 Introduction

The previous chapters have fully outlined schema theories for recombination and for
mutation. Two aspects of these operators were investigated — the disruptive aspect
and the constructive aspect. Disruption refers to the likelihood that a kth-order
hyperplane Hj, will not survive either recombination or mutation. Construction refers
to the likelihood that a kth-order hyperplane will be created, given that one parent
is a member of a lower-order hyperplane H,, and that the other parent is a member
of another lower-order hyperplane H,. In order to provide for a fair comparison
of mutation and recombination, care was taken to ensure that the mathematical
framework was always the same for both operators (e.g., both operators are taken to
be two-parent operators that produce two children). The framework is not repeated
here (see Chapters 2 — 6 for full details).

Given the groundwork in those chapters, it is now possible to compare mutation
and recombination via those schema theories, with respect to both the disruptive and
constructive aspects of those operators. We will compare mutation with P, uniform
recombination (as opposed to n-point recombination) because uniform recombination
is easier to deal with mathematically and graphically, due to its lack of dependence
on the defining lengths of hyperplanes. Since Py uniform recombination generally

bounds the behavior of n-point recombination, this focus is quite reasonable.
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7.2 Survival

Survival analysis involves computing the expected number of offspring F[Hj] that are
in a hyperplane Hy, given that one parent is in Hy and the other parent is arbitrary,
after either recombination or mutation has changed the parents.

Mutation will work on alphabets of cardinality C' in the following fashion. An
allele is picked for mutation with probability x. Then that allele is changed to one of
the other C' — 1 alleles, uniformly randomly. For mutation the expected number of

offspring in Hj was shown in Equation 5.1:

Bl = Y P@=al(1-n)" + (z55) a-w 1

For an explanation of this equation, see Chapter 5. The first parent is a member
of the hyperplane Hj, while the second parent is arbitrary. ) is a random variable
that describes the number of alleles (at the defining positions) in the second parent
that do not match Hg. @) can take on the integer values from 0 to k. The probability

distribution of () is given by the binomial distribution:

P(@=9q) = * (1= Peg)” Peg"?
q
where P(Q) = ¢) depends on the population homogeneity P.,, which is the probability
that two parents will match alleles at each defining position.
As pointed out in Chapter 5, E [Hy, ] (survival) is maximized (disruption is

minimized) when mutation is turned off (z = 0.0). For that situation Equation 5.2

showed:

E,JH,p=0.0] = 1 + P,F (7.2)

In comparison, Chapter 2 showed that maximum survival (minimum disruption)
occurs when P, uniform recombination is turned off (P, = 0.0). For that situation

Equation 2.15 and Equation 2.17 showed:
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Figure 7.1:

C =2

Es[Hk] of HQ, H4, HG, and Hg

E,[Hy, Py = 0.0]
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for mutation and recombination when

1+ PF

(7.3)

This is as would be expected, since not using mutation should be equivalent to

not using recombination. Thus the best rates of survival can be achieved by not using

either mutation or recombination.

On the other hand, raising p or Py increases the disruption of those operators.

The maximum disruption (minimal survival) occurs when g = 1.0 (see Chapter 5),

where Equation 5.3 showed:

k

1-P,
BilHop=10] = (=)
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The maximum disruption for P, uniform recombination occurs when P, = 0.5.
Higher rates of P, are equivalent to a rate of 1 — Py, and do not lead to increased

disruption (see Chapter 2). In this situation Equation 2.16 and Equation 2.17 showed:

2(1 + P.,)*

E,[Hy, Py =0.5] = o

(7.5)

Figure 7.1 provides a comparison of mutation and F, uniform recombination on
E[Hy] as the population homogeneity increases (P, increases to 1.0). A comparison
is made on hyperplanes of order k£ € {2,4,6,8} and when the cardinality C = 2.
For each graph three different settings of Py and p are shown. As expected, the
curves are identical when Py = 4 = 0. However, for any setting of F,, uniform
recombination approaches Es[Hy| = 2 as the population converges. This makes sense,
since recombination can only swap alleles, and when the population has converged
all individuals (strings) are very similar to each other. However, this isn’t true for
mutation. In fact, as seen in Equation 7.4, with pu = 1.0, Es[Hy, p = 1.0] decreases
towards 0.0 as P,, ranges from 0.0 to 1.0.

Thus, in summary, one can see from this comparison that F, uniform recombi-
nation (as well as n-point recombination) actually has a limited range of disruptive
behavior. Mutation can achieve the same maximum levels of survival (minimum dis-
ruption) as recombination can achieve. However, mutation can also achieve much
lower rates of survival (higher rates of disruption) than can recombination. Thus,
from a survival point of view, recombination does not appear to have any added
value. The next subsection will investigate whether this is also true of the construc-
tive aspects of recombination and mutation. Before that, however, it is instructive to

investigate a particular special case of the two operators.

7.2.1 A Special Case: P, = 0.0

It is interesting to consider the case where there is maximum population diversity.

In this case P(Q = ¢) is not zero only when ¢ = k, where it equals 1.0. In that case
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Equation 7.1 is:

BlHipl = (- + (5)

Notice that for C' = 2 this further simplifies to:

E\He,p] = (1—p)* + 4

Note that this is symmetric in the sense that the value is the same for p as it
is for 1 — p. We previously showed in Equation 2.14 and Equation 2.17 that when

P,; = 0.0 for P uniform recombination:

EJHy, P = (1-P)" + P

This shows an interesting equivalence between p mutation and P, uniform re-
combination when there is maximum (minimum) population diversity (homogeneity)
and C = 2. From a survival point of view, the two operators are identical and the
controlling parameters p and P, act in an identical fashion. The next section will

investigate whether this also holds for construction.

7.3 Construction

Construction analysis involves computing the expected number of offspring E.[H}]
that are in a hyperplane Hj, given that one parent is a member of a lower-order
hyperplane H,, and that the other parent is a member of another lower-order hyper-
plane H,,, after either recombination or mutation has changed the parents. The two
lower-order hyperplanes are assumed to be non-overlapping and it is assumed that
k=m+n.

The two lower-order hyperplanes are described by a situation s; (0 < j < 2% — 1),
in which the binary representation of j represents which parent has the necessary
alleles at the k defining positions. There will be m 1’s and n 0’s in the binary

representation of j, indicating H,, and H,.
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There are 2* situations, since each situation can be described via a binary string of
length k. As stated in Chapter 3, of the 2¥ situations s;, two of them are considered
to be survival situations, and not construction situations. This occurs when j7 = 0
and when j = 2¥ — 1. In the first situation H, = Hj and in the second situation
H,, = H;. Thus sy and sqx_; represent survival situations. All the other situations
(0 < j < 2F — 1) represent true constructions, in which part of Hy is represented by
one parent, while the remainder is represented by the other parent.

The average expected number of offspring in Hy, F.[Hy]|, is computed by averaging
over the 2¥ — 2 constructive situations 8

1 Sk
E.[Hy] = msg E [Hy | s4]
=51
For mutation, the expected number of offspring in Hj (given a situation s;) is

given by Equation 6.1:

Eo[Hi, 1 | s3] = (7.6)
23 P@=ank=nl(goy) G-+ (ghy) a-w]

For an explanation of this equation, see Chapter 6. The first parent is a member
of H,, while the second parent is a member of H,,. () is a random variable that
describes the number of alleles (at the defining positions) in the second individual
that do not match H,. ) can take on the integer values from 0 to n. R is a random
variable that describes the number of alleles (at the defining positions) in the first
individual that do not match H,, (R in this context is not to be confused with the
set of recombination events used in the earlier chapters). R can take on the integer
values from 0 to m (see Chapter 6 for further details). The probability distribution
of ) and R is given by:

m
P(Q =q A R = ’r’) = (1 — Peq)q—H‘ Peqk—q—r
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Figure 7.2: E.[Hy| of Hy, H;, Hg, and Hg for mutation and recombination when
C =2.

where P(QQ = ¢ A R = r) depends on the population homogeneity P.,, which is the
probability that two parents will match alleles at each defining position.
As pointed out in Chapter 6, construction is minimized when mutation is always

on (x = 1.0). In that case Equation 6.5 says:

E[Hy,pp=1.0] = 0.0 (7.7)

The best construction for mutation (for reasonable levels of P,, > 1/C) occurs

when p = 0.0 (see Chapter 6). Equation 6.3 and Equation 6.4 say:

Ec[Hk,/,L =0.0 | Sj] = Peqm + Peqn (78)
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Figure 7.3: E.[Hy| of Hy, H;, Hg, and Hg for mutation and recombination when
C =5.

(1+P) — PSf —1
2k-1 — 1

E.[Hy, p=0.0] = (7.9)

It is interesting to contrast this with the worst construction for P, uniform re-
combination, which occurs at Py = 0.0. As shown in Equation 3.7 and Equation 3.12

of Chapter 3:

E[Hy, P,=00|s;] = P," + P.," (7.10)

Note that since this is exactly the same as when p = 0.0 (as would be expected)

we can conclude that for Py = 0.0 uniform recombination:
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k
(1+P,)" — P -1

E.[Hy, Py =0.0] = T

(7.11)

This is an important observation. What we have shown is that the worst con-
struction for P, uniform recombination is precisely the same as the best construction
for u mutation!

Now, as shown in Chapter 3, construction increases as P, is increased from 0.0
to 0.5. The best construction for P, uniform recombination occurs at Py = 0.5 (see

Equation 3.11 and Equation 3.13):

2(1+ P,k

E,[Hy, Py =05] = o

(7.12)

What we have shown is that recombination is clearly better at construction than
mutation. The worst construction for recombination matches the best construction
for mutation. The constructive advantage of recombination can be seen in Figure 7.2
and Figure 7.3. The figures graph E.Hj] for different settings of p mutation and
P, uniform recombination on hyperplanes of order £ € {2,4,6,8}. Alphabets of
cardinality C = 2 are assumed in Figure 7.2, whereas a cardinality of C = 5 is
shown in Figure 7.3. The cardinality of the alphabet will not affect the results for
recombination, but they will affect the mutation results. In general the highest two
curves in a graph represent E.[Hj| for 0.0 mutation and 0.5 uniform recombination
(the best rates for both operators). The highest curve is always that for 0.5 uniform
recombination. Again, the focus is always on that portion of the graphs which reflect
reasonable levels of population homogeneity (i.e., P, > 1/C).

It is now possible to derive an expression yielding the constructive advantage of
the most constructive recombination operator (0.5 uniform recombination) vs the

most constructive mutation operator (0.0 mutation):

2(1'|'Peq)]c (1+Peq)k — Peqk -1
2k - 26-1 1

(7.13)
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Table 7.1: The constructive advantage of 0.5 uniform recombination over y = 0.0 mu-
tation, as the population homogeneity P,, increases and the order of the hyperplane

k increases.

Poy=02]Pyy=04] Py=06| P,y =08 Py = 1.0
Hy | 0.320 0.180 0.080 0.020 0.000
Hy| 0.106 0.078 0.044 0.014 0.000
Hg | 0.029 0.025 0.017 0.006 0.000
Hg | 0.008 0.007 0.005 0.002 0.000

Note that this depends only on the population homogeneity and the order of the
hyperplane Hj. It does not depend on the cardinality of the alphabet, so this can
be ignored. The results for Equation 7.13 are shown in Table 7.1 for hyperplanes of
order k € {2,4,6,8}, as the population homogeneity P, increases. When P, = 1.0
the advantage goes to 0.0, as would be expected (since nothing will change when the
two parents are the same). However, one can note from Table 7.1 (as well as from
Figures 7.2 and 7.3) that the constructive advantage for 0.5 uniform recombination
decreases as k increases, and in fact is quite small by the time that £ = 8.

This result is somewhat surprising. Although the results indicate that recombina-
tion is more constructive than mutation, the constructive advantage of recombination
appears to be small, especially for high-order hyperplanes. However, these results have
been obtained by averaging over all 2¥ — 2 construction situations, and the averaging
procedure may be masking important details concerning the relative advantages of
recombination and mutation. Thus it is worthwhile to ask how that advantage is

distributed over those situations. This is explored in the next subsection.

7.3.1 The Distribution Over All Situations

As shown earlier, the expected number of offspring in Hj, produced with mutation

(given a situation s;) is given by Equation 7.6:
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Figure 7.4: E. [Hy | s;] of Hy, Hy, Hg, and Hg for mutation and recombination as m
varies, when C' = 2 and P,, = 0.5.

EC[H:,,um| s;] =
Y>> P(@=gAR=r)| (%)T (1— k" + (%)q (1= )]

q=07r=0
This can easily be compared with uniform recombination on a situation by situa-

tion basis. As shown earlier in Equation 3.5 of Chapter 3:

Pe(Hy, Py | 55) =

Ps,orig(Hma PO) Ps,other(Hna PO) + Ps,other(Hma PO) Ps,orig(Hna PO) - Peqk
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Figure 7.5: E. [Hy | s;] of Hy, Hy, Hg, and Hg for mutation and recombination as m
varies, when C' = 2 and P,, = 0.8.

where:

k e @
Ps,orig(HkaPO) = z P0$(1_P0)k Peq

z=0 x
i k z k—x k—x
Ps,other(HkaPO) = Z Py (1_P0) Peq
z=0 X

Thus the expected number of offspring in Hj for uniform recombination is (by

using Equation 3.12):

Ec[Hka PO | Sj] = Ps,orig(Hm; PO) Ps,other(Hna PO) + Ps,other(Hma PO) Ps,orig(Hna PO)
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Figure 7.6: E.s[Hy | s;] of Hy, Hy, Hg, and Hg for mutation and recombination as m
varies, when C' = 20 and P,, = 0.5.

Now E.[Hj | s;] for mutation is not affected by the defining lengths of hyperplanes.
E.[Hy | s;] for uniform recombination is also not affected by the defining lengths.
However, both are affected by the order of hyperplanes. This makes a comparison
between the two operators over all situations very straightforward.

Figure 7.4 plots the expected number of offspring in Hy produced by mutation
and P, uniform recombination when C' = 2 and P, = 0.5, as the order m of the
hyperplane H,, ranges from 0 to k& (and n = k —m). To be complete, we deliberately
include those situations that are actually not construction situations but are survival
situations (when m = 0 or m = k). Thus the graph allows for a comparison of

mutation and uniform recombination on all possible situations.
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Figure 7.7: E. [Hy | s;] of Hy, Hs, Hg, and Hg for mutation and recombination as m
varies, when C' = 20 and P,, = 0.8.

What is interesting about this figure is that it nicely illustrates the situations
where recombination most dramatically outperforms mutation from a constructive
perspective, namely, when the order of the building blocks is about 1/2 of k (i.e.,
n = m). As the two building blocks H,, and H, become more unequal in order,
mutation starts to become more advantageous! This is quite reasonable, since if one
building block has a very low order, constructive effects can occur with a minimal
number of mutations. However, recombination is much more likely to combine two
building blocks of relatively high order.

Figure 7.5 illustrates roughly the same behavior when P, = 0.8. However, one

observation is that the region wherein recombination is advantageous both broadens
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and flattens, providing less advantage, but over more situations. As P, is reduced
from 0.5 to 0.1 it trades off construction for survival (it is less constructive than 0.5
uniform recombination in the middle of the graph, but shows better survival qualities
at the extremes). This is a nice demonstration of the No-Free-Lunch theorem for
recombination that was presented in Chapter 4. In contrast, Figure 7.5 indicates
that E.[Hy | s;] for p = 0.1 mutation is lower than g = 0.01 mutation for every
situation s;. Thus, in general, mutation does not obey a similar No-Free-Lunch
theorem (construction is not traded off against survival).

To see how the cardinality of the alphabet affects matters (it will affect mutation
only), we also tried C' = 20. As shown in Chapter 6, the constructive aspects of
mutation should decrease as C' increases, since it becomes increasingly more difficult to
mutate an undesirable allele to a desirable allele. Figure 7.6 and Figure 7.7 illustrate
this for a P,, of 0.5 and 0.8. Although the hypothesis is confirmed, it is surprising

how well mutation holds up — the decrease in constructive ability is very small.

7.3.2 A Special Case: P, = 0.0

The previous section (concerning survival) showed an interesting equivalence between
4 mutation and Py uniform recombination when there is maximum population diver-
sity (P.y = 0.0) and minimal cardinality (C' = 2). From a survival point of view, the
two operators are identical and the controlling parameters . and Py act in an identi-
cal fashion. This subsection investigates whether this is also true for the constructive
aspects of recombination and mutation.

Consider when there is maximum population diversity: P,, = 0.0. In this case
P(Q =gA R =r) is not zero only when g+ = k (in which case it equals 1.0). This
means that » = m and ¢ = n. In that case Equation 7.6 is:

ElHonls) = (&) 0-n + (555) -

When C = 2:
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EolHe,p| 5] = p™ (L= p)*™™ + p" (1—p)*™"

E[Hgp|sj] = p™ (1=p)" + p" 1—p)"

However, Equation 3.6 and Equation 3.12 of Chapter 3 previously showed that

when P, = 0.0, E.[Hy, Py | s;] for Py uniform recombination is:
EC[Hk,PO | Sj] = P()m (1—P0)n + P()n (]_—P())m

Once again we see an interesting equivalence between the constructive aspect of p
mutation and P, uniform recombination when there is maximum population diversity
and C' = 2. The two parameters (u and P,) act the same way and produce identical

results.

7.4 Survival and Construction

It was previously shown in Chapter 4 that recombination obeys a No-Free-Lunch
theorem, in the sense that any increase in survival (decrease in disruption) is offset by
a decrease in construction. This was shown by computing the average of E. [Hy | s,]
over all situations s; (including survival and construction). Equation 4.6 showed that,

for all forms of recombination:

2(1+ P.,)*

E.,[Hy) = Tq
Thus, for any form of recombination, E, ;[ Hy] is simply a constant that depends on
the order of the hyperplane Hy and the population homogeneity. Since the average is
taken over both survival and construction situations, this indicates that any increase
in survival must be offset by a commensurate decrease in construction. As shown in

the last section, however, this is not true for mutation, in general. However, there is

one special case in which mutation does obey a No-Free-Lunch theorem. The previous
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two sections showed the equivalence of mutation and P, uniform recombination when
P,; = 0.0 and C = 2, from both a survival and constructive aspect. Thus it would be
expected that mutation would also obey a No-Free-Lunch theorem when P,, = 0.0
and C' = 2. This in fact is true. As shown in the last section, when P, = 0.0 and

C = 2, Equation 7.6 is:

Ees[Hiyp | 5] = p™ (L=p)* ™ + p (1=p)*"
Thus, averaging over all situations s; yields:

1 k k —m n -n
EealHi ) = o5 3 (™ (1= )™ + ™ (=)™ |
m=0 m

This is trivially simplied to:
2
Ec,s[Hka /"’] = 5t ok_1

Thus, no matter what the value of u, the average expected number of offspring in
H,. after mutation is again a constant that only depends on the order of the hyperplane
H,.. Note, that as would be expected, this is the same expression that is obtained for

recombination when P, = 0.0 (see Equation 4.7).

7.5 Summary

This chapter has provided a full comparison of mutation and recombination via the
schema theories developed in the previous chapters. Both the disruptive and con-
structive aspects of mutation and recombination were compared.

The results indicate that, from a survival point of view, recombination is not as
powerful as mutation. Mutation can achieve any level of survival (disruption) that
recombination can achieve. Moreover, mutation can achieve higher levels of disrup-
tion than recombination. However, from a construction point of view, recombination
is more powerful than mutation. In fact the worst levels of construction for recombi-

nation are the same as the best levels of construction for mutation. This is achieved
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when both operators are turned off (P, = 0.0 and p = 0.0). Increasing Py from 0.0
increases construction until a maximum is reached at Py = 0.5. However, increasing
w1 from 0.0 decreases construction. Construction becomes impossible when p = 1.0.

Simply put, recombination is able to recombine lower-order building blocks into
higher-order building blocks with higher expectation than can mutation. When aver-
aged over all possible constructive situations this advantage is often quite small. An
analysis of the distribution of construction over all situations provides a more use-
ful picture — the largest constructive advantage for recombination occurs when both
lower-order building blocks have order roughly 1/2 of k£ (the order of Hy).

This paints the picture that recombination will be most useful when high-fitness
building blocks of relatively high order (H,, and H,) can be combined into higher-
order building blocks (Hj) that are also of high fitness. Recombination will be least
useful when the higher-order building blocks that are constructed have poor fitness.
It is important to point out that the “fitness” of a hyperplane refers to its “observed”
fitness (i.e., the average fitness of those individuals within a population that are in that
hyperplane) as opposed to its “static” fitness (the average fitness of all individuals
within that hyperplane). We will see how this observation helps us to create problems
that are both easy and hard for recombination (see Chapter 11 and Chapter 13).

Another interesting observation arising from this analysis is that g mutation and
P, uniform recombination are identical (from both a survival and constructive aspect)
when binary strings are used (C' = 2) and there is maximum population diversity
(P.y = 0.0). Interestingly, similar results will also be shown with respect to other
static analyses of Py uniform recombination and p mutation in Chapter 8. However,
it is important to realize that this maximum level of population diversity is somewhat
unusual — it assumes that the two parents are different at every allele from each other.
This is unlikely to occur with standard EAs. However, speciating EAs are much more
likely to maintain individuals at radically different areas of the search space. Thus,

it is quite possible that this observation will be more useful for speciating EAs (e.g.,
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see Spears (1994)).

The key to the schema analyses that have been provided thus far has been the
computation of the expected number of offspring that will be in Hj, after recombina-
tion or mutation. It is this computation that allows for a fair comparison between
mutation and recombination. However, the comparison has been between two par-
ents undergoing only mutation and two parents undergoing only recombination. The
joint behavior of the two operators acting in concert has not been investigated thus
far. Fortunately, it appears as if the framework developed in this thesis could be
extended, by computing the expected number of offspring in H, after applying both
recombination and mutation to two parents. This will not be explored in this thesis,
but will be deferred for future work.

It should be noted that the schema analyses provided in this chapter (and in
the prior chapters) can be considered to be static analyses, since they do not take
into account the dynamic time evolution of an EA. This thesis will also investigate
dynamic analyses (Chapters 9 — 11). However, there are still other static analyses to

consider. These are investigated in Chapter 8.



Chapter 8

Other Static Characterizations of Mutation and Recombination

8.1 Introduction

The previous chapters have provided a full schema analysis of recombination and mu-
tation. Such analyses can be considered to be static in the sense that they do not take
into account the dynamic time evolution of an EA. However, there have been other
static characterizations of recombination that have been explored in the literature
(such as their “exploratory power”, their “positional bias”, and their “distributional
bias”). The point of this chapter is to extend these characterizations of recombination
to mutation, in order to compare the two operators.

Several of the prior analyses have made two assumptions for n-point recombination
that are a bit different from those used in this thesis. This thesis has assumed (see
Chapter 2) that there are L possible distinct cut-points for n-point recombination.
The Lth cut-point can be considered to occur immediately before the individual
or immediately after the individual. Booker (1992) and Eshelman et al. (1989)
both appear to assume that there are only L — 1 possible cut-points (the Lth cut-
point is considered impossible). The second assumption is that we choose cut-points
with replacement, whereas some analyses (Booker 1992) assume sampling without
replacement.

