Matching Algorithmsto Problems:
An Experimental Test of the Particle Swarm and Some Genetic Algorithms
on the Multimodal Problem Generator

James Kennedy
Bureau of Labor Satistics
2 Massachusetts Ave., NE

Washington, DC 20212
kennedy_jim@bls.gov

Abstract

A multimodal problem generator was used to test
threeversions of genetic dgorithm and the binary
particle swarm algorithm in a fadorial time-series
experiment. Spedfic strengths and we&nesses of
the various a gorithms were identified.

1. Introduction

This paper will compare the performance of the bi-
nary particle swarm and several varieties of genetic dgo-