One consequence of our assumptions is that certain n-point recombination events
will not change the parents. For example, this can occur in two-point recombina-

tion if the same cut-point is chosen twice. However, this is reasonable, since P,

116
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uniform recombination also may not change the parents (if none or all of the alleles
are swapped). Another consequence is that any recombination event that is possible
under n-point recombination is also possible under (n 4 1)-point recombination. For
example, consider the two parents: “aabb” and “abab”. The one-point recombination
event “aalbb” and “ablab” is the same as the two-point recombination event “aa|bb|”
and “ablab|”. Thus, two-point recombination can achieve any effect that one-point
recombination can achieve (but with lower probability).

Generally, the first assumption does not lead to qualitative differences in results.
However, the second assumption can lead to differences, especially as n approaches
L for n-point recombination. In the limit where n = L, there is only one possible
recombination event if the cut-points are chosen without replacement. If cut-points
are chosen with replacement, there are an enormous number of possible recombination
events. However, for most applications of EAs, n < L, and the differences between
sampling with and without replacement are negligible. Thus, to be consistent with
the remainder of the thesis we will continue to assume that there are L possible

cut-points and that the n cut-points are sampled with replacement.

8.2 Exploratory Power

Perhaps one of the simplest characterizations of an EA operator is its “exploratory
power”, which is defined to be the number of different individuals that can potentially
be created by one application of that operator. Eshelman et al. (1989) investigated
the exploratory power of recombination. This section carefully re-examines this work

and then extends the characterization to include mutation.

8.2.1 The Exploratory Power of Recombination

The “exploratory power” of recombination is defined to be the number of different
individuals that can be created by one application of recombination to two parents.

The immediate observation is that the population homogeneity is crucial. If there
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is no diversity, than the two parents will be the same, and recombination can not
create any new individuals. As population homogeneity decreases, more and more
individuals can be reached through recombination.

As pointed out in the earlier chapters, a useful measure of population homogeneity
is denoted as P.,(d), which represents the probability that both parents have the same
allele at a particular defining position d. For the sake of analysis it is also useful to
further assume that P,,(d) is roughly the same for all the defining positions (P, (d) =
P.,, ¥V d). Thus P.; = 0.0 represents maximum diversity (minimum homogeneity),
while P,, = 1.0 represents minimum diversity (maximum homogeneity).

Let Y be a random variable representing the number of alleles that are different
in the two parents (this is equivalent to Hamming distance when the cardinality is

C =2). Y can range from 0 (if both parents are identical) to L (if none of the alleles
match between the two parents). The probability distribution of Y depends on P.;:

L L—y y
PY=y) = P, (1_Peq)

Y

Clearly, if there are y different alleles, any recombination operator can produce
at most 2Y individuals, since recombination can only swap alleles. For example,
suppose the language has cardinality C' = 4 with an alphabet of {a,b,c,d}. Further
suppose that two parents “aaaaa” and “aabcd” are recombined. Then y = 3 and the
maximum number of potentially reachable strings is 23. The exploratory power of any
recombination operator increases as the population diversity (and hence y) increases.
The maximum exploratory power occurs if y = L, which occurs when P,, = 0.0. The
cardinality of the language has no effect on this result.

The exploratory power of a particular recombination operator is related to the
number of recombination events that are possible with that recombination operator
(see Chapter 2 for a definition of a recombination event). The more recombination
events that are possible, the higher the exploratory power of that operator. To see

this, consider one-point recombination. There are L possible recombination events
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(because there are L possible cut-points). If y of the L alleles are different (between
the two parents), then y—1 of those events can produce new individuals (the yth event
doesn’t change the parents). To continue the above example, only two recombination
events can produce new individuals. The first event is when the cut-point is after
the third allele: “aaalaa” and “aablcd”. The second event is when the cut-point
is after the fourth allele: “aaaala” and “aabc|d”. Since there are two parents, one
application of one-point recombination can reach at most 2(y — 1) new individuals.
In this example, where y = 3, four new individuals can be created with one-point
recombination: “aaacd”, “aaaad”, “aabaa”, and “aabca”.

Similarly, there are L(L+1)/2 possible recombination events for two-point recom-
bination (because we are sampling cut-points with replacement). Only y(y + 1)/2 of
those events will be relevant if only y of the L alleles are different. Also, y of those
events will produce no effect (when the same cut-point location is chosen for both
cut-points), so only y(y+1)/2 — y = y(y—1)/2 recombination events can produce
new children. Since there are two parents, one application of two-point recombina-
tion can reach at most y(y — 1) new individuals. To continue the above example,
where y = 3, only three recombination events can produce new children. The first
event is “aaalaa|” and “aablcd|”. The second event is “aaaala|” and “aabc|d|”. These
two events are the same as the two events for one-point recombination. The third
event is “aaalala” and “aablc|d”. Thus, six new individuals can be created with two-
point recombination: “aaaca”, “aabad”, and the individuals produced from one-point
recombination.

We have shown that one-point recombination has very low exploratory power.
The exploratory power of two-point recombination is somewhat higher. This is as
expected, since we know that the set of possible recombination events for two-point
recombination is a superset of the set of possible events for one-point recombination.
Thus, in general, since the set of possible events under (n + 1)-point recombination

always includes the events from n-point recombination, the exploratory power of n-
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point recombination increases as n increases. '

As we have shown earlier, if y of the L alleles differ between the two parents, the
maximum exploratory power possible for any recombination operator is 2¥. In general,
n-point recombination has an exploratory power less than this maximum, although
it does increase as n increases. P, uniform recombination, however, is quite different.
When P, is 0.0 or 1.0, uniform recombination has no exploratory power, since it
can not change the parents. However, for 0.0 < Py < 1.0, there are 2¥ possible
recombination events (even if some events are low probability, they are non-zero
probability). If y alleles differ between the two parents, P, uniform recombination
can reach 2Y individuals (when P isn’t 0.0 or 1.0). For example, if two parents
are “aaaaaa” and “aabcde”, then y = 4, and 2* individuals can be reached. Thus
Py uniform recombination can achieve the maximum possible exploratory power. In
general, Py uniform recombination is far more explorative than n-point recombination

(unless n is very high).

8.2.2 The Exploratory Power of Mutation

Mutation will work on alphabets of cardinality C in the following fashion. An allele
is picked for mutation with probability . Then that allele is changed to one of the
other C' — 1 alleles, uniformly randomly.

The exploratory power of mutation is simple to compute. If the mutation rate yu is
0.0, no alleles will change, and there is no exploration. If the mutation rate is 1.0 then
all alleles will change, and (C — 1) individuals can be reached (by applying mutation
to one parent). However, if 0.0 < p < 1.0 the number of individuals that can be
reached is C* (since alleles may or may not change). In other words, any individual
is potentially reachable via mutation from any other individual. These results are
clearly not affected by the population homogeneity, although they are dramatically
affected by the cardinality of the alphabet.

! This would not be true if we sample cut-points without replacement, since only one event would
be possible for L-point recombination in that situation.
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Now it is possible to compare the exploratory power of mutation and recombina-
tion. In general, mutation has much higher exploratory power than recombination,
since it is possible for any individual to be created with the application of mutation
to one individual. This is especially true when the population starts to converge. In
that case recombination can produce almost no new individuals, while mutation still
can. It is also more dramatic for high-cardinality alphabets, since recombination can
produce at most 2 individuals, while mutation can produce at most C* individuals.

There is one situation, however, where recombination and mutation have the same
exploratory power. Earlier in this thesis, Chapter 7 showed that mutation and P,
uniform recombination perform in the same way (from a schema point of view) if
the population has maximum diversity and the cardinality C' = 2. Interestingly, the
same observation can be made again in this section. If there is maximum diversity,
P,, = 0.0, and the two parents for recombination differ at all y = L alleles. Thus F,
uniform recombination (for 0.0 < P, < 1.0) has an exploratory power of 2% in that

situation, which is the same as the exploratory power of mutation (0.0 < p < 1.0).

8.3 Positional Bias

Another characterization of an EA operator is its “positional bias”, which refers to
the extent that the creation of any new schema by the operator is dependent upon
the location of the alleles in the chromosomes. Eshelman et al. (1989) and Booker
(1992) investigated the positional bias of recombination. This section summarizes

those results and then compares them with mutation.

8.3.1 The Positional Bias of Recombination

A recombination operator has positional bias to the extent that the creation of any
new schema by recombining existing schemata is dependent upon the location of the
alleles in the chromosomes. Booker (1992) showed that, of the n-point recombination

operators, one-point recombination has the highest positional bias. Also, Booker
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showed that for n < L/2 the positional bias of n-point recombination tends to decrease
as n increases. 2

Uniform recombination is quite different from n-point recombination. Since alleles
are swapped independently, and without regard to their location on the chromosomes,
it is readily apparent that P, uniform recombination has no positional bias at all.
None of the n-point recombination operators have zero positional bias. The interested
reader is urged to consult Booker (1992) for more details on the positional bias of
recombination operators.

Positional bias is similar to the “length” bias introduced in Chapter 2. For exam-
ple, one-point recombination is far more likely to disrupt the schema “A###A” than
the schema “AA##+4", since the latter schema has a shorter defining length. Simply
stated, the flatness (horizontalness) of the survival curves presented in Chapter 2 are
a good qualitative indication of the positional bias of a recombination operator. For
example, consider Figure 2.9 which shows the survival curves for n-point recombi-
nation. The z-axis represents defining length. It is clear that as n increases, the
survival curves of n-point recombination become flatter and are hence less affected by
the defining length of the schemata. However, they are never totally flat, and there
is always some degree of length bias.

On the other hand, Figure 2.9 also shows the survival curves for P, uniform
recombination. These survival curves are always flat, indicating their total lack of

length bias.

8.3.2 The Positional Bias of Mutation

The positional bias of mutation is quite straightforward to compute — there is none!
Since the mutation of an allele is not affected by the position of the allele, mutation
has no positional bias. Thus, once again y mutation is more similar to P, uniform

recombination than n-point recombination.

2Booker (1992) also showed that the positional bias increased as n increases past L/2. This may
be due to the fact that cut-points are sampled without replacement.
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8.4 Distributional Bias

Finally, the last characterization of an operator is its “distributional bias”, which is
defined by examining the distribution of the alleles that are exchanged by the op-
erator. If the distribution is uniform, there is no bias. The more the distribution
differs from the uniform distribution, the higher the distributional bias. Eshelman
et al. (1989) and Booker (1992) carefully investigated the distributional bias of re-
combination. Note, however, that simply ezchanging alleles between two parents via
recombination may not actually change them, especially when the population homo-
geneity is high (since the two parents will be very similar). Thus, only a subset of the
exchanged alleles will actually change. For example, although the one-point recom-
bination of “aaalabc” and “aaalade” exchanges three alleles, only two alleles change
in each parent. Also, mutation does not exchange alleles between two parents, but
simply changes alleles. Thus, a proper framework for comparison will have to focus
on the material (alleles) actually changed by either operator. This section extends the
prior work by computing the distribution of the amount of material actually changed
by recombination. This distribution is affected by the population homogeneity. The
section concludes by performing a similar computation for mutation, allowing for a

comparison between the two operators.

8.4.1 The Distributional Bias of Recombination

A recombination operator has distributional bias to the extent that the amount of
material that is expected to be exchanged is distributed around some value or val-
ues as opposed to uniformly distributed ranging from 0 to L — 1 alleles (where the
chromosome is composed of L genes). However, in order to compare with mutation,
it will be necessary to consider not only the amount of material exchanged, but the
actual subset of material changed, which is a function of the population homogene-
ity. Suppose X is a random variable representing the amount of material exchanged,

while Y is a random variable representing the amount of material actually changed.
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X ranges from 0 to L, while Y ranges from 0 to X. The expected amount of material

Y that will be changed, given the amount of material X that is exchanged is:
EY | X=a] = Y} yPY=y|X=n2)
y=0

Now the trick is to estimate the probability that y alleles will change (in each
parent), given that x alleles have been exchanged. This can be accomplished using
the definition of P,, given earlier, which gives the probability that two alleles (one in

each parent at some defining position) will be the same:

z
PY=y|X=x) = P.,7Y(1 = Py’
Yy

For y of the x exchanged alleles to actually change, © —y of the alleles will have to
match in both parents. The combinatorial takes into account the number of different
ways to get y alleles from the z. The expected amount of material Y that will be

changed, given the amount of material X that is exchanged is:

e
EY |X=z] = Yy P,/ Y(1— P, (8.1)
y=0 Y

Finally, one can compute the expected amount of material that will be changed

(as opposed to exchanged):

EY] = Y E[Y | X =1] P(X =) (8.2)

=0

The goal now is to compute the probability that x alleles will be exchanged,
P(X = z), for the various recombination operators. Again, the reader is urged
to consult Booker (1992), which provides the computation of this quantity for n-
point and Py uniform recombination. However, since our assumptions (concerning L
cut-points which are sampled with replacement in n-point recombination) are a bit
different from those used by Booker, we provide our own computations for one-point,

two-point, and P, uniform recombination.
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Using our assumptions of L possible cut-points that are sampled with replacement,
it is easy to show that for one-point recombination:

PX=z) = % Ve<L

Thus, since the distribution is uniform, there is no distributional bias for one-point
recombination. Surprisingly, two-point recombination also does not have distribu-
tional bias, since it can be shown that once again:

1

Since both of these results agree with those found by Booker (1992), we omit
the computations for higher n. Booker found that the distributional bias of n-point
recombination tends to increase as n increases, as the distribution becomes less and
less uniform.

The point of this framework is that with Equation 8.2 and P(X = z), one can
compute the expected number of alleles actually changed via recombination, not
simply the number of alleles exchanged. Thus, this framework includes the effects
of population homogeneity, unlike the earlier work by Eshelman et al. (1989) and
Booker (1992).

Since the previous sections have shown interesting relationships between P, uni-
form recombination and y mutation, it is instructive to now provide the computation

of P(X = z) for P, uniform recombination:

L L
P(X:.’L'): Pom(]_—Po) -
x
Since this is a binomial distribution, P uniform recombination has high distribu-
tional bias. The distributional bias increases as Py decreases from 0.5 to 0.0 (Booker
1992). Thus, for Py uniform recombination, the expected number of alleles that are

changed is:
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L =z T L
EY,P] = Y Yy P.;"7Y(1 = P, Py (1 — Py)=® (8.3)

z=0y=0 Y X

Thus the expected value of the number of alleles changed depends on the length
of the string L, the probability of swapping alleles Py, and the homogeneity of the
population (represented using P,,). ® It is important to note that these formulas
(whether for n-point or Py uniform recombination) hold for arbitrary finite-cardinality

alphabets.

8.4.2 The Distributional Bias of Mutation

Consider now the distributional bias of mutation, which changes alleles with proba-
bility . One can immediately compute the probability that y alleles will be changed,

which is governed by the binomial distribution:

L
P(Y=y) = P (1 — )ty
y

As an aside, if L is large (> 1) and p is small (< 1) then the Poisson distribution
can be used as an estimate for the binomial distribution, so the probability that y
alleles will be changed by mutation can be approximated by:

Lu)Yel—Lr)
PY =y) = (Lp)fe”

y!
where the expectation and variance of Y is simply L.

However, this section will continue to use the more accurate binomial distribution

to compute the expected number of alleles that will be changed:

ElY,ul = Y yPY=y)=>y k p (1= p)ty (8.4)
y=0 y=0 Yy

3The only effect that the cardinality C has on the analysis is in determining what values of P,
are relevant.
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The expected amount of material changed depends on the string length L and the
mutation rate p. It does not depend on the population homogeneity. The result is
independent of the cardinality of the alphabet, since all that matters is that an allele
is chosen for mutation (and once it is chosen, it must change).

Now a comparison of mutation and P, uniform recombination is in order. Consider

once again the special situation in which a population is maximally diverse (P,

0.0). This means that all alleles that are exchanged will in fact be changed, and
Equation 8.1 is:

z x
ElY,P, | X =1z2] = Zy P, " (1—-Py) ==z
y=0 Yy

Thus Equation 8.3 becomes:

ElY,R| = ix t Py (1 = Py)t® (8.5)

z=0 X

One can see the immediate similarity between E[Y, u] (Equation 8.4), and E[Y, P
(Equation 8.5). The two expressions are identical in form, and P, serves the same
purpose for Py uniform recombination as u does for mutation. Thus, when parents are
maximally different (P, = 0.0), mutation and parameterized uniform recombination
change the same number of alleles (in expectation) when Py = p. Now, P, will be
close to 0.0 when a population of individuals is randomly initialized and the alphabet
is of high cardinality. In the case of binary strings, P, will initially be 0.5. As the
population converges, P, will increase, thus reducing the number of alleles changed
via recombination. In order to mimic the distributional bias of recombination with

mutation, u would have to slowly decrease as the population converges.

8.5 Summary

This chapter has explored other static characterizations of recombination operators,

namely their “exploratory power”, their “positional bias”, and their “distributional
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bias”. These characterizations indicate substantial differences between P, uniform re-
combination and n-point recombination. P, uniform recombination has no positional
bias, while n-point recombination does. On the other hand, n-point recombination
(for small n) has very low distributional bias, while Py uniform recombination has
high distributional bias. Finally, P, uniform recombination tends to be far more ex-
plorative than n-point recombination, unless n is large (close to L). This confirms
the earlier results of Eshelman et al. (1989) and Booker (1992)

This chapter also extended these characterizations to include mutation, allowing
for a comparison of the two operators. As shown earlier in Chapter 7, ;4 mutation
and Py uniform recombination are identical (in terms of the schema characterization
considered earlier in this thesis) when binary strings are used (C' = 2) and there is
maximum population diversity (P, = 0.0). Interestingly, similar relationships are
seen again with all three characterizations considered in this chapter. Neither muta-
tion nor Py uniform recombination have positional bias. Mutation has an exploratory
power of 2L when the cardinality C = 2. Similarly, P, uniform recombination also
has exploratory power 2 when C = 2 and there is maximum population diversity.
Finally, both mutation and P, uniform recombination have the same distributional
bias when there is maximum population diversity and Py = p. In all cases mutation
appears to be more similar in behavior to P, uniform recombination than n-point
recombination.

The key contribution of this chapter is to provide a framework that extends the
earlier analyses of Eshelman et al. (1989) and Booker (1992). This new framework
includes the effects of population homogeneity and extends the prior analyses to
cover mutation. Clearly much more work can be done with this framework — for
example, explicit computations of the exploratory power of n-point recombination
(where n > 2) can be derived. Also, it would be possible to investigate the behavior
of recombination and mutation in combination. This work will be deferred until the

future.
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This concludes our treatment of static analyses. The remainder of the thesis will
consider dynamic analyses, in which the time evolution of a population of chromo-
somes is considered. Chapter 9 considers the time evolution of populations undergoing
mutation and/or recombination, without selection. Chapter 10 considers the expected
time evolution of a population undergoing selection and mutation. Finally, Chapter 11
discusses a Markov framework of an evolutionary algorithm with selection, mutation,
and recombination. As the reader will see, some of the lessons learned from the static
analyses will serve as inspiration for the experiments and analyses performed in the
dynamic analyses, culminating in predictions concerning the performance of actual

EAs (Chapter 13).
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Chapter 9

Dynamic Analyses of Mutation and Recombination

9.1 Introduction

The previous chapters in this thesis have examined static characterizations of recom-
bination and mutation. They were static in the sense that the time evolution of a
population of chromosomes was not considered. Although static characterizations
can be extremely helpful, it is also useful to investigate dynamic characterizations in
which the time evolution is explicitly considered.

This chapter will investigate how a population of chromosomes evolves under re-
combination and mutation. This investigation involves examining the limiting distri-
bution of the population as it is recombined or mutated (i.e., the expected population
in the limit of infinite time). When possible we also attempt to determine which oper-
ators approach the limiting distribution more quickly than others. In doing so we find
that the prior static schema analyses (see Chapter 2 and Chapter 3) are intimately

related to these dynamic analyses.

9.2 The Limiting Distribution for Recombination

Geiringer’s Theorem (Geiringer 1944) describes the equilibrium distribution of an ar-
bitrary population that is undergoing recombination, but no selection or mutation.
To understand Geiringer’s Theorem, consider a population of ten binary strings of

length four. In the initial population, five of the strings are “AAAA” while the other
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five are “BBBB”. If these strings are recombined repeatedly, eventually every possible
string (16 possibilities) will become equally likely in the population. In equilibrium,
the probability of a particular string will approach the product of the initial proba-
bilities of the individual alleles — thus asserting a condition of independence between
alleles.

Let S be any string of L alleles: (ay,...,ar). Geiringer’s Theorem states that if a

population is recombined repeatedly (without selection or mutation) then:

t—00

L
lim ps® = []pe® (9.1)
=1

where ps®) is the expected proportion of string S in the population at time ¢ and
Da,; () is the proportion of allele @ at locus (position) ¢ in the initial population. Thus,
the probability of string S is simply the product of the proportions of the individual
alleles in the initial (¢ = 0) population. The equilibrium distribution illustrated in
Equation 9.1 is referred to as “Robbin’s equilibrium”. Equation 9.1 holds for all
standard recombination operators (such as n-point recombination and P, uniform
recombination). It also holds for arbitrary cardinality alphabets. The key point is
that recombination operators do not change the distribution of alleles at any locus,

they merely shuffle those alleles at each locus.

9.2.1 The Rate at which Robbin’s Equilibrium is Approached

Booker (1992) states that the rate at which the population approaches Robbin’s equi-
librium is the significant distinguishing characterization of different recombination
operators. However, Booker does not attempt to actually perform that characteriza-
tion. One reasonable hypothesis is that those recombination operators that are more
disruptive would drive the population to equilibrium more quickly (see Miihlenbein
(1998) for evidence to support this hypothesis). This will be investigated by examin-
ing the differential equations describing the expected time evolution of the strings in

a population of finite size (equivalently this can be considered to be the evolution of
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an infinite-size population). The treatment will hold for hyperplanes as well, so the
term “hyperplane” and “string” can be used interchangeably.

Consider having a population of strings. Each generation, pairs of strings (parents)
are repeatedly chosen uniformly randomly for recombination, producing offspring for
the next generation. Let Sy, S;, and S; be strings of length L (alternatively, they can
be considered to be hyperplanes of order L). Let pg, ) be the proportion of string S;
at time ¢. The time evolution of S; will involve terms of loss and gain. A loss will
occur if parent S; is recombined with another parent such that neither offspring is S;.
A gain will occur if two parents that are not S; are recombined to produce S;. Thus

the following differential equation can be written for each string S;:

dps, )
dt

= —lossg,) + gaing,® (9.2)

The losses can occur if S; is recombined with another string S; such that S; and
S; differ by A(S;, S;) = k alleles, where k ranges from two to L. For example the
string “AAAA” can (potentially) be lost if recombined with “AABB” (where k = 2).
If S; and S; differ by one or zero alleles, there will be no change in the proportion of

string S;. In general, the expected loss for string 5; at time ¢ is:

losss,® ZPSZ psj DP;(H,)  where 2 < A(S;,S;) =k < L (9.3)

The product pg,® Ps; ® is the probability that S; will be recombined with S;,
and Py(Hj) is the probability that neither offspring will be S;. Equivalently, P;(Hy)
refers to the probability of disrupting the kth-order hyperplane Hy defined by the &
different alleles. This is identical to the probability of disruption that was introduced
in the static schema analysis performed in Chapter 2.

Gains can occur if two strings S, and S; of length L can be recombined to construct
S;. As with the earlier discussion of construction of hyperplanes (see Chapter 3), it

is assumed that neither Sj, or S; is the same as \S; at all defining positions and that
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either Sy or S; has the correct allele for S; at every locus. Suppose that S, and §;
differ at A(Sy, S;) = k alleles. Once again k£ must range from two to L. For example,
the string “AAAA” can (potentially) be constructed from the two strings “AABB”
and “ABAA” (where k = 3). If S, and S; differ by one or zero alleles, then either S
or S; is equivalent to S; and there is no true construction (or gain).

Of the k differing alleles, m are at string S, and n = k — m are at string ;.
Thus what is happening is that two non-overlapping, lower-order building blocks H,,
and H, are being constructed to form Hy (and thus the string S;). In general, the

expected gain for string S; at time ¢ is:

gaing, ") Z psh pSJ P.(Hy | Hy, N H,) where2 < A(Sy,S;)=k<L
Sh7

The product pg,® pg,®) is the probability that S, will be recombined with S;, and
P.(Hy | Hy, A Hy) is the probability that an offspring will be S;. Equivalently,
P.(Hy | Hy, N Hy,) is the probability of constructing the kth-order hyperplane Hj
(and hence string S;) from the two strings S, and S; that contain the non-overlapping,
lower-order building blocks H,, and H,. This is identical to the probability of con-
struction that was introduced in the static schema analysis performed in Chapter 3.

If the cardinality of the alphabet is C' then there are CL different strings. This
results in a system of C' simultaneous first-order differential equations. What is
important to note is the explicit connection between Equations 9.3 — 9.4 and the
schema theory for recombination presented earlier. Both the probability of disruption
(Chapter 2) and the probability of construction (Chapter 3) of schemata appear in
the differential equations, indicating a tight link between this dynamic theory and
the earlier (static) schema theory.

In general, P;(Hy) and P.(Hy, | H,, A H,) depend on the population homogeneity.
Earlier chapters used P, to denote the population homogeneity — P,, is the probability

that the two alleles match on two parents, at a locus. In this particular analysis, the
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strings must differ at the & alleles, so P,; = 0.0 for all £ alleles. See Chapter 2 and
Chapter 3 for details.

Naturally, a closed-form solution to the system of differential equations could yield
direct insights into the time evolution of the system (e.g., the rate at which Robbin’s
equilibrium is approached). Unfortunately, the differential equations are non-linear,
creating enormous difficulties in achieving a closed-form solution. Thus it appears to
be very difficult to actually determine the exact rate at which a particular recombi-
nation operator will drive a string (or hyperplane) to Robbin’s equilibrium. However,
it would be of interest to answer a slightly easier question: “Will recombination oper-
ator A drive a string (hyperplane) to equilibrium faster than recombination operator
B?”

Given the explicit connection that has been made between the dynamic analysis
and the prior static schema analyses, it is tempting to hypothesize that the earlier
graphs of survival (disruption) and construction of schemata (when P,, = 0.0) will
yield valuable insights as to how fast a particular recombination operator will drive
a hyperplane to Robbin’s equilibrium, relative to another recombination operator.
The intuitive feeling is that a more disruptive recombination operator would drive
the hyperplane to equilibrium more quickly.

If some hyperplane is above the equilibrium proportion then the loss terms will
be more important, as they drive the hyperplane down to equilibrium. A more dis-
ruptive recombination operator will increase P;(Hy) and hence drive the hyperplane
down towards equilibrium more quickly. Likewise, if some hyperplane is below the
equilibrium proportion then the gain terms will be more important, as they drive
the hyperplane up towards equilibrium. A more disruptive recombination operator
can increase P.(Hy | H,, A H,) and hence drive that hyperplane to equilibrium more
quickly. In both cases a more disruptive recombination operator can drive the system
to Robbin’s equilibrium more quickly.

Although this may be impossible to prove in general, it turns out that it can be
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demonstrated for second-order hyperplanes H, under n-point and P, uniform recom-

bination, and for low-order hyperplanes under P, uniform recombination.

9.2.2 A Special Case: P, Uniform Recombination

For P, uniform recombination the loss and gain terms are especially easy to compute.
As stated earlier, losses can occur if an Lth-order hyperplane S; is recombined with
an Lth-order hyperplane S; such that S; and S; differ by £ alleles, where k£ ranges
from two to L. But this occurs with probability (see Equation 2.14 of Chapter 2):

Py(He,Py)) = 1 — Py(Hp,Py) = 1 — P — (1-P)" 2<k<L

Once again, since the k alleles actually differ in the two hyperplanes, P, = 0.0
in the computation of P;(Hy, Py) (and hence P., does not appear). Note that this
expression is symmetric in the sense that 1 — P, produces the same level of disruption
as Py. By taking the derivative with respect to Py and finding where it is 0, it can be
shown that the graph of P;(Hy, Py) has zero slope when:

(1 - Po)kil - P()k_l

which occurs when Py = 0.5. Since the second derivative is less than zero everywhere,
disruption is at a maximum when P, = 0.5 and disruption decreases as P, decreases
or increases from 0.5.

Thus, the key point is that when the time evolution of the population undergoing
recombination is expressed with C* differential equations, the effect of increasing
or decreasing Py from 0.5 reduces all of the loss terms in the differential equations,
slowing the rate at which the equilibrium is approached.

Gains will occur if two hyperplanes S; and S; of order L can be recombined
to construct S;. Again, suppose that S, and S; differ at £ alleles, where k£ ranges
from two to L. Of the k differing alleles, m are at hyperplane S, and n = k — m
are at hyperplane S;. Then the probability of construction is (see Equation 3.6 of
Chapter 3):
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Note that once again this expression is symmetric in the sense that 1 — P, produces
the same level of construction as Py. By taking the derivative with respect to P, and

finding where it is 0, it can be shown that P.(Hy, Py | H,, A Hy,) has zero slope when:
mPy™ (1 — P))" + nPy" (1 — Py)™ = nPy™(1— Py)"" + mPy"(1— Py)""

which occurs when Py = 0.5.

The question now is under what conditions of n and m will Py = 0.5 represent a
global (and the only) maximum. It is easy to show by counter-example that P, = 0.5
is not a global maximum for arbitrary m and n (the reader can try m =1 and n = 4).
However, there are various cases where Py = 0.5 is a global maximum — namely when
m=1andn=1, m=1andn =2, m =1and n = 3, and when m = 2 and
n = 2. In these cases (and the symmetric cases where m and n are interchanged)
the first derivative is positive when P, < 0.5 and negative when Py, > 0.5. Since we
are interested in kth-order hyperplanes (where k& = m + n), we have shown that for
low-order hyperplanes (k < 5), construction is at a maximum when P, = 0.5 and
construction decreases as Py decreases or increases from 0.5.

Thus, consider the time evolution of the hyperplanes in a population that are
undergoing recombination, as modeled with the above differential equations. What
we have shown is that if the hyperplanes have low order (k < 5), the effect of increasing
or decreasing P, from 0.5 reduces all of the gain terms in the differential equations,
slowing the rate at which the equilibrium is approached.

To summarize, for low-order hyperplanes (k < 5) P, = 0.5 appears to be the
setting at which uniform recombination approaches equilibrium the fastest. Reducing
or increasing Py from 0.5 will serve to decrease the rate at which the equilibrium

is approached. To test this, an experiment was performed in which a population
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Figure 9.1: The rate of approaching Robbin’s equilibrium for Hy.

of binary strings was initialized so that 50% of the strings were all 1’s, while 50%
where all 0’s. The strings were of length L = 30 and were repeatedly recombined,
generation by generation, while the percentage of the fourth-order hyperplane “1111”
was monitored. When Robbin’s equilibrium is reached the percentage of any of the
fourth-order hyperplanes should be 6.25%. The experiment was run with uniform
recombination, with Py ranging from 0.1 to 0.5 (higher values were ignored due to
symmetry).

Figure 9.1 graphs the results. One can see that as P, increases to 0.5, the rate
at which Robbin’s equilibrium is approached also increases, as expected. What we
have shown, then, is that although we can’t answer precisely how fast P, uniform
recombination will approach equilibrium, we do know that decreasing (or increasing)
P, from 0.5 will always slow the approach towards equilibrium (for k& < 5).

It is natural to wonder how this extends to higher-order hyperplanes. Unfortu-
nately, as pointed out above, there will be situations (of m and n) where P, = 0.5

does not represent a global maximum for construction. However, it is easy to prove
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that when m = n the first derivative is positive when P, < 0.5 and negative when
Py > 0.5, and thus once again construction decreases as F, decreases or increases
from 0.5. It appears as if this also holds for those situations where m and n are
roughly equal (i.e., both are roughly k/2), but eventually fails when m and n are
sufficiently different (either m or n is close to 1). Since there are more situations (in
a combinatorial sense) where m and n are roughly equal, there is some hope that
Py = 0.5 will often still represent the fastest approach towards equilibrium for most
hyperplanes when k£ > 4. However, this is an issue for future research.

These results would appear to be at odds with the earlier results in Chapter 4,
in which it was proven that since Py = 0.5 is the most disruptive of the uniform
recombination operators, it is also the most constructive (for arbitrary order hyper-
planes). However, this result was obtained by uniformly averaging construction over
all possible situations (of m and n), whereas in this section we are considering each
possible situation separately. Since the situations will not necessarily be uniformly
distributed in the time evolution of the differential equations, the previous results can

not be applied.

9.2.3 A Special Case: Second-Order Hyperplanes

It is now natural to ask how n-point recombination compares with P uniform recom-
bination, in terms of how fast equilibrium is approached. It turns out that this can
be answered easily for second-order hyperplanes.

Consider the special case where the cardinality of the alphabet C = 2. In
this case there are four hyperplanes of interest: (“#0#0#”, “H#0#1#7, “H#1#04#”,
“#14147). ! Then the four differential equations describing the expected time
evolution of these hyperplanes are:

dpoo ®)
dt

1These four hyperplanes have been chosen arbitrarily, for illustrative purposes. Also, we assume
a binary-string representation, although that isn’t necessary.

= —poo(t) pu(t) Py(Hy) + p01(t) Plo(t) P.(H, | H N Hy)
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dper®

;115 = —pu™ p1o® Py(Ha) + poo” pii'Y P.(Hy | Hi A Hy)
dp1"” ), ® ., ©

i = —po1"”’ pro"”’ Pa(H2) + poo'” p1n'” P.(Hs | Hi A Hy)
dp, " ) ., @

i = —poo"’ pui" Py(Hz) + po1'” pro"’ Pe(Hy | Hy A Hy)

Thus for this special case the loss and gain terms are controlled fully by one
computation of disruption and one computation of construction. If two recombination
operators have precisely the same disruption and construction behavior on second-
order hyperplanes, the system of differential equations will be the same, and the
time evolution of the system will be the same. This is true regardless of the initial
conditions of the system.

For example, consider one-point recombination and F, uniform recombination.
Suppose the defining length of the second-order hyperplane is L;. Then, since
P., = 0.0, P;y(H2) = L, /L for one-point recombination, and P,;(Hy) = 2P,(1 — F)
for uniform recombination (see Equation 2.14 when k£ = 2). The computations for
P.(Hy | Hy A Hy) yield identical results. Thus, one-point recombination should act
the same as uniform recombination when the defining length L; = 2LPy(1 — F).

To test this, an experiment was performed in which a population of binary strings
was initialized so that 50% of the strings were all 1’s, while 50% where all 0’s. The
strings were of length L = 30 and were repeatedly recombined, generation by genera-
tion, while the percentage of the second-order hyperplane “#1#14#” was monitored.
When Robbin’s equilibrium is reached the percentage of any of the four hyperplanes
should be 25%. The experiment was run with 0.1 and 0.5 uniform recombination.
Under those settings of P, the theory indicates that one-point recombination should
perform identically when the second-order hyperplanes have defining length 5.4 and

15, respectively. Since an actual defining length must be an integer, the hyperplanes of
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Figure 9.2: The rate of approaching Robbin’s equilibrium for Hy, when L = 30.

defining length 5 and 15 were monitored. It is important to note that this is precisely
where the curves of survival (disruption) and construction intersect for one-point and
uniform recombination, for second-order hyperplanes (see Figure 2.9 of Chapter 2 and
Figure 3.5 of Chapter 3).

Figure 9.2 graphs the results. As expected, the results show a perfect match
when comparing the evolution of Hs under 0.5 uniform recombination and one-point
recombination when L; = 15 (the two curves coincide exactly on the graph). The
agreement is almost perfect when comparing 0.1 uniform recombination and one-point
recombination when L; = 5, and the small amount of error is due to the fact that the
defining length had to be rounded to an integer. As an added comparison, the second-
order hyperplanes of defining length 25 were also monitored. The earlier graphs
for survival and construction indicate that in this situation one-point recombination
should approach equilibrium even faster than 0.5 uniform recombination (because
one-point recombination is more disruptive). The graph confirms this observation.

It is important to note that the above analysis holds even for arbitrary cardinality
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alphabets C, although it was demonstrated for C' = 2. The system of differential
equations would have more equations and terms as C' increases, but the computations
would still only involve one computation of P;(Hy) and P.(Hy | H, A Hy), and those
computations would be precisely the same. To see this, consider having C' = 3,
with an alphabet of {0,1,2}. Then “#0#0#” can be disrupted if recombined with
CHIHHET ) “HELH24E7 ) “H2H#147 ) or “4#2#24”. The probability of disruption is the
same as it was above. Similarly it can be shown that the probability of construction
is the same as it was above.

What this indicates is that for second-order hyperplanes, the time evolution of
two different recombination operators can be compared simply by comparing the
graphs for survival (disruption) and construction that were given earlier in Chapter 2
and Chapter 3. Two recombination operators will approach Robbin’s equilibrium
at the same rate for those situations where their survival (or construction) graphs
intersect. Thus the comparative rate at which n-point recombination and Py uniform
recombination approach equilibrium for second-order hyperplanes is easily determined
by inspection.

Unfortunately, this is not as simple to accomplish for higher-order hyperplanes.
In these cases the graphs of survival and construction for n-point recombination were
averaged uniformly over all the remaining defining lengths Lo, ..., Ly 1 of Hj (see
Chapter 2 and Chapter 3). Although the time evolution of any population under-
going recombination depends on the probabilities of disruption and construction of
various lower-order building blocks (as shown above), it will not generally be the case
that those building blocks will be uniformly distributed. Thus the simple graphs of
survival and construction that were presented in Chapter 2 and Chapter 3 will not
necessarily allow one to compare the rate at which n-point and P, uniform recom-
bination approach equilibrium for Hy where & > 3. This is an avenue for future

research.
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9.3 The Limiting Distribution for Mutation

This section will investigate the limiting distribution of a population of chromosomes
undergoing mutation, and attempt to quantify how the mutation rate y affects the
rate at which the equilibrium is approached. Mutation will work on alphabets of
cardinality C in the following fashion. An allele is picked for mutation with probability
. Then that allele is changed to one of the other C' — 1 alleles, uniformly randomly.

Let S be any string of length L: (a4, ..., ar). If a population is mutated repeatedly
(without selection or recombination) then:

L1

i
* i=1

(9.5)

where ps(® is the expected proportion of string S in the population at time ¢ and C
is the cardinality of the alphabet.

Equation 9.5 states that a population undergoing only mutation approaches a
“uniform” equilibrium distribution in which all possible alleles are uniformly likely
at all loci. Thus all strings will become equally likely in the limit. Clearly, since the
mutation rate p does not appear, it does not affect the equilibrium distribution that
is reached. Also, the initial population will not affect the equilibrium distribution.
However, both the mutation rate and the initial population may affect the rate at
which the distribution is approached. This will be explored further in the next several

subsections.

9.3.1 A Markov Chain Model of Mutation with Cardinality C'

To explore the (non-)effect that the mutation rate and the initial population have
on the equilibrium distribution, the dynamics of a finite population of strings being
mutated will be modeled as follows. Consider a population of P individuals of length
L, with cardinality C. Since Geiringer’s Theorem (discussed in the last section)

focuses on loci, the emphasis once again will be on the L loci. However, since each
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locus will be perturbed independently and identically by mutation, it is sufficient to
consider only one locus. Furthermore, since each of the alleles in the alphabet are
treated the same way by mutation, it is sufficient to focus on only one allele (all other
alleles will behave identically). Examining only one locus is analogous to considering
a pool of P dice, with each die having C' faces. Mutation flips a die with probability
i, producing one of the other faces uniformly randomly. Since mutation does not
favor any particular face (allele), it is sufficient to concentrate just on one particular
face.

Let the alphabet be denoted as A and @ € A be one of the particular alleles.
Let @ denote all the other alleles. Then define a state to be the number of a’s at
some locus and a time step to be one generation in which all individuals have been
considered for mutation. More formally, let S; be a random variable that gives the
number of o’s at some locus at time ¢t. S; can take on any of the P + 1 integer values
from 0 to P at any time step t. Since this process is memory-less, the transitions
from state to state can be modeled with a Markov chain (for an overview of Markov
chains, see Winston (1991) or Chapter 11).

The probability of transitioning from state ¢ to state j in one time step will be
denoted as P(S; = j | Si—1 = 1) = p; j. Thus, transitioning from i to j means moving
from a state with S;_1 =4 a’s and P — ¢ @’s to a state with S; = j a’s and P — j @’s.

Suppose j > i. This means we are increasing (or not changing) the number of a’s.
To accomplish the transition requires that j — ¢ more @’s are mutated to «’s than o’s

are mutated to @’s. The transition probabilities are:

p,-,j = (96)

min{i,P—j} i P—i z+j—i ) P—j—z
u“”(—u ) (L—p) (1 - L)
7=0 x r4+j—1 ¢-1 ¢-1

Let z be the number of o’s that are mutated to @’s. Since there are 7 «’s in the

current, state, this means that 1 — z a’s are not mutated to @’s. This occurs with
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probability u®(1 — ). Also, since  a’s are mutated to @’s then x + j — i @’s must
be mutated to a’s. Since there are P — i @’s in the current state, this means that
P—i—x—j+i=P—1x—ja’s are not mutated to a’s. This occurs with probability
(n/(C —1))*"%1 - u/(C —1))P~*7I. The combinatorials yield the number of ways
to choose x o’s out of the 7 o’s, and the number of ways to choose x + j —7 @’s out of
the P — 4 @’s. Clearly, it isn’t possible to mutate more than ¢ o’s. Thus x < 7. Also,
since it isn’t possible to mutate more than P —1¢ @’s, £+ j —i < P — i, which indicates
that x < P — j. The minimum of 7 and P — j bounds the summation correctly.
Similarly, if 4 > j, we are decreasing (or not changing) the number of a’s. Thus
one needs to mutate ¢ — j more «’s to @’'s than @’s to a’s. The transition probabilities

are:

Dij = (9.7)

min{P—i,j} i P— i (L)z(l i (1 ~ L) P—i-z

=0 T+1—7 x ¢-1 ¢-1

The explanation is almost identical to before. Let x be the number of @’s that are
mutated to a’s. Since there are P—¢ @’s in the current state, this means that P—i—x
@’s are not mutated to a’s. This occurs with probability (u/(C —1))*(1 — u/(C —
1))P~%=. Also, since z @’s are mutated to a’s then x +4 — j a’s must be mutated to
@’s. Since there are 7 o’s in the current state, this means that i —x —i+j =7 —x
«’s are not mutated to @’s. This occurs with probability p®™7(1 — p)?~®. The
combinatorials yield the number of ways to choose x @’s out of the P — 7 @’s, and the
number of ways to choose x + 7 — j a’s out of the ¢ a’s. Clearly, it isn’t possible to
mutate more than P — i @’s. Thus x < P — 4. Also, since it isn’t possible to mutate
more than ¢ o’s, x + ¢ — j < ¢, which indicates that £ < j. The minimum of P — ¢
and 7 bounds the summation correctly.

In general, these equations are not symmetric (p; ; # pj.i), since there is a distinct

tendency to move towards states with a 1/C mixture of s (the limiting distribution).
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Note also that if 7 = j both equations give the same transition probabilities, which

provides a useful check on the correctness of the above equations:

Dii =
min{i,P—i} i P—i z Pi—z
x K 11— M
> u(—) (1—p) (1——>
=0 T T ¢-1 ¢-1

When 0.0 < ¢ < 1.0 all p; ; entries are non-zero and the Markov chain is ergodic.
Thus there is a steady-state distribution describing the probability of being in each
state after a long period of time. By the definition of steady-state distribution, it can
not depend on the initial state of the system, hence the initial population will have no
effect on the long-term behavior of the system. The steady-state distribution reached
by this Markov chain model can be thought of as a sequence of P Bernoulli trials
with success probability 1/C. Thus the steady-state distribution can be described
by the binomial distribution, giving the probability 7; of being in state i (i.e., the

probability that 7 o’s appear at a locus after a long period of time):

) ) P 1 7 1 P—i

Note that the steady-state distribution does not depend on the mutation rate
i or the initial population, although it does depend on the cardinality C'. Now
Equation 9.5 states that the equilibrium distribution is one in which all possible alleles
are equally likely. Thus the expected number of o’s at any locus of the population

(at steady state) can be proven to be:

P

) P ) 1 % 1 P—3 P
sl = 3| (@) (-5) =5

1=0

To test the theory, the Markov chain for a population of P individuals and mu-

tation rate p was constructed. The steady-state distribution was then calculated
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Figure 9.3: Steady-state distribution for mutation when C = 5. P = 10 in the left
graph and P = 20 in the right graph. The mutation rate is irrelevant.

directly from the Markov chain. As a check, the steady-state values were compared
to those obtained by using Equation 9.8 — they agreed in all cases. Figure 9.3 graphs
the results, where the cardinality of the alphabet C' = 5. In the left graph P = 10,
while in the right graph P = 20. Because C' = 5, the expected number of o’s in a
column of the population should be two when P = 10 and four when P = 20. Note
how the distributions peak at those values. Finally, in order to see the effects of the
mutation rate, u was set to .01 and .10. As expected, changing the mutation rate
had no effect on the steady-state distribution (there are actually two curves in each

graph — but they are identical).

9.3.2 A Markov Chain Model of Mutation with C' = 2

When C = 2 the equations can be simplified somewhat. In this case the alphabet
A is considered to simply be {0,1}. The focus of attention will be on the allele “1”
(i.e., « = 1). Suppose j > i. To accomplish the transition requires that j — i more
0’s are mutated to 1’s than 1’s are mutated to 0’s.

min{i,P—j}
Pij =

v P—i (2P I(] ) P(eetid

=0 T T+7—1
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Figure 9.4: Steady-state distribution for mutation when C = 2. P = 10 in the left
graph and P = 20 in the right graph. The mutation rate is irrelevant.

Similarly, if 7 > j, one needs to mutate ¢ — 7 more 1’s to 0’s than 0’s to 1’s,
yielding:

min{P—1,j} i P—i

pij = M2m+i—j(1 . M)P—(Zz—!—i—j)

=0 TH+1—7 x
The steady-state distribution reached by this Markov chain model can be described

by giving the probability of being in state 7, m;:

lim P(S;=i) = m; = {D (l)i@ — 1>P_i _ | * 0.5" (9.9)

The expected number of 1’s at steady state is given by:

. _ . P _
Jim E[S,] = 2220: ] i0s =
To see how the theory is affected by the cardinality of the alphabet, the Markov

chain for a population of P individuals and mutation rate u was constructed when

C = 2. The steady-state distribution was then calculated directly from the Markov
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chain — again the results agreed with the theoretically derived distribution given above
in Equation 9.9.

Figure 9.4 graphs the results. In the left graph P = 10, while in the right graph
P = 20. Because C' = 2, the expected number of 1’s in a column of the population
should be five when P = 10 and ten when P = 20. Note how the distributions peak
at those values. The distributions are also now symmetric around the mean, because
mutation is equally likely to yield an « = 1 as an @ = 0. Finally, in order to see
the effects of the mutation rate, u was set to .01 and .10. As expected, changing the
mutation rate had no effect on the steady-state distribution (there are actually two

curves in each graph — but they are identical).

9.3.3 The Rate at Which the Limiting Distribution is Approached

The previous subsections showed that the mutation rate y and the initial population
have no effect on the limiting distribution that is reached by a population undergoing
only mutation. However, these factors may very well have an influence on the rate
at which that limiting distribution is approached. This issue is investigated in this
subsection.

In order to model the rate at which the process approaches the limiting dis-
tribution, consider an analogy with radioactive decay. In radioactive decay, nuclei
disintegrate and thus change state. In the world of binary strings (C = 2) this would
be analogous to having a sea of 1’s mutate to 0’s, or with arbitrary C' this would
be analogous to having a sea of o’s mutate to @’s. In radioactive decay, nuclei can
not change state back from @’s to «’s. However, for mutation, states can continually
change from o to @ and vice versa. This can be modeled as follows. Let p,(®) be the
expected proportion of a’s at time ¢. Then the expected time evolution of the process

can be described by a differential equation:

dpa (t)
dt

— a4+ (%) (1—pa®) = (%) (1-Cpa®) (9.10)
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The term p po") represents a loss, which occurs if « is mutated. The other term
is a gain, which occurs if an @ is successfully mutated to an a. At steady state the
differential equation must be equal to 0, and this is satisfied by p,® = 1/C, as would
be expected.

The general solution to the differential equation was found to be:

pa® = L (aw) _ l) T (9.11)

C C

where —C'11/(C —1) plays a role analogous to the decay rate in radioactive decay. This
solution indicates a number of important points. First, as expected, although u does
not change the limiting distribution, it does affect how fast it is approached. Also, the
cardinality C' also affects that rate (as well as the limiting distribution itself). Finally,
different initial conditions will also affect the rate at which the limiting distribution
is approached, but will not affect the limiting distribution itself. For example, if
Pa'?) = 1/C then p,) = 1/C for all ¢, as would be expected.
The solution can be checked by noting that:

dpa®  —C i pa® eTH 4 e

dt Cc-1

A number of special cases are of interest. The first is when the population is
initially seeded only with a’s (i.e., po(®) = 1). Then the solution to the differential

equation is:

Cut

(C—1) et + 1
C

DPa ® =

The second case is when the cardinality C' = 2. Let us assume that binary strings
are being used and o = 1. Equation 9.10 becomes quite simple:

dp: ()

— —up” + p(l-pY) = p(1-2pY)

At steady state this must be equal to 0, and p;) = 1/2. Assume the population is

initially seeded only with 1’s. Then the solution to the differential equation is:
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Figure 9.5: Decay rate for mutation when C' = 2. The theoretical results are on the
left, and experimental results are on the right.

et 4 1
n® = — (9.12)

which is very similar to the equation derived from physics for radioactive decay.

To test the theory, a population of binary strings was initialized to all 1’s and
then repeatedly mutated at mutation rate . This process was repeated 1000 times
to average the results. As time progresses the expected proportion of 1’s should
approach 50%. Figure 9.5 compares the decay curves derived via Equation 9.12 (the
left graph) with the decay curves derived from this experiment (the right graph). As
expected the graphs are identical. The key point is that although p has no effect
on the limiting distribution, increasing p clearly increases the rate at which that

distribution is approached.

9.4 The Limiting Distribution for Mutation and Recombination

The previous sections have considered recombination and mutation in isolation. A
population undergoing recombination approaches Robbin’s equilibrium, while a pop-
ulation undergoing mutation approaches a uniform equilibrium. What happens when

both mutation and recombination act on a population?
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Figure 9.6: Pictorial representation of the action of mutation and recombination on
the initial population.

The answer is very simple. In general, Robbin’s equilibrium is not the same as
the uniform equilibrium, hence the population can not approach both distributions in
the long term. In fact, in the long term, the uniform equilibrium prevails and we can
state a similar theorem for mutation and recombination. If a population is mutated

and recombined repeatedly (without selection) then:

; ® — il
Jim pgt = L5 (9.13)

This is intuitively obvious. Recombination can not change the distribution of
alleles at any locus — it merely shuffles alleles. Mutation, however, actually changes

that distribution. Thus, the picture that arises is that a population that undergoes
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recombination and mutation attempts to approach a Robbin’s equilibrium that is
itself approaching the uniform equilibrium. Put another way, Robbin’s equilibrium
depends on the distribution of alleles in the initial population. This distribution
is continually changed by mutation, until the uniform equilibrium distribution is
reached. In that particular situation Robbin’s equilibrium is the same as the uniform
equilibrium distribution. Thus the effect of mutation is to move Robbin’s equilibrium
to the uniform equilibrium distribution. The speed of that movement will depend on
the mutation rate u (the greater that y is the faster the movement). This is displayed
pictorially in Figure 9.6.

9.5 Summary

This chapter investigated dynamic analyses of recombination and mutation. The
dynamic analyses of recombination revolved around the Robbin’s equilibrium distri-
bution of strings that will result if a population is repeatedly recombined. Geiringer’s
Theorem indicates that this equilibrium distribution depends only on the distribution
of alleles in the initial population. The form of recombination and the cardinality are
irrelevant.

We then attempted to characterize the speed at which various recombination op-
erators approach this equilibrium. By developing a differential equation model of the
population, it is possible to show that the probability of disruption and construc-
tion of schemata are crucial to the time evolution of the system. Interestingly, these
probabilities were obtained from static analyses in Chapter 2 and Chapter 3.

The analysis provides evidence to support the intuitive hypothesis that the more
disruptive recombination operators approach Robbin’s equilibrium more quickly. Al-
though we were unable to provide precise estimates of the rate at which equilibrium
is approached, these results do allow us to make relative statements about differ-
ent recombination operators. For example, we were able to show that for low-order

hyperplanes (k < 5), Py = 0.5 is the setting at which P uniform recombination ap-
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proaches equilibrium the fastest. Higher or lower settings of P, slow the approach.
We were also able to compare n-point recombination and P, uniform recombination
directly on second-order hyperplanes, and we derived a relationship showing when
one-point recombination and uniform recombination both approach equilibrium at
the same speed. Again, these results hold for arbitrary cardinality. Clearly more
work is required to extend these results to higher-order hyperplanes.

We then investigated a dynamic analysis of mutation, and showed that a popu-
lation undergoing mutation approaches a uniform equilibrium in which every string
is equally likely. The mutation rate and the initial population have no effect on that
limiting distribution. A differential equation model of this process (which is analo-
gous to radioactive decay in physics) allowed us to compute the speed at which the
equilibrium is approached. Both the mutation rate and the initial population affect
that speed.

Finally, we investigated the joint behavior of a population undergoing both muta-
tion and recombination. We showed that, in a sense, the behavior of mutation takes
priority, in that mutation actually moves Robbin’s equilibrium until it is the same as
the uniform equilibrium (all strings being equally likely).

All of these dynamic analyses have excluded selection from the process. The
remainder of this thesis will include selection. Chapter 10 will model a population
undergoing mutation and selection. Chapter 11 will model a complete evolutionary

algorithm with selection, recombination, and mutation.



Chapter 10

A Dynamic Model of Selection and Mutation

10.1 Introduction

The previous chapters of this thesis have considered static and dynamic analyses
of recombination and mutation, in order to compare the two operators. However,
since selection is a crucial component of evolutionary algorithms, it is important to
investigate the effects that selection can have on the earlier findings. To this end we
now introduce models of evolutionary algorithms that include selection. We will focus
primarily on fitness-proportional selection (Holland 1975), due to its mathematical
simplicity, however, it would not be difficult to extend the work to other selection
mechanisms. This chapter investigates selection and mutation. The next chapter

(Chapter 11) investigates selection, mutation, and recombination.

10.2 Selection and Mutation

A population undergoing selection and mutation can be modeled using “equations of
motion” that compute the exrpected time evolution of the proportions of the strings
(individuals) in the population (equivalently this can be considered to be the evolution
of an infinite-size population). In general, since this model will keep track of every
possible individual, the model will require a system of C* simultaneous equations,
where L is the string length and C' is the cardinality of the alphabet. Let .S; and S;
be arbitrary strings of length L in that alphabet. Let the proportion of a string S;

155
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at time ¢ be denoted as pg; (). Then the expected time evolution of the system can

be computed using the following equation of motion:

f(Si)
ps, ) gpsi(t) s (10.1)

Equation 10.1 first considers the proportions of all strings S; at time £. These
proportions are modified by fitness-proportional selection, where f(S;) is the fitness
of individual S; and f(t) is the average fitness of the population at time ¢. Finally
Ps;,s; computes the probability of mutating string \S; to string S;. The result is the
expected proportion of string S; at time ¢ + 1.

The total system is described by C* equations, one for each string S;. Starting

), the CT equations are iterated repeatedly to produce

with initial proportions pgj(
the expected time evolution of the system. Even with binary-string representations
(C = 2), having binary strings of length L = 10 will require over 1000 equations.
Clearly this makes it hard to deal with realistic problems. This is a common difficulty
that arises when modeling complex systems. Complex systems can often be modeled
by using simplifying assumptions. Such models are coarse in the sense that they omit
various details of the systems (e.g., our previous models that omitted selection, or
the current model that omits recombination). Such models ease analytical burdens
but are only approximations to the system. Attempts to increase the fidelity of the
approximation, by increasing the amount of detail, generally worsen the analytical
burden. The trick, then, is to find situations under which simplifying assumptions
can be made safely. One way to do this is to “aggregate” the system in such a way
that multiple elements of the system belong to a particular equivalence class. Then
only the equivalence classes need be modeled. If the aggregation is done well, the
amount of error introduced into the model may be very small.

It turns out that a surprising number of fitness functions f can be aggregated in a
fashion that greatly simplifies the above model by reducing the number of equations

and the number of terms in the equations. To see this, let the alphabet be denoted
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as A and let a € A be one of the alleles. Let @ denote all the other alleles. It turns
out that for some classes of problems (fitness functions), only the number of &’s in
an individual matters. ! Thus sets of strings with j o’s form an equivalence class,
and it suffices to have only L + 1 equations, since there can be anywhere from zero
to L o’s in a string. This is a dramatic reduction from the C' equations that would

be required in the general case. Equation 10.1 appears as before:

f(Si)
ps, ) — SZpsf” o s (10.2)

however, in this case S; refers to any string with ¢ o’s, and S; refers to any string
with j a’s. The fitness of any string with ¢ o’s is the same, and is denoted as
f(S;). The probability of transitioning from any string with 7 o’s to j a’s is given
by ps,,s; = pi;- Rather than compute these probabilities from scratch, we note that
a similar computation in Chapter 9 provided the same probabilities p; ; for strings of
length P instead of L. Thus, by simply substituting L for P in Equation 9.6 we get

the following when j > i:

pij = (10.3)
min{i,L—j} i L—1 T+j—i L—-j—x
xT /‘1’ 1—x 'u'
5 () (- )
=0 x xT+7j—1 -1 ¢-1

Similarly, using Equation 9.7 for 7 > j yields:

min{L—i,j} . s T —i—x
Z ’ t L—i uw+i—j( M ) (1- ’u)j—z (1 M )L
z=0 x+1 —j T C—-1 c-1

Rather than repeat the explanation of these equations provided in Chapter 9, the

reader is urged to consult that chapter for full details.

I This form of aggregation introduces no error into the model.
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Figure 10.1: Selection and mutation modeled when p = .005. S takes on values 0.00,
0.01, 0.05, and 0.10.

At first blush, this class of problems would appear to be limited to only unimodal
functions (functions with one “peak” in the space). This is not true. For example,
consider a familiar two-peak problem where individuals in an EA are binary strings.
Traditionally one peak is at “111...111” while the other is at “000...000”. However,
this problem really monitors only the number of 1's. Suppose there are N 1’s. If
N > L/2 the fitness is N, else the fitness is L—N. There are two peaks with maximum
fitness L. Many of the deceptive and trap functions investigated by Goldberg (e.g.,
see Deb and Goldberg (1992)) fall in this class. In fact, it is also possible to create
problems with an even higher number of peaks. For example, a problem might have

a peak where N = 0, N = L/2, and N = L, thus creating a three-peak problem
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Figure 10.2: Selection and mutation modeled when p = .01. S takes on values 0.00,
0.01, 0.05, and 0.10.

that depends only on one allele. Clearly this technique can be extended to more than
three peaks.

Of the unimodal functions mentioned in the literature, two are of interest because
they fall within this framework. The first is the class of “Royal Road” functions
analyzed in Nimwegen et al. (1997). The fitness function considers each individual
to consist of NV contiguous blocks of K bits, and the fitness of an individual is simply
the number of blocks that consist of K 1’s. This is analogous to having an alphabet
where C = 2% in our model, where « is the allele corresponding to the binary string
equivalent of K 1’s. Interestingly, it appears as if many of the analytical techniques

investigated in Nimwegen et al. (1997) could also be applied to the more general class
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of problems defined here.

The second function is from a widely studied problem in the biological community
(Muller 1964). This problem is such that the fitness of an individual is (1 — S)™,
where M is the distance of the individual from some optimum and S is a selection
pressure. Thus the optimal individual has fitness 1.0 (M = 0), while non-optimal
individuals have positive fitness less than 1.0.

Since the latter problem was especially designed to investigate the effects of mu-
tation and selection on evolution, we use it as a test function for our mathematical
framework. The mathematical model (consisting of Equations 10.2 — 10.4) was com-
pared to the behavior of a standard EA (with recombination turned off) on the
(1 —S5)™ function. Binary strings of length 64 were initialized to all 1’s (which is
the optimum string), and then the system was allowed to evolve. The population
size of the EA was 1000. The average number of 1’s in the strings was monitored
for 1000 generations. Since binary strings are used the distance metric is Hamming
distance. Figure 10.1 graphs the results when the mutation rate p is 0.005 as the
selection pressure S ranges from 0.00 to 0.10. Figure 10.2 graphs the results when
the mutation rate p is 0.01 as the selection pressure S ranges from 0.00 to 0.10. Both
the theoretical and empirical curves are plotted. Although there is some noise due
to stochastic fluctuations in the EA (the EA was only run once per problem), the
agreement between theory and experiment is quite good. Note that higher mutation
rates drive the system to the same equilibrium distribution, but more quickly, when
S = 0.00. In fact, when S = 0.00, there really is no selection occurring, and the re-
sults from Chapter 9 (concerning the limiting distribution of a population undergoing
mutation) hold. For example, the expected proportion of 1’s, p1®, in the individuals
is governed by Equation 9.12:

o _ e+ 1

y4! 5

For S > 0, selection comes into play. Two observations are immediately obvious

from the graphs. The first is that higher mutation rates actually change the equilib-
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rium distribution, producing strings with less 1’s. The second is that higher selection
pressure also changes the equilibrium distribution, producing strings with more 1’s.

Both of these results are intuitively reasonable.

10.3 Summary

This chapter described a model of mutation and fitness-proportional selection in which
equations of motion give the expected proportion of the strings in the population over
time. In the worst case this involves C* simultaneous equations. However, we have
defined a class of fitness functions that allows for an error-free aggregation of the
model that results in far fewer equations. If a fitness function depends only on one
particular allele in the alphabet, only L + 1 equations are required. We pointed out
that this class of functions includes common one-peak functions from the literature
(the Royal Road function and the (1 — S)™ function from the biological community).
It also includes many of the two-peak trap and deceptive functions that have been
analyzed in the EA community (e.g., see Deb and Goldberg (1992)). Finally, this
class of functions can also include problems of even higher multimodality (number of
peaks).

The main advantage of this model and class of problems is that the expected be-
havior of reasonably large problems (i.e., problems in high-dimensionality spaces) can
be theoretically evaluated with a small number of simultaneous equations. Another
advantage is that the model can be easily extended to cover other forms of selection
(such as linear-ranking selection), while still allowing the same aggregation to occur.
The main drawback is the lack of recombination. However, since some varieties of
evolutionary algorithms (e.g., evolutionary programming) do not use recombination,
this style of analysis can in fact be quite useful.

The system with fitness-proportional selection, mutation, and recombination can

also be modeled with equations of motion:
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f(Sn) f(51)
ps, ) = ;;Szpshw ps, 70 P P (10.5)
h l i

Equation 10.5 first considers the proportions of all pairs of strings S, and S; at
time ¢. These proportions are modified by fitness-proportional selection, yielding the
probability that S, and S; will be chosen for recombination. Recombination of S},
and S; will produce an individual S;, which can be mutated into string S;. The term
D(snx5),s: is the probability that the two strings S, and S; will be recombined to
create S;, while ps, s, computes the probability of mutating S; into S;. The third
summation considers all possible strings S;. The result is the expected proportion of
string S; at time ¢ + 1. Once again, the total system is described by C¥ equations,
one for each string S;. Starting with initial proportions pg, ), the C* equations are
iterated repeatedly to produce the expected time evolution of the system.

One interesting observation is that the probability of recombination, p(s, xs),s;
can be derived using the earlier static schema analyses in Chapters 2 and 3. Suppose
that either Sy, or S; has the correct allele for S; at every locus (if this is not true, then
the probability of creating S; is 0). Suppose that Sj, and S; differ at A(Sy, S;) = k
alleles. For example, the string “AAAA” can (potentially) be constructed from the
two strings “AABB” and “ABAA” (where k = 3). Of the £ differing alleles, m are
at string S, and n = k — m are at string S;. Thus what is happening is that two
non-overlapping, lower-order building blocks H,, (in S,) and H, (in S;) are being
constructed to form Hj (and thus the string S;). This occurs with probability:

Pspxs),ss = Pe(Hp | Hn NHy)  where 0 < A(Sy,S) =k <L

which is equivalent to the probability of construction that was introduced in the static
schema analysis performed in Chapter 3. 2
The main drawback of this model is that the addition of recombination dramat-

ically worsens the complexity of each of the C¥ equations. A similar difficulty can

2If k = 0 or k = 1 then either S, = S; or S; = S; and this is survival, not construction. See
Chapter 2.
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be seen in Whitley’s “executable model” (Whitley 1992), which is similar in spirit,
although it lacks mutation. Also, the addition of recombination makes aggregation
much more difficult. For example, since recombination is affected by the location of
alleles on an individual, monitoring the number of some allele (as was done above to
aggregate the system with selection and mutation) will not suffice.

The second drawback is the assumption of an infinite population, which does not
capture finite-population effects. In order to overcome this drawback the next chapter
(Chapter 11) investigates a Markov model of a complete EA, with a finite population
that undergoes fitness-proportional selection, mutation, and recombination. Unfor-
tunately, the assumption of a finite population complicates the model even further,
making aggregation even more necessary. To deal with this issue, Chapter 12 gives a

novel algorithm for automatically aggregating any Markov model.



Chapter 11

A Dynamic Model of Selection, Recombination and Mutation

11.1 Introduction

The static (Chapters 2 — 8) and dynamic (Chapter 9) theories that have been used
to analyze mutation and recombination have omitted selection. These theories were
relatively easy to analyze, and they provided useful insights into the various compo-
nents of an EA. However, because they do not include selection, they are generally
insufficient as predictive theories. Chapter 10 included selection, and modeled the
behavior of an infinite-population EA with selection and mutation (with and without
recombination). It turns out that the model without recombination can be efficiently
analyzed on a restricted (but interesting) class of functions. The addition of recom-
bination makes the model considerably more complex.

This turns out to be a general observation — the more complete the model of an EA,
the more predictive it becomes, with the commensurate increased cost in analytical
complexity. This chapter will continue the trend towards completeness, by examining
a complete model of an EA with a finite population, selection, recombination, and

mutation.

11.2 EA Performance

What sorts of questions should a predictive theory of EAs be able to answer? The

standard measures of performance for optimization algorithms involve convergence
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properties (i.e., the ability to find an optimum) as well as convergence rates (how
quickly they are found). Since EAs are parallel, population-based, stochastic search
procedures, there are a number of possible definitions of convergence. The simplest
notion is that ultimately an EA population converges to a uniform population con-
sisting of P copies of a single individual which may or may not correspond to a global
optimum.

Since most EAs are run with non-zero mutation rates, this simple form of conver-
gence seldom occurs, unless one “anneals” the mutation rate over time (Fogel 1995).
Without an annealing mechanism, EAs settle into a dynamic equilibrium in which the
exploratory pressures of mutation and recombination are balanced by the exploita-
tive pressure of selection (for example, this can be seen in Chapter 10 for an EA with
selection and mutation). Moreover, since mutation is active, every point in the space
has some non-zero probability of being visited (infinitely often). Hence, it is trivial
to show that a global optimum will be visited infinitely often when an EA is left to
run in this state of dynamic equilibrium.

As a consequence, most EA practitioners measure performance in terms of the
average (or best) points in the current population, or in terms of monotonically non-
decreasing “best-so-far” curves which plot, as a function of the number of samples (or
generations), the best point found so far in the search process regardless of whether
or not that point is currently represented in the population.

Some natural questions related to such performance measures immediately arise.
How likely is it that, if I look at the contents of the nth generation, it will contain a
copy of the optimum? What is the expected waiting time until a global optimum is
encountered for the first time? How long does it take before a point is encountered
that is within some error tolerance of the optimum? How much variance is there in
such measures from run to run? How much are these measures affected by changes
in population size, mutation rates, etc.?

The goal of this chapter is to provide a framework for answering the previous ques-
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tions concerning the behavior of EAs. Such a predictive theory must simultaneously
take into account the characteristics of the particular EA being used (generational,
elitist, etc.), the internal search space representation (binary, gray code, etc.), the
operators used (form and rate of recombination, etc.), the non-linear dynamics of the

search process, and the characteristics of the function to be optimized.

11.3 Overview of Markov Chains

If statistics such as the mean and variance of waiting times are to be used as measures
of performance, random process theory would seem to provide an appropriate set of
tools for describing the behavior of stochastic EAs. Historically, it has been quite
natural to model simple EAs as Markov chain processes in which the “state” of an
EA is given by the contents of the current population (De Jong 1975; Goldberg and
Segrest 1987). One can then imagine a state space of all possible populations and
study the characteristics of the population trajectories (the Markov chains) an EA
produces from randomly generated initial populations. This is the approach taken in

this chapter.

11.3.1 Basic Definitions

A discrete-time Markov chain is a dynamical system composed of N discrete states.
At each time step, the Markov chain can change states. Let S; be the random variable
for the Markov chain, which can take on any of the N states at time ¢. The system
is described by an N x N matrix (), which gives the probability of transitioning from

one state 7 at time ¢t — 1 to state j at time ¢:

Q,7) = pij = P(Si=J|Si-1=1)

The p;; values define the “one-step” probability transition matrix @), since it

describes the probability of transitioning from state to state in one time step. The
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transient behavior of the system is obtained from the “n-step” probability transition

values, which are obtained from the nth power of Q:

Q"(4,7) = pi;™ = P(S; =75 | Si_n =1)

It is also possible to compute conditional probabilities over a set of states. Define
a predicate Pred; and the set J of states that make Pred; true. Then the probability
that the system will be in one of the states of J at time ¢, given it is in state ¢ at time
t—nis:

pi; ™ = P(S €T | Sin=1) = > pi;™
j€J

Analyses of Markov chain behavior can be considered to be “instantaneous” or
“cumulative”. Instantaneous behavior refers to events that occur at a particular
time. An example would be whether the system is at a particular state at that time.
Cumulative behavior refers to events that have occurred by a certain time. This
chapter will define both sets of behavior, but will focus primarily on instantaneous

behavior.

11.3.2 Instantaneous Transient Behavior at Time n

The probability of being in some state j at time n is given by simply considering the
probability of each possible n-step transition, appropriately weighted by the a prior:
probabilities:

pi = PSa=j) = 3 ' pi®

where the a priori probability of a system being in state ¢ at time 0 is denoted as
pi .
The probability that the system is in one of the states of J at time n is:

ps™ =3 p™ (11.1)
jed
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Finally, it is possible to compute the probability that the system will transition
from one set of states to another set of states. Let Pred; be another predicate over
the states, and denote I to be the set of states that make Pred; true. Then the
probability that the system will be in one of the states of J at time ¢, given that it is

in one of the states of I at time ¢ — n, is:

Eie[pi(t_n) pi,J(n) . Z,-E[pi(t_”) pi,J(")

prttm) B Yier pit™
which involves a renormalization over the states indexed by I. Since Equation 11.2

pra™ = P(Si€J|Snel) = (11.2)

describes how a system transitions from a group of states to another group of states,
this raises the intriguing notion that a system with a large number of states might be
simplified (or aggregated) into a system with a smaller number of groups of states.
Unfortunately, this is hard to do in general since Equation 11.2 is a time-dependent
equation (thus making the aggregated Markov chain non-stationary), so this discus-
sion will be deferred until Chapter 12.

The nice feature of this formalization is that any predicate over the states (pop-
ulations) can be used. Thus, if the system is an EA, and the focus is on optimality,
it is natural to define the set of states that contain at least one copy of an optimum,
and compute the probability that the EA will actually be in one of these states at
generation n. Predicates that select states based on average fitness, fitness variance,
population homogeneity, and so on, can also be of interest.

It is possible to generalize further to arbitrary functions f over the states and

compute, for example, the expected value of that function, at time n:

EIfI™ = 3 5™ 1) (11.3)

11.3.3 Cumulative Transient Behavior

Another common computation involving Markov chains is referred to as the “mean

first passage times” for going from state ¢ to state j (for a nice discussion of this, see
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Winston (1991)). This refers to the length of time that it takes (on the average) to
reach state j for the first time, given that the process is currently in state 7. Answering

such questions involves solving the set of simultaneous equations:

mij = pig + Y ik (1+myy) (11.4)
Py

where m; ; denotes the mean first passage time from state  to state 7. To understand
the equation, consider transitioning from state 7 to 7 in one move. This occurs with
probability p; ; and requires only one step. However, suppose the system transitions
from state i to state k£, where k£ is not equal to j. This occurs with probability p; »
and requires one step. However, there now remain my, ; steps to state j.

As before, if there is interest in a set J of states, it is possible to compute the
mean first passage time for the system to first enter that set of states, given that it

is currently outside that set:

mig = Y pij + > Pig (1+meys)
jed kg

where m; ; denotes the mean first passage time from state 7 to any of the states in set
J, and 7 is not in J. This is very similar to Equation 11.4, with the exception that
the probability of entering state J in one step is simply the sum of the probabilities
of entering each state within J.

Once this system of simultaneous equations is solved, it is possible to calculate

the “expected waiting time” to reach a state in J, given a random initial state, via:

EWT; =Y pi20 + > pi my,
icJ igJ

There are two parts to this equation. The first part reflects the possibility that
a random initial population is in state J, and hence has a zero waiting time. The
second part reflects the mean passage time from initial populations not in J, to a

state in J. Clearly this simplifies to:
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EWT; =Y p% my,y
ig7

This holds for any set of states J, and thus it can be used to provide expected

waiting times for a variety of events.

11.4 The Nix and Vose Markov Chain Model for EAs

Most of the analytic results from the prior Markov chain approaches for EAs are
derived using infinite-population models and involve characterizing steady-state be-
havior (Davis and Principe 1991; Vose 1992; Suzuki 1993; Rudolph 1993). It is
considerably more difficult to get analytic results concerning transient behavior, such
as the means and variances of waiting times, for Markov models of finite-population
EAs. However, increases in computer technology now permit the visualization and
computational exploration of such models as the first steps in developing such a the-
ory. Among the many papers on Markov models of EAs, the Nix and Vose model
(1992) is particularly well suited to serve as the basis for the framework provided in
this chapter.

The Nix and Vose Markov model is intended to represent a simple, generational
EA consisting of a finite population, a standard binary representation, standard muta-
tion and recombination operators, and fitness-proportional selection. Fitness scaling,
elitism, and other optimization-oriented features are not modeled.

If L is the length of the binary strings, then r = 2% is the total number of possible
strings. If P is the population size, then the number of possible populations, NV,

corresponding to the number of possible states, is given in Nix and Vose (1992):

P+r—1
N = (11.5)
r—1

Unfortunately, the size of the N x N matrix @ for typical EA applications is
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Table 11.1: The number of states N as a function of L and P.

String Length L
Pl 1 2 3 4 )
11 2 4 8 16 32
21 3 10 36 136 928
31 4 20 120 816 9,984
41 5 35 330 3,876 52,360
5| 6 56 792 15,504 376,992
6| 7 84 1,716 54,264 2,324,784
7] 8 120 3432 170,544 12,620,256
81 9 165 6,435 490,314 61,523,748
9010 220 11,440 1,307,504 273,438 880
10 | 11 286 19,448 3,268,760 1,121,099,408

computationally unmanageable since the number of states NV grows rapidly with pop-
ulation size P and string length L (see Equation 11.5 and Table 11.1). However, as
will be found, initial results from models involving small values of P and L can hold
as the model scales to more realistic sizes.

The possible populations are described by the matrix Z, which is an N X r matrix.
The ith row ¢; = < 29 ,..., 2Ziy—1 > of Z is the incidence vector for the ith
population. In other words, z;, is the number of occurrences of string y in the ith
population, where y is the integer representation of the binary string. For example,
suppose L = 2 and P = 2. Then r = 4, N = 10, and the Z matrix is shown in
Table 11.2.

Nix and Vose then define two mathematical operators, F and M, where F is
determined from the fitness function, and M depends on the mutation rate u, re-
combination rate x, and form of recombination and mutation used (in their paper
they assume a standard bit flipping mutation operator and a one-point recombination
which produces a single offspring, although M can be generalized to other operators).
With F and M defined, they are now able to calculate exact state transition proba-

bilities p; ; via:
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Table 11.2: The Z matrix when L =2 and P = 2.

Binary String
State | 00 01 10 11
P1 0 0 0 2
P2 0O 0 1 1
P3 0 0 2 0
P4 0O 1 0 1
P5 0 1 1 0
P6 0 2 0 0
pP7 1 0 0 1
P8 1 0 1 0
P9 1 1 0 0
P10 2 0 0 0

QUi j) = piy = P! ] — 221 (11.6)

y=0 Zjy!

That is, given F and M, p, ; specifies how likely it is that a simple EA in state 4
(the current population) will be in state j in the next generation. One can see from
the equation that fitness-proportional selection is assumed.

If the mutation rate y is non-zero, all states have some non-zero probability of be-
ing reached. Hence all the entries of () are non-zero making the Markov chain ergodic.
It is a theorem that any ergodic Markov chain has a limiting distribution called the
“steady-state distribution”. This implies that, in the limit of many generations (time
steps), the probability of being in any state does not depend on the starting state of
an EA.

Naturally, most of the interesting behavior for an EA is the transient behavior,
which occurs before the steady-state distribution is reached. One way to investigate
transient behavior is through the visualization of the n-step probability transition
matrices @". This is done in De Jong et al. (1994) as well as in Spears and De Jong
(1996), but will not be addressed in this chapter. Instead, this chapter will concentrate
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on the computational techniques for exploring the transient behavior of the EA. The
focus will be on the instantaneous transient behavior (for example, as computed by
Equation 11.1 or Equation 11.3). Experiments concerning the cumulative transient

behavior (i.e., expected waiting time analyses) can be found in De Jong et al. (1994).

11.5 Instantaneous Transient Behavior of EAs

While theorems can be proven regarding the long-term steady-state behavior of an
EA, they don’t directly answer the questions raised earlier, such as how likely is it
that the optimum will be present in the nth generation. Answering such questions
requires the computation of the transient behavior of the Markov chain (i.e., the time
before steady-state behavior is reached). For example, it would be useful to answer

the following questions that focus on instantaneous behavior at generation n:

1) What is the probability that an EA population will contain a copy of the
optimum at generation n?

2) What is the probability that an EA population will have average fitness greater
than some value at generation n?

3) What is the probability that an EA population will have homogeneity less than
some value at generation n?

4) What is the expected best individual at generation n?

To answer such questions, it is necessary to combine Q" with a set of initial
conditions concerning an EA at generation 0. For this chapter it is assumed that EA
populations are randomly initialized. Thus, the a prior: probability of being in state

i at time 0, denoted as p;(, is:

P! 11"
P = H (11.7)

23,00--%4,r—1
Since there are » = 2L possible strings, each string has a probability of 7! of

occurring. The power P takes into account that there are P strings in the population,
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and the multinomial distribution takes into account the different ways the strings can
be inserted into the population to create a unique state. Now it is possible to answer

the four questions posed at the beginning of this section:

1) To compute the probability that an EA will have in the population at time 7 at
least one copy of the optimum, use Equation 11.1 with J as the set of all populations
containing at least one copy of the optimum.

2) To compute the probability that an EA will have at time n a population with an
average fitness greater than X, use Equation 11.1 with J as the set of all populations
having average fitness greater than X.

3) To compute the probability that an EA will have at time n a population with
homogeneity less than X, use Equation 11.1 with J as the set of all populations
having homogeneity less than X.

4) To compute the expected best fitness value in the population at time n, use
Equation 11.3 with f defined to return the maximum fitness in a given population.

We are now in a position to analyze the behavior of a finite-population EA on
particular classes of fitness functions. Since the emphasis in the thesis is on the
role of recombination and mutation in EAs, we will focus our attention on a class of
problems designed to be difficult for recombination, namely “multimodal” functions.
The motivation and design of these functions stems from our earlier schema analyses

provided in the thesis.

11.5.1 Instantaneous Transient Behavior and Multimodality

Consider the following four functions, defined in Table 11.3, where L = 2 and the
optimum string is always at “11”. The four functions differ only in the fitness value
of the string “00”. In the first function, the further a string is from the optimum
string “11”, the lower the fitness. Thus this can be considered to be a “one-peak”
function. On the other hand, the fourth function can be considered to be a “two-

peak” function, with a local suboptimum at “00”. The second and third functions
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Table 11.3: Four functions where L = 2.

Fitness Function
Function | £f(00) £(01) f£(10) f(11)
11 0.01 0.1 0.1 4.0
2 0.1 0.1 0.1 4.0
3 1.0 0.1 0.1 4.0
4 2.0 0.1 0.1 4.0

fall in between, as the fitness of the local optimum at “00” is changed.

The motivation for examining this set of functions stems from the schema theory
presented earlier in this thesis. As pointed out in Chapter 7, recombination will be
most useful when high-fitness building blocks of relatively high order (H,, and H,)
can be combined into higher-order building blocks (Hj) that are also of high fitness.
Recombination will be least useful when the higher-order building blocks that are
constructed have poor fitness. Although schema theory is not strictly predictive, the
expectation from this theory is that recombination should help on the first function,
since the medium-fitness schemata “#01#” and “#10#” can be recombined to create
the optimum schema “#11#”. However, for the fourth function, the two schemata
“#014#” and “4#10#” now have (relatively) low fitness. Furthermore the medium-
fitness schema “#00#” can not be recombined with any other schema to create the
optimum schema “#11#”. This would appear to be much more difficult for recombi-
nation. Again, the second and third functions represent intermediate functions. The
expectation is that recombination should perform worse and worse as one proceeds
from the first to fourth function.

Consider plotting the probability that the EA will have a copy of the optimum
in its population at generation n as n increases, on all four functions (using Equa-
tion 11.1). Figure 11.1 illustrates the results (using the Nix and Vose Markov chain
model), in which one-point recombination is turned off (x = 0.0) and on (x = 1.0)

while holding the mutation rate fixed at ;= 0.1. The population size P was five.
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Figure 11.1: EA behavior on the four functions, where P =5, L = 2, and p = 0.1.
The behavior is the probability of containing the optimum at each generation.

In comparing the performance of recombination and mutation on the first and
fourth functions (in Figure 11.1) one can see some confirmation of our expectations.
On the first function (one peak) the complete EA with recombination is better than
the EA without recombination, while on the fourth function the EA without recombi-
nation is better. These results are consistent with our expectations from the schema
theory, and thus supports the intuition that recombination can exploit useful build-
ing blocks when they are present, but can actually degrade performance when they
are not present (or when the higher-order building blocks that are constructed via
recombination have poor fitness). One tentative conclusion then is that the num-

ber of peaks in the fitness landscape can indeed have a significant influence on the
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relative performance of recombination in an EA. When there are multiple peaks, re-
combination is likely to recombine individuals on different peaks, creating low-fitness
offspring.

Upon comparing performance on all four functions, one can see that the perfor-
mance of recombination smoothly degrades as the height of the string “00” increases.
Thus, another tentative conclusion is that both the number of peaks and their fitness
are important factors influencing the performance of recombination. Recombination
appears to perform worst when the peaks have a similar height (maximum fitness).
However, as the fitness of suboptimal peaks is reduced, the probability of recom-
bining individuals on the same (high) peak increases, increasing the effectiveness of
recombination.

As opposed to monitoring the probability of seeing the optimum at generation n,
a more traditional performance measure is to monitor the expected best fitness seen
at each generation n. Consider plotting the expected best fitness at generation n as n
increases, on all four functions (using Equation 11.3 where the function f returns the
fitness of the best individual in every population). Figure 11.2 illustrates the results,
in which recombination is turned off (x = 0.0) and on (x = 1.0) while holding the
mutation rate fixed at 4 = 0.1. As can be seen, the results mirror those in Figure 11.1.

To see whether this behavior scales to larger problems, consider the following
four functions, defined in Table 11.4, where L = 3 and the optimum string is always
at “1117. The four functions differ only in the fitness value of the strings “000”
and “010”. Again, the first function can be considered to be a one-peak function,
while the fourth function can be considered to be a two-peak function, with a local
suboptimum at “000” and “010”. The second and third functions fall in between, as
the fitness of the local optimum is changed.

Figure 11.3 and Figure 11.4 illustrate the behavior of the EAs, in which recombi-
nation is turned off (x = 0.0) and on (x = 1.0) while holding the mutation rate fixed

at 4 = 0.1. The population size P was four. Once again the behavior is as expected.
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Figure 11.2: EA behavior on the four functions, where P =5, L = 2, and p = 0.1.
The behavior is the expected best individual at each generation.

Table 11.4: Four functions where L = 3.

Function

£(000)  £(001)

Fitness Function

£(010) £(011) £(100) f£(101) £(110)

£(111)

N

0.01 0.1
0.1 0.1
1.0 0.1
2.0 0.1

0.01 0.1 0.1 3.0
0.1 0.1 0.1 3.0
1.0 0.1 0.1 3.0
2.0 0.1 0.1 3.0

0.1
0.1
0.1
0.1

4.0
4.0
4.0
4.0
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Figure 11.3: EA behavior on the four functions, where P =4, L. = 3, and p = 0.1.

The behavior is the probability of containing the optimum at each generation.

Recombination performs worst on the two-peak problem and improves as the height

of the local optimum is decreased, until one reaches the one-peak problem.

Thus, it appears as if the number of peaks in a space (the multimodality), as well

as the relative heights of those peaks, will provide a useful mechanism for investigating

the relative usefulness of recombination and mutation. In order to investigate this

observation further, Chapter 13 will introduce the notion of “test-problem generators”

that can create random problems in which the number of peaks (and their fitness) can

be controlled. The results obtained with a real EA on these problems will validate

the observations made from the Markov chain approach performed in this chapter.
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Figure 11.4: EA behavior on the four functions, where P =4, L. = 3, and p = 0.1.
The behavior is the expected best individual at each generation.

11.6 Summary and Discussion

This chapter describes some initial explorations of a transient Markov chain analysis

as the basis for a stronger EA theory. Although closed-form analysis is difficult in gen-

eral, useful insights can be obtained by means of the computational exploration of the

transient behavior of the models. The initial progress suggests that the multimodality

of the fitness landscape is of importance in determining the relative performance of

recombination and mutation. This observation will be explored further in Chapter 13.

There are a variety of directions worth exploring. The first would be to expand

the mathematical techniques to include variances as well as expectations. For exam-

ple, the variance of the expected waiting times is an important measure that may
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also be derivable from these models. Second, the model itself can be generalized to
include other operators (e.g., uniform recombination) and other EA features such as
rank selection, elitism, and so on. Finally, an interesting future possibility is to create
Markov models of other search algorithms, and then allow a meta-search algorithm
to find those problems that are easy for one search algorithm and hard for another.
As a simple example of this, suppose the expected waiting time of an arbitrary func-
tion was computed for an EA with recombination and an EA without recombination.
Then a meta-search algorithm (possible an EA) could search the space of functions
in an attempt to maximize the difference in the expected waiting times. Such auto-
mated techniques could also be used with the search algorithms themselves (rather
than Markov chain models of the algorithms), yielding an automatic technique for
discovering those classes of problems that hard for one algorithm and easy for another.

As pointed out earlier, one primary concern is the general applicability of such
Markov chain approaches, given the huge number of states that arise with even small
problems and population sizes. Chapter 10 provided an example of a simpler model
that could be “aggregated” naturally for a particular problem class. However, this is
much more difficult to accomplish on the much more complex model described in this
chapter. The question, then, is whether such complex models can be automatically
aggregated. The answer is yes. Chapter 12 addresses this issue in great detail, and
proposes a novel aggregation algorithm that can automatically compress a Markov
chain of N states into an aggregated Markov chain with far fewer states, without

introducing significant numerical error.



Chapter 12

An Aggregation Algorithm for Markov Chains

12.1 Introduction

Chapter 11 uses a Markov chain model (Nix and Vose 1992) of a complete finite-
population EA with selection, mutation, and recombination. Each state of the Markov
model is a particular population of the EA. If there are N states, then the Markov
chain model is defined by an N x N matrix ) called the “one-step probability tran-
sition matrix,” where (i, j) is the probability of going from state i to state j in one
step. The n-step (transient) behavior of the system is described by the nth power
of @, @". For EAs, the number of states grows enormously as the population size
(or string length) increases (e.g., see Table 11.1), which can make the models compu-
tationally intensive. Our motivation for examining the Markov chain models was to
explore the differences between mutation and recombination in EAs. However, due
to the large size of the models, this chapter makes an excursion and introduces a
novel technique for simplifying Markov models, in order to automatically reduce the
number of states in the model.

Previous methods for reducing the number of states (referred to as compression,
aggregation, or lumping methods) have focused on techniques that provide good esti-
mations of the steady-state behavior of the Markov model (e.g., see Stewart (1994)).
The focus of this chapter, however, is on transient behavior, and the goal is to pro-
duce an algorithm for aggregating () matrices in a way that yields good estimates of

the transient behavior of the Markov model. The algorithm described in this chapter
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aggregates a () matrix into a smaller () matrix with fewer states. In general, the
aggregation will not be without error, so the goal is to provide an algorithm that
aggregates the original () matrix without significant error. Although computing an
aggregated matrix might take some time, the savings resulting from using this ag-
gregated matrix in all subsequent computations can more than offset the aggregation
time.

The organization of this chapter is as follows. Section 12.2 introduces the aggre-
gation algorithm, which aggregates pairs of states by taking a weighted average of
the row entries of () for those two states, followed by summing the two columns of @)
associated with those two states. Section 12.2 also introduces the important concepts
of row and column equivalence, which are important for identifying pairs of states
that can be aggregated with no error. Section 12.3 provides mathematical justifica-
tion for taking the weighted average of row entries and shows that the weights are
simply column sums of probability mass. Section 12.4 proves that pairs of states that
are row or column equivalent lead to perfect aggregation. Section 12.5 introduces
an analysis of error and uses this to define a metric for row and column similarity
which can be used to find pairs of states that yield almost perfect aggregation. Later

sections illustrate the utility of the aggregation algorithm through experiments.

12.2 The Aggregation Algorithm at a High Level

The entries in the Q) matrix, p;; = Q(3, j), represent the conditional probability that
the system will transition to state j in one step, given that it currently is in state
i. 1 Now suppose that states ¢ and j have been chosen for aggregation. The new
aggregated state is referred to as state {¢ V j}. Aggregating states ¢ and j together
means that the combined state represents being in either state ¢ or state j. Since

this is a disjunctive situation, the probability of transition from state k into the

I The notation pi,j(") = Q"(i,7) denotes the entries of the n-step probability transition matrix

Q"
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aggregated state is simply the sum py (v} = Pr;i + Pr,j- Stated another way, part of
the aggregation algorithm is to sum columns of probability numbers in ).

However, in general, transitions from an aggregated state are more complicated to
compute. Clearly, the probability of transitioning from the aggregated state to some
other state py;;},x must lie somewhere between p; ; and p;x, depending on how much
time is spent in states ¢ and 7. Thus a weighted average of row entries in () appears
to be called for, where the weights reflect the amount of time spent in states ¢ and j.
Precisely how to do this weighted average is investigated in Section 12.3.

The algorithm for aggregating two states 7 and j together is as follows: 2

Aggregate-states(i,7)
(a) Compute a weighted average of the ith and jth rows.
Place the results in rows 7 and j.
(b) Sum the ith and jth columns.

Place the results in column 7. Remove row j and column j.

The aggregation algorithm has two steps. It takes as input a matrix @, (an
unaggregated () matrix). Step (a) averages the row entries, producing an intermediate
row-averaged matrix @),.. Step (b) sums column entries to produce the final aggregated
(compressed) matrix Q.. Step (a) is the sole source of error, since in general it is
difficult to estimate the amount of time spent in states 7 and j.

Now that the aggregation algorithm has been outlined, it is important to define
what is meant by “perfect” aggregation. As mentioned before, analysis of n-step
transition probabilities (i.e., transient behavior of the Markov chain) can be realized
by computing Q™. For large () matrices this is computationally expensive. It would be
less expensive to aggregate () and to then raise it to the nth power. If the aggregation

algorithm has worked well then the nth power of the aggregated matrix (). should be

2The algorithm is written this way because it makes it amenable to mathematical analysis.
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(nearly) identical to aggregating the nth power of the unaggregated matrix @,. In
other words, perfect aggregation has occurred if (Q,"). = Q.".

It turns out that there are two situations under which perfect aggregation can be
obtained. The first situation is referred to as “row equivalence”, in which the two
states ¢ and j have identical rows (i.e., Vk p;x = p;x). In this case the weighted
averaging can not produce any error, since the weights will be irrelevant. The second
situation is referred to as “column equivalence”, in which state 7 has column entries
that are a real multiple ¢ of the column entries for state j (i.e., Vk pi; = gp ;). The
intuition here is that when this situation occurs, the ratio of time spent in state i to
state j is precisely ¢q. The details of this can be found in Section 12.4.

However, for arbitrary matrices, aggregating an arbitrarily chosen pair of states
will not necessarily lead to good results. Thus, the goal is to identify pairs of states ¢
and 7 upon which the above aggregation algorithm will work well. It turns out that
pairs of states that are row or column similar are good candidates for aggregation.
The justification for these measures will be provided in Section 12.5.

At a high level, of course, this simple aggregation algorithm must be repeated for
many pairs of states, if one wants to dramatically reduce the size of a () matrix. The

high level aggregation algorithm is simply:

Aggregate()
Repeat as long as possible
(i) Find the pair of states 7 and j most similar to each other.

(ii) Aggregate-states(,j).

12.3 The Aggregation Algorithm in More Detail

In the previous section the aggregation algorithm was described in two steps. Step
(a) is where error can occur and care must be taken to mathematically justify the

weighted averaging of rows. This can be done by attempting to force (Q,?). to be as
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similar as possible to @Q.? (later sections will generalize this to higher powers). This
is mathematically difficult, but fortunately it suffices to force @, to be as similar as
possible to (), @, which is much simpler and focuses on the row-averaged matrix @),
explicitly. The intuition behind this is that if aggregation is done correctly, passage
through the new aggregated state should affect the 2-step transition probabilities as
little as possible. 3 This will be shown with a 4 x 4 Q matrix, and then generalized to
an arbitrary N x N matrix. The result will be the weighted row-averaging procedure
outlined earlier. This particular presentation has been motivated by a concern for
comprehension and hence is not completely formal. A completely formal presentation

is in the Appendix.

12.3.1 Weighted Averaging with a 4 x 4 Matrix

Consider a general unaggregated 4 x 4 matrix ), for a Markov chain model of 4

states, as well as the general intermediate matrix @),:

Pig P12 P13 P14 1 Ti2 Ti13 Ti14

D21 D22 P23 P24 To,1 T22 T23 T24
Qu = Qr =

P31 P32 P33 P34 T3l T32 T33 T34

DPa1 DPa2 D43 Pia T4 Ta2 T43 Ta4

The notation 7;; = Q,(1, ) is used to prevent confusion with the p; ; in @,,. With-
out loss of generality the goal will be to aggregate the third and fourth states (rows
and columns) of this matrix. Since the third and fourth states are being aggregated,
rows 1 and 2 of @, must be the same as @, (i.e., averaging rows 3 and 4 will not
affect rows 1 and 2). Denoting {3 V 4} to be the aggregated state, the intermediate

matrix is:

3More formally, it can be shown that if Q,° = Q.Q, then (Q.,?). = Q.> for row- or column-
equivalent situations. See Section 12.4.
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P11 D12 P13 P14
D21 D22 D23 D24
Qr =

T{3v4},1 T{3v4},2 T{3v4},3 T{3v4}4

| T{3va},1 T{3va}2 T{3v4},;3 T{3v4}a

The 7(3v4) % Tepresent the weighted average of rows 3 and 4 of @),. Recall that
step (a) of Aggregate-states(3,4) will place that average in both rows 3 and 4, which
is why rows 3 and 4 of @, are the same. The trick now is to determine what ryzy4) 1,
T{3v4},2, T{3v4},3, and T(3v4},4 should be in order to produce a reasonable aggregation.

This is done by considering Q,* and Q,Q,.

P1,1(2) p1,2(2) p1,3(2) p1,4(2) a1,1(2) a1,2(2) a1,3(2) CL1,4(2)
9 p2,1(2) p2,2(2) p2,3(2) p2,4(2) a2,1(2) a2,2(2) 02,3(2) CL2,4(2)
Q= ® @ @ @] ST D 00 4@ g, @
P31 D32 D33 P34 as as o as ;s as 4
I p4,1(2) p4,2(2) p4,3(2) p4,4(2) 1 | a4,1(2) 614,2(2) a4,3(2) a4,4(2) ]

The notation a; ; ) is used to prevent confusion with the pi,j(z) in Q,°. Since the
goal is to have @Q,” = Q.Q,, it is necessary to have pi,]'(Q) be as similar as possible
to a; ;@. The p; ;% values can be computed using p; ; values, while the a; ;% values
require the unknowns 7(3va},1, 7{3v4},2, T{3v4},3, and T{3y4} 4-

For example, pl,l(z) can be computed by multiplying @, by itself:

p1,1(2) = P1,1P1,1 + P12P2,1 + P1,3P3,1 + P1,4Pa

However, a1,1(2) is computed by multiplying @, and Q,:

C11,1(2) = P1,1P1,1 + P1,2P2,1 + (P13 + Pra)T{3va) 1
In the ideal situation we would like both of these to be equal. This implies that:

P1,3P3,1 + D1,4P4,1
P13+ P14

T{3v4},1 =

But we can write another formula for 7(3y4y,1 by considering p2,1(2) and a2,1(2):
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p2,1(2) = P2,1P1,1 T P2,2P2,1 + D2,3D3,1 + D2,4P4,1

(2)

a2,1'” = Pa,1P1,1 + P22P21 + (P2,3 + P2,4a)T{3v4a}0

Again, we would like both of these to be equal. This implies that:

P2,3P3,1 + D2,4Pa1
P23 + P24

T{3v4},1 =
Similarly, consideration of p3 ; and a3,@ yields:

P3,3P3,1 + D3,4D4,1
P33 + P34

T{3v4},1 =
while consideration of py;® and ay;® yields:

Pa3D3,1 + Da,aPa 1
Pa3 + Paa

T{3v4},1 =

What has happened here is that the four elements in the first column of Q,Q),
lead to four expressions for 7(3yv4},1. In general, all four expressions for 7(3y4},1 can not
hold simultaneously (although we will investigate conditions under which they will
hold later). The best estimate is to take a weighted average of the four expressions
for r(3v4y,1 (this is related to the concept of “averaging” probabilities — see Appendix
for more details). This yields:

(P13 + P23 + D33+ Pa3)Psa + (Pra + Do+ P3a+ Paa)pay
(P13 + P23 + P33+ Pa3) + (P14 + Poa + P3a+ Pays)

T{3v4},1 =

Note how the final expression for 7(3yv4},1 is a weighted average of the row entries
P31 and py 1, where the weights are column sums for columns 3 and 4. In general the
elements of )@, in the kth column will constrain rzy4y

(1,3 + P23 + P33+ Pa3)Pak + (Pra + Poa+ P3a+ Paa)Pak
(P13 + P23+ D33+ Pas) + (Pra+ Poa+ D3a+ Pas)

T{3va}k =

Once again, note how the expression for 734y is a weighted average of the row

entries p3; and py i, where the weights are column sums for columns 3 and 4.
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12.3.2 Weighted Averaging with an N x N Matrix

The previous results for a 4 x 4 matrix can be extended to an N x N matrix. Without
loss of generality aggregate states N — 1 and N. Then the N elements of column £
yield N expressions for each r{y_iyn}. The best estimate is (see Appendix for

details):

(pin—1+ . +DPNN_1)PN-1k + (DP1N + .. + PN N)PNE
(pin-1+ . +pyN_1)+ (1N + . FDNN)

T{N—-1VN},k =

Note again how the weights are column sums for columns N — 1 and N. Gener-

alizing this to aggregating two arbitrary states ¢ and j yields:

(i pi)pik + (i puj)Pjk
Y+ 2

T{ivitk =

or:

MiPik + ™MDk
m; + m;

T{ivi}k = (121)

where m; and m; are the sums of the probability mass in columns 7 and j of @,.
Equation 12.1 indicates how to compute the rg;y ;1 entries in @,. Note how they
are computed using the weighted average of the row entries in rows ¢ and j. The
weights are simply the column sums. This justifies the row-averaging component
of the aggregation algorithm described in the previous section. Intuitively stated,
the column mass for columns ¢ and j provide good estimates of the relative amount
of time spent in states 7 and j. The estimates are used as weights to average the
transitions from ¢ to state k£ and from j to k, producing the probability of transition

from the combined state {i V j} to k.

12.3.3 Mathematical Restatement of the Aggregation Algorithm

Now that the weighted averaging of rows ¢ and 7 has been explained, it is only

necessary to sum columns ¢ and j in order to complete the aggregation algorithm.
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The whole algorithm can be expressed simply as follows. Assume that two states have
been chosen for aggregation. Let S denote the set of all N states, and let the non-
empty sets Si, ..., Sy_1 partition S such that one S; contains the two chosen states,
while each other S; is composed of exactly one state. Let m; denote the column mass

of state 7. Then the aggregated (compressed) matrix @), is:

Qe(,y) = ! Z[mizm,j] (12.2)

2ieS, Mijeg, JESy

This corresponds to taking a weighted average of the two rows corresponding to
the two chosen states, while summing the two corresponding columns. The other
entries in the () matrix remain unchanged. Consider an example (where N = 3) in
which states 2 and 3 are aggregated. In that case S; = {1} and S, = {2,3}. Q. is
described by:

QC(la 1) = pl,l
Q:(1,2) = pi2+pis
1
21) = —
Qc( ) ) My + M3 [m2p2,1 +m3P3,1]
1
2,2) = ———
Q.(2,2) M9 + M3 [Ma(p2,2 + P23) + m3(ps2 + P33)]

Applying this to the following column-equivalent matrix (), produces perfect re-

sults ((Qu2)c = ch):

71 2 55 .15 .30
, , 55 .45
Qu=1|4 2 4|=>Q, =] .40 20 40 | = (Q.).=
30 .70
1 .3 6 25 25 .50
3 , 55 .45
Qc: :>Qc =

2 8 30 .70
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In summary, this section has justified the use of column mass as weights in the
row-averaging portion of the aggregation algorithm. The whole aggregation algorithm
is stated succinctly as a mathematical function, which can aggregate any arbitrary
pair of states. However, as stated earlier, aggregation of arbitrary pairs of states
need not lead to good aggregation. The goal, then, is to identify such states. This
is investigated in the next section, and relies upon the concepts of row and column

equivalence.

12.4 Special Cases in Which Aggregation is Perfect

If aggregation is working well, then the aggregated version of @)," should be (nearly)
identical to Q.. As suggested in Section 12.2, there are two situations under which
perfect aggregation will occur. The first situation is when two states are row equiva-
lent. The intuition here is that the row average of two identical rows will not involve
any error, and thus the aggregation will be perfect. The second situation is when two
states are column equivalent. The intuition for this situation is that if the column c;
is equal to gc;, then the ratio of time spent in state ¢ to state j is exactly ¢g. Under
these circumstances the weighted row average will also produce no error.

This section will prove that (Q,"). = @." when the two states being aggregated
are either row equivalent or column equivalent. This will hold for any n and for
any (), matrix of size NV X N. The method of proof will be to treat the aggregation
algorithm as a linear transformation f, and then to show that f(Q,") = (f(Qu.))",

where f(Qy) = Q..

12.4.1 Row Equivalence and the Aggregation Algorithm

This subsection will prove that when two states are row equivalent, aggregation of
those states can be described by a linear transformation (matrix multiplication).
The aggregation algorithm aggregates an N x N matrix @, to an (N — 1) x (N — 1)

matrix Q.. However, for the sake of mathematical convenience all of the matrix
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transformations will be with NV x N matrices. Without loss of generality it is assumed
that states N — 1 and N are being aggregated. When it comes time to expressing
the final aggregation, the Nth row and column will simply be ignored, producing the
(N —1) x (N —1) aggregated matrix. The “e” notation is used to denote entries
that are not important for the derivation.

Assume that states N — 1 and N are row equivalent. Thus Vk py_1x = pnk-
Using Equation 12.1 to compute the row averages yields:

MN-1PN-1k T MNPNk pr-1k(MN_1 +mn)
my_1+mpy my_1+mpy

T{N-1VN},k = = DPN-1k

and the aggregated matrix should have the form:

Piag - DPiN-2 Pi,N—1+ DN
P21 -+ DP2,N-2 P2,N—1 + D2, N
Q=1 . .
| PN-11 ' PN-1,N-2 PN-1,N-1 +PN-1N ]

Theorem 12.1 If states N and N — 1 in @, are row equivalent then Q. = TQ,T
and TT = I, where

Proof: Q. =TQ,T can be expressed as follows:

P11 o Pi,N-2 P1,N-1 Pi,N
P21 o Po,N-2 P2,N-1 P2, N I 0
Q.=T . . . . _
PN-1,1 -°° PN-1,N—2 PN-1,N-1 PN-1,N 1 -1
| Pnyi o 0 PNN-2 PN,N-1 PnN,N
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P11 DP1,N-2 P1,N-1 Tt P1,N °
I 0 P21ttt D2,N-2 D2,N-1 t D2.N °
1 -1 PN-11 *** PN-1,N—2 DPN-1,N-1T+PN-1N ®
| PN-1,1 c° PN-1,N-2 PN-1,N-1 +PN_1N @ |
Pi1 -t DPiN-2 DPi,N-1 T P1N .
D21 - D2,N-2 D2,N—1 + P2,N .
PN-11 - PN-1,N—2 PN—1,N—1 TPN-I1,N ®
[ ] < .. [ ] [ ] [ J

This is precisely what (). should be. Thus the aggregation of two row-equivalent
states can be expressed simply as TQ,T. The first T performs row averaging (which
is trivial) and the second 7" performs column summing. The reader will also note that
some elements of T" do not appear to be important for the derivation that Q. = TQ,T.
This is true, however, the purpose of these elements is to ensure that 7T = I, since

this fact will also be used to help prove that (Q,"). = Q."-

12.4.2 Column Equivalence and the Aggregation Algorithm

This subsection will prove that when two states are column equivalent, aggregation
of those states can be described by a linear transformation. Assume without loss of
generality that states N — 1 and N are column equivalent. Thus V& py n_1 = qpi v,

and my_1 = gmy. Using Equation 12.1 to compute the row averages yields:

, _ MN_1PN-1,k T+ MNPNE  gPN—1k T DNk
(N-1VN Lk my_1+mpy qg+1
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and the aggregated matrix should have the form:

P11 cee P1,N—2 pPiN—1t+ DN
P21 e P2, N—2 D2, N-1 + D2,N
Qc =
gPN-11+tPN1 . 9PN-1,N-2+PN.N-2 GPN-1,N-1+PN N-11+¢PN-1,N+PN N
L q+1 g+1 g+1 |

Theorem 12.2 If states N and N —1 in @), are column equivalent then Q. = XQ,Y
and Y X = I where

I 0
X = ¢ 1
0 q+1 g+1
q __q
g+1 g+1

Proof: Q. = XQ,Y can be expressed as follows:

b1 *tr Di,N-2 Pi,N-1 Pi,n
P21 “rr D2,N-2 P2, N-1 Po,n I 0
0. =X . . . . _
PN-11 *'° PN-1,N—2 PN-1,N-1 DPN-1,N 1 -1
PN1 - DNN-2 PN, N—1 PN,N
P11 PLN-2 PiN-1+ D1 N °
1 0 P21ttt P2,N-2 D2,N-1 + P2 N °
g 1 : : . _
0 q+1 q+1
_4q __q_ p “ .. + )
g+1 a+1 N—1,1 bN-1,N—2 PN-1,N-1 T PN—-1,N
PN1 " DN,N-2 PN,N-1+ PN,N °
D11 T P1,N-2 Pi,N—1+DP1N .
D2,1 T P2,N-2 D2,N—1 + D2N .
gPN-1,1tPN1 . 4PN-1,N-2+PN,N-2 GPN-1,N-1+PN,N-11+¢PN-1,N1+PN,N °
q+1 q+1 q+1
[ o .. [ ) [ ] [ ]
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This is precisely what @), should be. Thus the aggregation of a pair of column-
equivalent states can be expressed simply as X@Q,Y. X performs row averaging and
Y performs column summing. The reader will note that some elements of X and Y
are not important for the derivation that Q. = X@,Y (e.g., T could be used instead
of Y). This is true, however, the purpose of these elements is to ensure that Y X =1,

since this fact will be used to help prove that (Q,"). = Q." at the end of this section.

I 0 I 0
0 q 0 q+1 q+1
v U

12.4.3 Some Necessary Lemmas

Before proving that (Q,"). = Q." for row- or column-equivalent states, it is necessary
to prove some simple lemmas. The idea is to show that if @, is row or column
equivalent, so is ,". This will allow the previous linear transformations to be applied
to @," as well as @Q,.

Let square matrices A and B be defined as matrices of row and column vectors

respectively:

a1 - O1,N a;

an,1 **+ AanN,N ay

big - bin
B=| : : :[b1 bN]

byg -+ by

Then the matrix product AB can be represented using dot product notation:
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a,-b; --- a;-by

AB =

ay-b; -+ ay-by

Lemma 12.1 Row equivalence is invariant under post-multiplication.

Proof: Suppose states ¢ and j of A are row equivalent (a; = a;). Then Vk a;-by, =

a; - bi. So, states 7 and j in AB must be row equivalent.
Lemma 12.2 Column equivalence is invariant under pre-multiplication.

Proof: Suppose states 7 and j of B are column equivalent (b; = ¢b;). Then

Vk ai - b; = ga; - b;. So, states ¢ and j in AB must be column equivalent.
Lemma 12.3 Row and column equivalence are invariant under raising to a power.

Proof: Q" = QQ™ . Thus, if states 7 and j are row equivalent in @, they are row
equivalent in Q™ by Lemma 12.1. Similarly, Q" = Q™ 'Q. Thus, if states ¢ and j are
column equivalent in (), they are column equivalent in )" by Lemma 12.2.

Lemma 12.3 indicates that the previous linear transformations can be applied to

Q" to produce (Q,"). when two states in @, are row or column equivalent.

12.4.4 Theorems for Perfect Aggregation

Given the previous theorems concerning the linear transformations and Lemma 12.3,
it is now possible to state and prove the theorems for perfect aggregation. The @

matrix can be considered to be (), in these theorems.
Theorem 12.3 If Q is row equivalent, then Q" = QQ," " implies (Q™), = Q,", and
(Qn)c = an

Proof: If ( is row equivalent, then so is Q" by Lemma 12.3. If Q" = QQ," ' then
(Qn)r = (Qan_l)r = TQan_l = ana and (Qn)c = (Qan_l)c = T(Qan_l)T =
TQQ, ' =TQTTQ." " = Q.TQ." = Q."
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Theorem 12.4 If Q is column equivalent, then Q" = QQ,"* implies (Q"), = Q,",
and (Q")c = Q."

Proof: If () is column equivalent, then so is @™ by Lemma 12.3. If Q" =
Qan_l then (Qn)r = (QQ'I‘n_l)T = XQan_l = ana and (Qn)c = (QQ'I‘n_l)C =
X(Qan_l)Y - XQan_l - XQTTQCH_I - QCTan_l - an-

These two theorems illustrate the validity of trying to force @, to be as similar

as possible to 0, @, in Section 12.3.
Theorem 12.5 If QQ is row equivalent, then (Q"). = Q.".

Proof: If @) is row equivalent, then so is @™ by Lemma 12.3. Then (Q™). =
TQ"T =TQ---QT. Since TT = I, then (Q"), = TQTTQ - --QTTQT = Q,".

Theorem 12.6 If Q is column equivalent, then (Q™). = Q.".

Proof: If @ is column equivalent, then so is @™ by Lemma 12.3. Then (Q"). =
XQ"Y = XQ---QY. Since YX =1, then (Q"). = XQYXQ---QYXQY =Q.".

These theorems hold for all n and for all row- or column-equivalent N x N @
matrices, and highlight the importance of row and column equivalence. If two states

are row or column equivalent, then aggregation of those two states is perfect (i.e.,

(Qn)c = an)
12.5 Error Analysis and a Similarity Metric

The previous sections have explained how to merge pairs of states and have explained
that row- or column-equivalent pairs will yield perfect aggregation. Of course, it is
highly unlikely that pairs of states will be found that are perfectly row equivalent
or column equivalent. The goal then is to find a similarity metric that measures
the row and column similarity (i.e., how close pairs of states are to being row or

column equivalent). If the metric is formed correctly, those pairs of states that are
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more similar should yield less error when aggregated. This section will derive an
expression for error and then use this as a similarity metric for pairs of states.

We will use Q,Q, and Q,? to estimate error. As mentioned before, it is desirable to
have the entries in those two matrices be as similar as possible. Consider aggregating

two states 7 and j. Then the entries in Q,? are:

px,y(Q) = Pz,iPiy + Dz,iDjy + Z Dz kPk,y
k#i,j

The entries in Q,Q), are:

@) = (pryi + Pog)Tiivity T 2 PokPry

k#i,j

Ay

Then the error associated with the (z,y)th element of Q,Q, is:

Error;j(z,y) = az,y@) - pz,y@) = (Payi + Poj)T {ivity = P=,iPiy — Pz,jPjy

Using Equation 12.1 for ry;y;y . (and substituting y for k) yields:

MiPiy + MyDj,
)[ %Y J .7:’/]

Errorij(z,y) = (P + Pa,j g
7 J

= Dz,iPi,y — Pz,jPjy

Now denote «; ;(y) = piy — pj,- This is a measure of the row similarity for rows

i and j at column y (and will be explained further below). Then:

)[mi (pjy + 0ij(y)) + mjpjay] _

Errori,j(x, y) = (pac,i + Dz,j
This simplifies to:

(Mipej — Mipei)ai ;i (y)
m; + m;

Error; j(z,y) =
Denote 3 ;(z) = (mips,j — Mjps;)/(mi +m;). Then:

Error; j(z,y) = bi;(z)o;(y)

Now f; j(z) can be considered to be a measure of column similarity for columns

i and j at row z (this will be shown more explicitly further down). Since only the
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magnitude of the error is important, and not the sign, the absolute value of the error

should be considered:

\Error;j(z,y)| = [8;(x) i ;(y)]

Recall that Error; j(z,y) is the error associated with the (z, y)th element of Q,Q;,

if states ¢+ and j are aggregated. The total error of the whole matrix is:

Error;; = ZZ |Errorj(T,y)| = ZZ B3 ()i (y)]
r y z Y

But this can be simplified to:

Errory; = (D 16i;(2)) (O lai; ()|

y

To understand this equation consider the situation where states ¢ and j are row
equivalent. Then Vy p;, = p;,. This indicates that Vy «; ;(y) = 0 and Error;; = 0.
Thus there is no error associated with aggregating row-equivalent states ¢ and j, as
has been shown in earlier sections.

Consider the situation where states ¢ and j are column equivalent. Then Vz p,; =
qps,; and m; = gm;. It is trivial to show that Vz £ j(z) = 0 and as a consequence
Error; ; = 0. Thus there is no error associated with aggregating column-equivalent
states ¢ and 7, as has been shown in earlier sections.

Given this, a natural similarity metric is the expression for error:

Similarity;; = (3 18i(@))) (X i ()] (12.3)

y

If the similarity is close to zero then error is close to zero, and pairs of states can
be judged as to the amount of error that will ensue if they are aggregated (it is useful
to think of this as a “Dissimilarity” metric). The aggregation algorithm can now be

written as follows:
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Aggregate()
Repeat as long as possible
(i) Find pair of states ¢ and j such that Similarity, ; < e.

(ii) Aggregate-states(,).

The role of € is as a threshold. Pairs of states that are more similar than this
threshold can be aggregated. By raising € one can aggregate more states, but with a
commensurate increase in error.

This chapter thus far has fully outlined the aggregation algorithm for pairs of
states, and identified situations under which aggregation is perfect — namely, when
the pairs of states are row or column equivalent. By performing an error analysis,
a natural measure of similarity was derived, in which pairs of states that are row
or column similar yield small amounts of error in the aggregation algorithm. The
following section outlines some experiments showing the degree of aggregation that

can be achieved in practice.

12.6 Some Experiments

In order to evaluate the practicality of the aggregation algorithm, it was tested on
some Markov chains derived from the Markov model of an EA presented in Chap-
ter 11. We examine both the error introduced by the aggregation algorithm, and the

time taken to aggregate chains of various sizes.

12.6.1 Accuracy Experiments

The first set of experiments examine the accuracy of the aggregated Markov chains by
using both Q,™ and Q" to compute the probability distribution p{™ over the states
at time n. To answer such questions, ()," must be combined with a set of initial

conditions concerning the EA at generation 0. Thus, the a priori probability of an
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EA being in state 4 at time 0 is p;(*) (which is given by Equation 11.7). * Given this,
the probability that the EA will be in a particular state 7 at time n is:

o™ = Y5 piy®

It is also possible to compute probabilities over a set of states. Define a predicate
Pred; and the set J of states that make Pred; true. Then the probability that the
EA will be in one of the states of J at time n is:

p; ™ = ij(n)
jeJ

As with Chapter 11, J represents the set of all states that contain at least one
copy of the optimum (i.e., the set of all populations that have at least one individual
with the optimum function value). The Markov model is used to compute p ;™ the
probability of having at least one copy of the optimum in the population at time n.
The aggregation algorithm can thus be evaluated by using both @Q," (ground truth)
and @Q." (the estimate) to compute p;™ for different values of n. The closer the
estimate is to ground truth, the better the aggregation algorithm is working.

Since the goal is to compute probabilities involving states containing the optimum
(the J set), J states should not be aggregated with non-.J states. Consequently, the
aggregation algorithm is run separately for both sets of states. The algorithm is
shown in Figure 12.1. In theory this aggregation algorithm could result in a two state
model involving just J and non-J. In practice this would require large values of € and
unacceptable error in p;™ computations.

Four different search spaces were chosen for the EA: Type I, NotType I, Type
IT and NotType II. This particular set of four search spaces was chosen because
experience has shown that it is hard to get a single aggregation algorithm to perform
well on all. Also, in order to see how well the aggregation algorithm scales to larger

Markov chains, four population sizes were chosen for the EA (10, 12, 14, and 16).

41f states 4 and j have been aggregated then pg; ;3@ = p;(@ + p;©.



202

Repeat until no new aggregated states are created
(a) For each state i in the J set of the current aggregated model
(i) Find the most similar state j in the J set.
(ii) If Similarity; ; < €, Aggregate-states(i,j).
(b) For each state 7 in the non-J set of the current aggregated model
(i) Find the most similar state j in the non-J set.
(ii) If Similarity; ; < €, Aggregate-states(i,j).

Figure 12.1: The final aggregation algorithm.

Table 12.1: The percentage of states removed when e = 0.15.

N=28 N =455 N =680 N =969
Type 1 85% 88% 90% 92%
NotTypeI | 65% 73% 79% 82%
Type II 1% 76% 81% 84%
NotType IT |  64% 73% 79% 82%

These four choices of population size produced Markov chains of 286, 455, 680, and 969
states, respectively. Thus, the aggregation algorithm was tested on sixteen different
Markov chains. °

Naturally, the setting of € is crucial to the success of the experiments. Experiments
indicated that a value of 0.15 yielded good aggregation with minimal error, for all
sixteen Markov chains. The results for N = 455 are shown in Figure 12.2. The
results for the other experiments are omitted for the sake of brevity, but they are
almost identical. The values p;™ are computed for n ranging from 1 to 100, for both
the aggregated and unaggregated Markov chains, and graphed as curves.

The graphs clearly indicate that the aggregated matrix is yielding negligible error.

To see how the amount of aggregation is affected by the size of the Markov chain,

consider Table 12.1, which gives the percentage of states removed for each of the

5See De Jong et al. (1994) for a definition of these search spaces.
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Figure 12.2: p;™ where € is 0.0 and 0.15 for N = 455. The problems are Type I,
NotType I, Type II and NotType II.

sixteen chains. What is interesting is that, for these particular search spaces, the
amount of aggregation is increasing as N increases (while still yielding negligible
error). For N = 969, over 80% of the states have been removed, yielding (). matrices
roughly 3% the size (in terms of memory requirements) of the original @), matrix. It
is also interesting to note that different search spaces are consistently aggregated to
different degrees. Further investigation into the nature of these search spaces may
help characterize when arbitrary Markov chains are hard/easy to aggregate with this

algorithm.
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12.6.2 Timing Experiments

It is now necessary to examine the computational cost of the aggregation algorithm.
Our prior work (De Jong, Spears, and Gordon 1994; Spears and De Jong 1996) focused
heavily on the insights gained by actually examining @,", which involved computa-
tions on the order of N® (to multiply @, repeatedly). Thus, the primary motivation
for producing the aggregation algorithm was to gain the same insights more efficiently
by dramatically reducing N. Since the third search space (Type II) is quite represen-
tative in terms of the performance of the aggregation algorithm, we draw our timing
results from the experiments with that particular search space. Table 12.2 gives the
amount of CPU time (in minutes) needed to compute @," as n ranges from 1 to 100.
Table 12.3 gives the amount of time needed to aggregate @, to (). as well as the
time needed to compute Q.” as n ranges from 1 to 100. ¢ Clearly, the aggregation
algorithm achieves enormous savings in time when it is actually necessary to compute

powers of @,.

Table 12.2: The time (in minutes) to compute @," for n =1 to n = 100.

N =286 N =455 N =680 N =969
Computation Time 27 125 447 1289

Table 12.3: The time (in minutes) to aggregate @), and to compute Q." for n =1 to
n = 100.

N =286 N =455 N =680 N =969
Aggregation Time 0.2 0.9 3.0 9.5
Computation Time 2.4 7.6 17.9 38.1

6All timing results are on a Sun Sparc 20. The code is written in C and is available from the
author.
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Another common use of Q," is to compute the probability distribution p{™ over
the states at time n (as we did in the previous subsection). If the prior distribution
p© is known in advance, however, this is more efficiently done by multiplying p(®) by
Q. repeatedly (i.e., this is repeated n times to produce p™). The computation is of

order N? instead of N3.

Table 12.4: The time (in minutes) to compute p(™ for n = 1 to n = 100.

N =286 N =455 N =680 N =969
Computation Time 0.1 0.3 0.7 14

Table 12.5: The time (in minutes) to aggregate @, and to compute p™ for n = 1 to
n = 100.

N =286 N =455 N =680 N =969
Aggregation Time 0.2 0.9 3.0 9.5
Computation Time 0.02 0.02 0.03 0.05

Table 12.4 and Table 12.5 give the amount of time needed to compute p™ (from
Q. and @, respectively). Despite the obvious benefits of computing p™ from Q.,
the aggregation algorithm is not advantageous in this case since the time needed to
aggregate Q, exceeds the time to produce p(™ from @Q,. However, there are still
occasions when aggregating @, and then using Q. to compute p(™ will in fact be
more efficient. The first is when it is necessary to compute p{™ for a large number of
different prior distributions (recall that (). does not depend on the prior information
and hence need not be recomputed). The second occasion is when it is necessary to
compute p™ for large n (e.g., Stewart (1994) indicates that times on the order of
10% are sometimes required). In both of these situations the cost of the aggregation

algorithm is amortized. Finally, aggregation is also advantageous when the prior
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distribution is not known in advance. ©

In summary, the aggregation algorithm is most advantageous when it is necessary
to actually examine the powers of ), directly. For computing probability distributions
over the states, the aggregation algorithm will be advantageous if the prior distribu-
tion is initially unknown, if a large number of prior distributions will be considered,

or if the transient behavior over a long period of time is required.

12.7 Related Work

The goal of this chapter has been to provide a technique for aggregating (or com-
pressing) discrete-time Markov chains (DTMCs) in a way that yields good estimates
of the transient behavior of the Markov model. This section summarizes the work
that is most closely related.

There is a considerable body of literature concerning the approximation of tran-
sient behavior in Markov chains. Techniques include the computation of matrix ex-
ponentials, the use of ordinary differential equations, and Krylov subspace methods
(Stewart 1994). However, all of these techniques are for continuous-time Markov
chains (CTMCs), which use an infinitesimal generator matrix instead of a probability
transition matrix. It is possible to discretize a CTMC to obtain a DTMC such that
the stationary probability vector of the CTMC is identical to that of the DTMC.
However, Stewart (1994) notes that the transient solutions of DTMCs are not the
same as those of the corresponding CTMCs, indicating that these techniques will be
problematic for computing the transient behavior of DTMCs.

There is also considerable work in aggregation of DTMCs. Almost all theoretical
analyses of aggregation (e.g., the “block aggregation” of Kemeny and Snell (1960))

utilize the same functional form:

f(Q)) = Q. = AQuB st. AB =1

"It is also important to emphasize that it is very likely that the aggregation algorithm can be
extensively optimized, producing much better timing results.
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where A and B are matrices that determine the partitioning and the aggregation of
the states (Howe and Johnson 1989a; Howe and Johnson 1989b). This functional form
must satisfy two axioms: “linearity” and “state partitioning”. Linearity implies that
A and B do not depend explicitly on the entries in ),,. State partitioning implies that
the “aggregated” transition probabilities should depend only upon the probabilities
associated with the aggregated states (e.g., the aggregation of states ¢ and j should
only depend on p;;, pi;, Pji, and p; ;).

Neither axiom is true for aggregation of column-equivalent states in this chapter.
This is reflected in the fact that in general AB = XY # [. Instead, in this chapter
BA = T for both row and column equivalence, yielding desirable properties with
respect to the powers of (),. The current results indicate that the relevance of both
axioms should be re-examined.

The aggregation technique most closely related to the work in this chapter is de-
scribed by Stewart (1994), Stewart and Wu (1992), and Vose (1995). This aggregation
technique partitions the set of states S into s non-empty sets Si, ..., Ss. Denoting the

steady-state probability of state 7 as m;, then m, = 3";c s, Ti if:

Qc(ma y) =

Zi:% o zez:sz [mgs:y pi,j] (12.4)

If aggregation is performed in this manner, the steady-state behavior of the ag-
gregated system is the same as the original system. The aggregated matrix can be
computed via the method of “stochastic complementation” or via “iterative aggre-
gation/ disaggregation” methods. The former will work on arbitrary matrices but
is generally computationally expensive. The latter is most efficient for “nearly com-
pletely decomposable” (NCD) matrices (Dayar and Stewart 1997). However, the
emphasis is always on steady-state behavior, and not on transient behavior. This
difference in emphasis can been seen by noting the difference in the choice of weights

(compare Equation 12.2 to Equation 12.4) — the focus in this chapter has been on

column mass instead of steady-state values.
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In a sense the aggregation algorithm presented in this chapter is a generalization of
steady-state aggregation. The steady-state matrix is column equivalent for every pair
of states, and the column masses, when renormalized, are the same as the steady-state
probabilities. Thus the aggregation algorithm is a generalization of the steady-state
aggregation formula to transient behavior. ® This leads to the intriguing hypothesis
that this new aggregation algorithm will be more accurate when describing transient
behavior, and less accurate for describing steady-state behavior. Preliminary results

appear to confirm this hypothesis.

12.8 Summary

This chapter has introduced a novel aggregation algorithm for probability transition
matrices. The output from the algorithm is a smaller probability transition matrix
with fewer states. The algorithm is designed to aggregate arbitrary (not necessarily
NCD) probability transition matrices of DTMCs in order to obtain accurate estima-
tions of transient behavior. Thus it appears to fill the gap between existing transient
techniques (which focus on CTMCs) and existing aggregation techniques for DTMCs
(which focus on steady-state behavior).

There are a number of potential avenues for further expansion of this research.
The first possibility is to aggregate more than two states at once. Multiple-state
aggregation may yield better results, by allowing for a more accurate estimation of
error. Another avenue is to derive estimates of how error propagates to higher powers
of Q.. The current similarity metric is not necessarily a good indicator of the error at
higher powers of @), although empirically the results are quite good. However, both
of these avenues greatly increase the computational complexity of the algorithm.

The comparison with the related work indicates that this new aggregation algo-
rithm can be considered to be a generalization of the more traditional aggregation

formulas. This indicates yet a third avenue for research. If in fact column mass turns

8Note that Lemma 12.3 implies that if b; = gb; for states i and j in @, then m; = gm;.
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out to yield better weights for the weighted average during transient behavior, then
it may be possible to smoothly interpolate between column mass and steady-state
probabilities as the transient behavior approaches steady state. Of course, this pre-
supposes the existence of the steady-state distribution, but efficient algorithms do
exist to compute these distributions.

The current algorithm also quite deliberately ignores the roles of the priors p;(©,
in order to have as general an algorithm as possible. However, if priors are known,
then it may be possible to use this information to improve the weighted averaging
procedure (see Appendix), thus once again reducing the error in some situations.

Finally, the amount of aggregation that can be achieved with negligible error
is a useful indicator of whether the system is being modeled at the correct level
of granularity. If the probability transition matrix is hard to aggregate, then the
system is probably modeled at a reasonable level of granularity. However, ease of
aggregation indicates that the system is being modeled in too much detail. In these
cases monitoring the states that are chosen for aggregation by the similarity metric can
yield important information about the characteristics of the system. This approach
could be used to characterize systems that are defined by a probability transition
matrix but are still not well understood at a higher level.

This completes the excursion into aggregating Markov models. Our main concern
now is in what Markov models can teach us about EAs, especially with respect to
the roles of recombination and mutation. As mentioned in the prior chapter, which
used Markov chain models of EAs (Chapter 11), our initial progress suggests that the
multimodality of (the number of peaks in) the search space is of importance in de-
termining the relative performance of recombination and mutation. This observation

will now be confirmed by using real EAs, in Chapter 13.
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Chapter 13

Empirical Validation

13.1 Introduction

The results of the earlier static schema analyses from Chapter 7 and of the dynamic
Markov chain analyses from Chapter 11 strongly suggested that the multimodality
of (number of peaks in) a search space is an important characteristic in determining
the relative importance of mutation and recombination in an EA. The results from
the Markov chain analyses also suggested that the relative heights of the peaks had a
strong effect on the performance of EAs with recombination. Naturally, it is important
to empirically validate these results with real EAs, in order to see if the results scale to
larger, more realistic problems. How should this empirical validation be performed?

One weakness with standard empirical studies in which search algorithms are
compared is that their results may not generalize beyond the test problems used. A
classic example of this is a study in which a new algorithm is carefully tuned to the
point that it outperforms some existing algorithms on a few ad hoc problems (e.g.,
the De Jong (1975) test suite). The results of such studies typically have only weak
predictive value regarding relative performance on new problems.

There are two ways to strengthen the results obtained from empirical studies. The
first is to remove the opportunity to hand-tune algorithms to a particular problem or
set of ad hoc problems. This can be done by using “test-problem generators”, which
produce random problems from within a well-specified class of problems. Having

problem generators allows one to report results over a randomly generated set of

211
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problems that have well-controlled characteristics, rather than a few hand-chosen,
ad hoc examples. Thus, by increasing the number of randomly generated problems,
the predictive power of the results for the problem class as a whole has increased.
An advantage of problem generators is that in most cases they are quite easy to
parameterize, allowing one to design controlled experiments in which one or more
properties of a class of problems can be varied systematically to study the effects on
particular search algorithms.

On a related issue, it is common practice to run EAs to some fixed termination
criteria, and then to report the results only after termination. However, this ignores
the dynamic aspects of an EA, and can lead to overly general conclusions. For ex-
ample, as we will see, conclusions can often turn out to be surprisingly dependent on
the termination criteria, often reversing if a different cutoff is used. From both an
engineering and scientific standpoint it is crucial to include results throughout the
running of EAs. Thus, a second way to improve empirical methodology is to always
show results over the whole running time of an EA (as was done in Chapter 11).

This chapter compares the performance of recombination and mutation in real
EAs using a problem generator motivated by the results from Chapter 11 of this
thesis. The goal is to explore the behavior of recombination and mutation as various

aspects of the search space are methodically changed.

13.2 The Multimodal Problem Generator

The results from Chapter 11, which used a Markov chain analysis of an EA, strongly
suggested that the multimodality of (number of peaks in) a search space is an impor-
tant characteristic of any search space. However, since those results were obtained
from very small problems (with two- and three-bit individuals and small population
sizes), there is naturally some concern as to how these results scale to larger prob-
lems and larger population sizes. To this end we create a test-problem generator that

generates large random problems with a controllable degree of multimodality.



213

The Markov chain analysis of Chapter 11 was performed on small one-peak and
two-peak problems. To understand the motivation for examining multimodality, con-
sider a simple two-peak problem, with optima at “000...000” and “111...111”. Indi-
viduals (strings) with roughly 50% 1’s and 0’s are the lowest fitness strings, while
individuals with mostly 1’s or mostly 0’s have high fitness. Mutation of any high-
fitness individual on either peak will tend to keep the individual on that peak, driving
it up or down the peak to a small degree. Recombination, however, produces quite
different results, depending on the location of the parents. If the two parents are on
the same peak, the offspring are also highly likely to be on that peak. However, if
the two parents are on the two different peaks, the offspring are highly likely to be
in the valley between the two peaks, where the fitness is low. The results in Chap-
ter 11 confirm this hypothesis for very small problems, by showing that an EA with
recombination outperforms an EA without recombination on small one-peak prob-
lems, whereas an EA without recombination outperforms an EA with recombination
on small two-peak problems.

What if there are more than two peaks? It appears reasonable to hypothesize that
recombination could be even more deleterious, since the recombination of individuals
on different peaks is even more likely to produce poor offspring, until the population
has converged to one peak. This hypothesis is consistent with the view of Jones (1995)
that fitness functions should be considered as “operator landscapes”, i.e., they should
be considered from an operator point of view. Our notion of multimodality is generally
embedded in Hamming space, which is an ideal view for mutation, since the mutation
of a parent yields a child that is nearby in Hamming space. Thus we might expect
mutation to perform well on multimodal functions. However, Hamming distance is
not necessarily useful when considering recombination, since the recombination of
two parents can yield children arbitrarily far in Hamming space (i.e., in the valleys
between two peaks). Thus again we might expect recombination to perform poorly

on multimodal functions.
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Figure 13.1: Best-so-far performance of an EA on 1-peak, 10-peak, 100-peak, and
1000-peak problems.

To explore these hypotheses, a multimodality problem generator was created, in
which the number of peaks P (the degree of multimodality) can be controlled easily
and methodically by the experimenter. The idea is to generate a set of P random
L-bit strings, which represent the location of the P peaks in the space. To evaluate
an arbitrary binary string, first locate the nearest peak (in Hamming space). Then
the fitness of the binary string is the number of bits the string has in common with

that nearest peak, divided by L.

1
f(string) = I I?EIX {L — Hamming(string, Peak;)}
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13.2.1 Experiments With All Peaks at Equal Heights

The results from Chapter 11 suggested that recombination may perform worse as the
number of peaks in a space increases. However, these results were generated from
very small problems. The multimodality generator defined above provides a nice
mechanism for investigating this result further, by allowing the user to create large
random problems with a desired degree of multimodality. What one would expect
to see is a gradual degradation in performance of an EA with recombination, as the
number of peaks in the space increases.

Of the EAs, both “evolution strategies” (Rechenberg 1973; Schwefel 1981), and
“evolutionary programming” (Fogel, Owens, and Walsh 1966) are most often used
for real-valued problems, whereas “genetic algorithms” (Holland 1975) are most of-
ten used for discrete problems. Since our problem generator is defined over binary
strings, the natural choice for our EA is a genetic algorithm (GA). The GA chosen
(called “GAC”, which is available from the author), is quite traditional, with fitness-
proportional selection, mutation and recombination. Furthermore, GAC is also quite
similar to the simple EA assumed in Chapter 11 — its only differences are in its use of
fitness “scaling” (see Goldberg (1987)) and the fact that recombination produces two
offspring as opposed to one. Neither of these differences should produce qualitative
differences in results.

To see how multimodality affects recombination and mutation we ran the GA
in three different modes. In the first mode both mutation and recombination are
used. In the second only mutation is used. In the third only recombination is used.
Fitness-proportional selection is always used. The expectation is that the two GAs
with recombination should perform worse as the number of peaks increases. To test
this we created problems ranging from 1 peak to 1000 peaks. For a given number of
peaks, fifty random problems were created. The GA was run once per problem, and
the results were averaged over those fifty problems. The string length L was 100, the

population size P was 100, the mutation rate 4 = 0.001 and the recombination rate
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X = 0.6 (this is the percentage of individuals that are recombined every generation,
when recombination is turned on). These are quite typical parameter settings for
GAs — e.g., see De Jong (1975). The GA was run for 30,000 evaluations, where an
individual was evaluated only if it differed from its parent.

The performance metric that was monitored is also quite traditional — namely
“best-so-far” curves that plot the fitness of the best individual that has been seen
thus far by generation n. Since the multimodality generator produces problems that
range from 0.0 to 1.0 in fitness, the best-so-far curves will fall within those fitness
values. Since higher fitness indicates being closer to an optimum, our GA will have
to maximize the function.

Figure 13.1 illustrate the results, which are quite striking. The behavior of the
GA without recombination (i.e., with selection and mutation) is almost independent
of the number of peaks. This seems reasonable, since the presence of multiple peaks
will not influence the mutation of an individual on a particular peak. Recombination,
on the other hand, performs quite differently. ! The GAs with recombination out-
perform the GA without recombination on the one-peak problems. However, what
is most noticeable is the severe drop in performance of the GAs with recombination
as the number of peaks increases. This is consistent with our hypothesis — simply
put, recombination of individuals on multiple peaks can often produce poor perform-
ing individuals in the valleys between peaks. Note, however, that eventually the
performance curves for the GAs with recombination pick up dramatically in later
generations. What appears to be happening is that by this point the population has
lost so much diversity that in fact the individuals are clustered around one peak. At

this point recombination becomes beneficial and performance increases.

'We used one-point recombination throughout this chapter, but the results are similar for two-
point and 0.5 uniform recombination. The vertical bars overlaying the best-so-far curves represent
95-percent confidence intervals computed from Student’s ¢-statistic (Miller 1986).
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13.2.2 Experiments With Peaks at Unequal Heights

The previous subsection shows results that confirm the hypothesis (from Chapter 11)
that increasing multimodality can have a deleterious effect on EAs with recombina-
tion. As expected, as the number of peaks increased, the performance of recombina-
tion worsened.

In the previous subsection, all of the P peaks implicitly had the same maximum
height of 1.0. However, Chapter 11 also indicated that lowering the height of a
suboptimal peak tended to help the performance of recombination (i.e., this tends to
make the problem look more like a one-peak problem). This effect can be tested with
the multimodality generator by explicitly adding a new control knob to the generator
that can change the height of peaks. This is done by assuming that the first peak
has height 1.0 while peak P has some height h lower than 1.0. The remainder of
the peaks have heights linearly interpolated between A and 1.0. Thus, the user can
modify the maximum height on each peak by changing h. For example, in a problem
with four peaks, having h = 0.0 means that the first peak has height 1.0, the second
peak has height 2/3, the third peak has height 1/3, and the fourth has height 0.0. 2

To test the effect that the height of suboptimal peaks has on recombination, we
produced fifty random 10-peak problems, for each of the four different settings of
h: 1.00, 0.66, 0.33, 0.00. The parameter settings of the GA are the same as in the
last subsection. The expectation is that although recombination has difficulty with
a larger number of peaks, the difficulty should get less as h is reduced. Figure 13.2
shows the best-so-far results, which confirm our expectations. Note that a small
reduction in the height of the peaks does help recombination noticeably.

To see how the multimodality affects these results, we also performed the same
experiment with 100-peak problems. Figure 13.3 shows the results. The effect is
still quite dramatic in that lowering the height of the peaks does help recombination

noticeably.

2The fitness of an individual near peak i is scaled by the maximum fitness of peak 3.
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Figure 13.2: Performance of an EA on 10-peak problems where the minimum height
h of a peak ranges from 1.0 to 0.0.

13.3 The Relationship of Multimodality to Epistasis

By use of a multimodality problem generator, the previous section has confirmed that
the effectiveness of recombination is intimately connected to the number of peaks
in a space, as well as heights of those peaks. However, according to Chapter 1,
another characteristic of a space that may prove important for recombination is called
“epistasis”. Is it possible to find a relationship between these two different concepts?

As pointed out in Chapter 7, recombination has a clear advantage (over muta-
tion) in terms of its ability to construct higher-order building blocks from lower-order
building blocks. This has led Fogel (1995) to hypothesize that recombination will

perform poorly for most naturally evolved systems, because (so he claims) they are
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Figure 13.3: Performance of an EA on 100-peak problems where the minimum height
h of a peak ranges from 1.0 to 0.0.

extensively pleiotropic (a gene may influence multiple traits) and highly polygenic (a
trait may be influenced by multiple genes), since such systems will not have many
high-fitness building blocks for recombination to exploit. Fogel argues that mutation
will be superior for these systems.

The biological concepts of pleiotropy and polygeny are related to “epistasis”. A
system has low (high) epistasis if the optimal allele for any locus depends on a small
(large) number of alleles at other loci. Systems with independent loci (the optimal
allele for each locus can be decided independently of the alleles at the other loci) have
no epistasis.

In order to investigate epistasis, De Jong et al. (1997) examined a test-problem
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generator referred to as “Random L-SAT” (Mitchell, Selman, and Levesque 1992),
which produces random Boolean satisfiability problems. The Random L-SAT problem
generator creates random problems in conjunctive normal form (CNF) subject to the
three parameters V', C, and L. Each of C clauses is generated by selecting L of the
V Boolean variables uniformly randomly and negating each variable with probability
0.5.

We can make direct contact here with the biological notions of pleiotropy (a gene
may influence multiple traits) and polygeny (a trait may be influenced by multiple
genes). For these L-SAT problems, each clause can be considered to be a trait. Hence,
the polygeny is of order L. The pleiotropy is estimated by noting that each variable
occurs (on average) in CL/V clauses. By systematically controlling and varying these
parameters, one can vary both the type and the amount of epistasis.

What this shows is that one can use a generator of satisfiability problems to inves-
tigate epistasis. This provides a link with the multimodality problem generator, which
can also be considered to be a generator of satisfiability problems. To understand
this one has to see that the multimodality problem generator is a generalization of
the work presented in Spears (1990) and De Jong and Spears (1990). Spears (1990)
investigated the application of EAs to solving Boolean satisfiability problems and
provided a mapping from arbitrary Boolean satisfiability problems to mathematical
fitness functions amenable to solution by EAs. De Jong and Spears (1990) used this
mapping to create a small set of P-peak problems, where P ranged from one to six.

The P-peak problems introduced in De Jong and Spears (1990) were based on
Boolean satisfiability problems in disjunctive normal form (DNF). Each clause of the
Boolean expression is the location of a peak in the search space (i.e., there are as many
clauses as peaks). Thus, by extension, any problem created by the multimodality
problem generator can also be considered to be created from a particular satisfiability
problem in DNF.

Thus what we have shown is that the Random L-SAT generator, which creates
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satisfiability problems in CNF, can be used to investigate epistasis. The multimodal
problem generator, which is used to investigate multimodality, creates satisfiability
problems in DNF. Any problem in CNF can be converted to DNF and vice versa
— thus the framework of satisfiability allows us to link the notions of epistasis and
multimodality.

In general, increasing the number of clauses in a satisfiability problem (in DNF)
will increase the number of clauses (and the complexity of the clauses) in the equiva-
lent expression in CNF. Increasing the number of peaks in the multimodal problems
will tend to increase their epistasis. Our results show a degradation in the per-
formance of recombination as the multimodality increases, which is consistent with
Fogel’s hypothesis.

However, consider the experiments in which the fitness of the peaks is methodi-
cally lowered. Changing the fitness does not change the syntactic expression of the
multimodal function as a DNF Boolean expression. Thus changing the fitness of the
peaks will also not change the epistasis (as measured syntactically in terms of the
number of clauses and the complexity of the clauses) of the equivalent CNF Boolean
expression. Yet, despite the lack of change in epistasis, the performance of recombina-
tion is dramatically affected. This illustrates the danger in attempting to characterize
fitness functions with purely syntactic measures that ignore fitness to a large extent.
Syntactic measures of epistasis (as proposed by Fogel) are simply inadequate. In
order for such characterizations of fitness functions to be useful, they must include

fitness information to a much larger extent.

13.4 Summary

This chapter introduces the empirical methodology of using “test-problem generators”
to produce random problems from within a well-specified class of problems. Having
problem generators allows one to report results over a randomly generated set of

problems that have well-controlled characteristics, rather than a few hand-chosen,
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ad hoc examples. The goal is to identify problem characteristics that yield useful
predictive theories concerning performance.

The results of the earlier static schema analyses from Chapter 7 and of the dynamic
Markov chain analyses from Chapter 11, strongly suggested that the multimodality
of (number of peaks in) a search space, as well as the relative heights of the peaks, are
important characteristics in determining the relative importance of mutation and re-
combination in an EA. In order to address these issues, a multimodality test-problem
generator was created that allows the user to methodically control both the number
of peaks and the relative heights of those peaks in a search space. Results confirm
that when all peaks have equal heights, increasing the number of peaks has increasing
deleterious effects on the performance of EAs with recombination. However, grad-
ually lowering the heights of the suboptimal peaks is beneficial to the performance
of recombination. Interestingly, the EA with mutation (and no recombination) was
almost completed unaffected by these changes. 3

This chapter further shows that the concept of “epistasis” can be linked to the
concept of multimodality by using the common language of Boolean satisfiability
problems. Multimodal functions can be easily represented as Boolean expressions in
disjunctive normal form, while epistasis is easily represented as Boolean expressions
in conjunctive normal form. The results presented in this chapter indicate that such
syntactic measures of epistasis (which are similar to those presented by Fogel (1995))

are inadequate in that they do not include fitness information sufficiently.

3Experiments that compare EAs with the “particle swarm” algorithm on problems drawn from
the multimodality test-problem generator can be found in Kennedy and Spears (1998).
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Chapter 14

Summary and Discussion

14.1 Summary and Contributions

The central story of this thesis was a theoretical and empirical study of recombina-
tion and mutation in EAs, that had the objective of better characterizing the roles
of these operators. This story proceeded in stages. First, static, component-wise
analyses of recombination and mutation were performed in isolation. Then dynamic
analyses were performed, which included all aspects of an EA. The results from the
static analyses were used to drive the experiments performed in the dynamic anal-
yses. Finally the results from both the static and dynamic analyses were confirmed
empirically with real EAs. This occupied Chapters 2 — 7, as well as Chapters 11 and
13.

The thesis also made occasional excursions. The purpose of the excursions was to
introduce new techniques for studying EAs, as well as to unify the current techniques

more tightly, by showing the explicit connections between them.

14.1.1 The Central Story

The central story began by performing a static analysis of the effect that recombina-
tion and mutation have on kth-order hyperplanes Hy. The analysis was static because
it did not take into account the time evolution of the population. In order to provide
a fair comparison of recombination and mutation, both operators were treated as

two-parent operators. The “disruptive” and “constructive” aspects of both operators
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were compared by calculating the expected number of offspring that will be in Hy,
after the two parents have been recombined or mutated. This framework allows for
a natural treatment of arbitrary cardinality alphabets, arbitrary population diversity
(homogeneity), and arbitrary order hyperplanes.

The results from that static analysis indicated that mutation is more powerful
than recombination in terms of disruption — mutation can achieve the same low
levels of disruption that recombination can, but can also achieve higher levels of
disruption. On the other hand, recombination is more powerful than mutation in
terms of construction — recombination has a higher likelihood of constructing two
lower-order, non-overlapping hyperplanes into a higher-order hyperplane than does
mutation. The constructive advantage of recombination is maximized when the two
lower-order hyperplanes are roughly half the order of the higher-order hyperplane
being constructed. The constructive advantage translates into a performance ad-
vantage when constructed higher-order hyperplanes have high fitness. On the other
hand, recombination should have a deleterious effect on an EA when the higher-order
hyperplanes that are constructed have low observed fitness. The thesis then hypoth-
esized that multimodal (multiple-peak) fitness functions should show that deleterious
effect — recombination should perform worse as the number of peaks increases, since
recombination of individuals on different peaks will likely produce offspring in the
valleys between the peaks.

In order to test this hypothesis the thesis then investigated dynamic analyses of
EAs, in which the time evolution of the EA was explicitly considered. The Nix and
Vose (1992) Markov chain model of a complete, simple EA was used to analyze the
behavior of an EA on very small problems with one and two peaks. The results con-
firmed that the multimodality of (number of peaks in) a search space is an important
factor in determining the utility of recombination in an EA — recombination was more
useful than mutation on the one-peak problems, but less useful than mutation on the

two-peak problems. The results also suggested that the relative heights of the peaks
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influenced the utility of recombination.

In order to confirm these results with real EAs on real problems, the thesis then
introduced an empirical methodology based on “test-problem generators”. Test-
problem generators can create random problems from a certain class of problems with
user-controlled characteristics. A multimodality test-problem generator was created
that allows the user to methodically control both the number of peaks and the relative
heights of those peaks in a search space. An actual EA was run on large problems
drawn from the multimodality generator. Results confirmed that when all peaks have
equal heights, increasing the number of peaks has an increasingly deleterious effect on
the performance of EAs with recombination. However, gradually lowering the heights
of the suboptimal peaks is beneficial to the performance of recombination. Interest-
ingly, the EA with mutation (and no recombination) was almost completed unaffected

by the number of peaks or their heights. These results concluded the central story.

14.1.2 Excursions

As well as following the central story line, the thesis also took occasional excursions
into related theoretical areas. The first excursion was a formal investigation of an
observation made in the static schema analysis of the central story — that more disrup-
tive recombination operators also tend to be more constructive. The thesis showed
that this relationship is always true by proving a “No-Free-Lunch” theorem which
states that any increase in disruptive ability by a recombination operator is matched
by an equal increase in constructive ability. In general, there is no such theorem for
mutation.

The thesis then investigated other static characterizations of recombination and
mutation, namely, their “exploratory power”, their “positional bias”, and their “dis-
tributional bias”. In general, mutation has greater exploratory power than recombi-
nation. Like P, uniform recombination, mutation has no positional bias, and its dis-

tributional bias is also most similar to that of uniform recombination. Interestingly, it
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was shown that when the cardinality of the alphabet is two and the population is max-
imally diverse, mutation and P, uniform recombination have the same exploratory
power, positional bias, and distributional bias. Surprisingly, this relationship also
holds for the static schema analysis — when the mutation rate u = FP,, mutation and
uniform recombination have precisely the same disruptive and constructive effects on
all hyperplanes.

After the static analyses of recombination and mutation, the thesis explored dy-
namic analyses. The first such dynamic analysis concerned the evolution of a pop-
ulation undergoing recombination and/or mutation (but without selection). Previ-
ous results indicated that a population undergoing only recombination approaches
“Robbin’s” equilibrium. This thesis showed that a population subject to mutation
approaches a “uniform” equilibrium. This equilibrium takes precedence when both
mutation and recombination act on a population because mutation actually moves
Robbin’s equilibrium to the uniform equilibrium. The thesis also attempted to char-
acterize the speed at which these limiting distributions are approached. For recombi-
nation it was possible to demonstrate that there are strong connections to the earlier
static schema analysis, because in many situations the more disruptive recombina-
tion operators drive a population to Robbin’s equilibrium more quickly. Similarly
the more disruptive mutation is, the more quickly it drives a population towards the
uniform equilibrium.

The thesis then developed a dynamic model of an EA that includes selection and
mutation. In general, this involves the iteration of a large number of equations of
motion. However, the thesis then defined a class of fitness functions under which a
useful aggregation of the model can be applied, resulting in far fewer equations. This
class of functions includes unimodal functions from the EA and biology communities,
two-peak deceptive problems from the GA community, and multimodal functions.
Since some EAs do not use recombination, this particular model could be a quite

valuable theoretical tool.
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Unfortunately, as recombination is added to the previous model, the model be-
comes far more complex. Aggregation also becomes far more difficult to perform.
Thus the thesis explored the possibility that complex models can be automatically
aggregated into simple models. The result was a novel aggregation algorithm that
can be applied to Markov chain models of complex systems (such as the Nix and
Vose model of an EA). The algorithm aggregates a Markov chain into a much smaller
Markov chain that is easier to analyze. Preliminary tests of this aggregation algorithm
indicated that substantial amounts of aggregation can be performed while introduc-
ing only small amounts of numerical error. This particular excursion has scope well
beyond that examined in this thesis, since Markov chains are a common technique

for modeling complex systems (and not just EAs).

14.2 Discussion

As mentioned in Chapter 1 of this thesis, one criticism that is often levied against
the static “schema” theories is that they are too simple to be useful, since such
component-wise analyses can not be sufficiently predictive. At the opposite extreme,
Markov chain models of EAs (although predictive in nature) are considered to be
problematic due to their computational complexity. Since they can only be applied
to very small problems, there is the added concern that any results obtained with the
small problems will not scale to larger, more realistic problems.

This thesis addressed both criticisms. Markov theories can in fact provide quite
useful insights — the behavior of an EA on small (computationally tractable) problems
can in fact be observed in larger problems (Chapter 11 and Chapter 13). Furthermore,
as mentioned above, it is possible to provide automatic tools for simplifying these
models to make them far more computationally manageable. Finally, this thesis
showed that the results from the simple schema theories provided the inspiration for
the experiments performed in the Markov model of an EA, thus indicating that a

theory need not be totally predictive to be useful.
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A final concern is with the traditional, empirical methodology often used in the
EA community, in which an EA is carefully tuned so that it outperforms some other
algorithm on a few ad hoc problems (e.g., the De Jong (1975) test suite). Unfortu-
nately, the results of such studies typically have only weak predictive value regarding
the performance on new problems.

Interestingly, this form of empirical methodology was also used until recently in the
concept learning portion of the machine learning community. Various concept learners
were extensively optimized to perform well on small sets of concepts. However, their
performance on new, previously unseen concepts was generally hard to predict. In
response, researchers began focusing on concept generators, which could produce
random concept learning problems within a certain class. The key was to identify
characteristics of concepts (noise, number of irrelevant attributes, etc.) that affected
different learning algorithms in different ways. The goal was to match concept learning
algorithms with specific concept characteristics. This approach yielded results that
were more informative and predictive.

This thesis suggests that the EA community follow the same trend, first by finding
important problem characteristics that affect the performance of EAs, and then by
creating test-problem generators in which those characteristics can be methodically
changed. This thesis gave one example of this process, by theoretically illustrating the
importance of multimodality, and then by using this insight to create a multimodality
test-problem generator. Certainly, the multimodality generator introduced here is not
the first such generator, nor will it be the last. But the concept of problem generators
is one that deserves emphasis, and it is hoped that EA researchers will focus more
energy not just on improving algorithms, but on finding appropriate problems for
testing those algorithms.

On a related issue, it is common practice to run EAs to some fixed termination
criteria, and then to report the results only after termination. However, this ignores

the dynamic aspects of an EA, and can lead to overly general conclusions. For ex-



230

ample, as was seen in Chapter 13, conclusions can often turn out to be surprisingly
dependent on the termination criteria, often reversing if a different cutoff is used.
From both an engineering and scientific standpoint, it is crucial to include results
throughout the running of EAs. Thus, this thesis suggests that a second way to im-
prove empirical methodology is to always show results over the whole running time

of an EA.

14.3 Future Work

There are a large number of possible extensions to the work presented in this thesis.
Since the thesis focused on fixed-length, linear chromosomes, one of the most obvious
extensions is to variable-length, non-linear representations. One example of work in
this area is by O’Reilly (1994), which analyzes the Lisp representation of “genetic
programming” (Koza 1992).

In general, the static analyses of mutation and recombination in this thesis exam-
ined each operator in isolation. However, it is felt that it should be possible to extend
these analyses to include the behavior of mutation and recombination in combina-
tion. For example, it should not be too difficult to calculate the expected number of
offspring that will be in a hyperplane Hy, after the two parents have been recombined
and mutated. Likewise it should not be difficult to determine the exploratory power,
distributional bias, and positional bias of mutation and recombination both acting
on the same parents.

As for the dynamic analyses, much more work remains to be done with respect to
the speed at which different recombination operators approach Robbin’s equilibrium.
The analysis presented in this thesis allows one to make relative statements concern-
ing the different speeds of different recombination operators, but clearly it would be
advantageous to be able to make absolute statements. For example, and stated some-
what simplistically, it would be desirable to be able to compute the “half-life” of a

recombination operator, i.e., the time it would take a recombination operator to drive
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a population half-way to Robbin’s equilibrium.

This thesis has presented one novel test-problem generator for multimodal func-
tions. This particular test-problem generator was very useful in creating a problem
class that an EA with recombination has great difficulty solving. Clearly this is not
the only possible problem generator, and much work needs to be done in finding other
problem characteristics that influence EAs strongly. One potentially useful problem
generator would be one that can generate problems that are easy for an EA with
recombination but very hard for an EA with only selection and mutation.

Since it may be difficult to identify important problem characteristics a priori, it
is possible that an automated technique can help in this endeavor. Imagine having a
meta-search algorithm that searches the space of problems (functions), in an attempt
to find problems (functions) that are hard or easy for a particular algorithm (opti-
mizer). Such a technique was used in De Jong et al. (1994) to find a hard problem
for an EA. Then, given examples of hard and easy problems, the important problem
characteristics may be much easier to discern.

Finally, once important problem characteristics are known, it will be crucial to
determine whether problems (functions) have those characteristics. One possible
mechanism for achieving this is through “probes” that quickly sample a function
to estimate its characteristics, allowing the user to match the problem to the right
algorithm. For example, for a class of Boolean satisfiability problems in conjunc-
tive normal form (Mitchell, Selman, and Levesque 1992), the ratio of the number of
clauses to the number of Boolean variables in the satisfiability problem is an impor-
tant problem characteristic that often helps determine the best algorithm to apply to
that problem. The probe consists of a linear pass over the Boolean expression, com-
puting the clause to variable ratio. Similarly, future work in EAs should concentrate
on creating probes that quickly measure useful problem characteristics for various
problem classes, allowing the user to match algorithms (or operator settings within

an algorithm) to particular problems.



APPENDIX

232



APPENDIX

Formal Computations for the Aggregation Algorithm

This appendix formally computes gy 35 Let S; be the random variable for the
Markov chain, which can take on any of the N state values at time ¢. Then the
short-hand notation p; ; is really P(S; = j | S;_1 = i) and p;¥) is really P(S; = i).
Recall the definition of conditional probability: P(A | B) = P(AA B)/P(B). Recall
also the definition for “averaging” probabilities: P(A) = Y, P(A A B;) where the
By’s are mutually exclusive and exhaust the space. The computation of ry . is

straightforward. By definition:
rivipe = P(Sy =k | Ser = (0 V7))

By definition of conditional probability and by expanding the disjunctions:

o PG =kAS = (V)
(Vi) P(Sp-1 = (i V )

P(S;=kAS,1=1i)4+P(S;=kAS,_1=7)
P(S;—1 = i) + P(S;-1 = j)

T{ivitk =

Expanding via the “averaging” of probabilities yields:

ZZP(St:k/\St_l:7;/\575_2:l)"f—ZlP(St:k/\St_l:j/\St_Q:l)
YiP(Sic1=tAS o= +>,P(Si-1=7AS2=1)

T{ivitk =

Using the definition of conditional probability several times, and the fact that the

process is Markovian yields (in short-hand notation):
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. L= pik o 22 + ik Sup; p?
iVitk — _ _
vl S oD 4+ Y o pt?

What is interesting to note is the time-dependence of this expression. Since the
2 values are not known in advance, one can only make an assumption of “uni-
formity” (i.e., that the p,(~? values are the same for all /). If this is done the
time-independent expression obtained is:

m; Pik + My Pjk
m; +m;

T{ivite =

where m; and m; are the sums of the probability mass in columns ¢ and j. This is
what was obtained more intuitively in Chapter 12.

Now clearly the uniformity assumption will be wrong in general, which explains
why the averaging procedure can lead to errors in numerical computations. However,
under conditions of row or column equivalence it is trivial to show that both the time-
dependent and time-independent forms lead to the same time-independent answers.
Thus, under row or column equivalence the uniformity assumption is irrelevant, and
the averaging procedure yields no error. Under row and column similarity the unifor-
mity assumption is nearly irrelevant and the time-independent expression is a good
approximation for the time-dependent expression. The error of this approximation is

computed in Chapter 12.
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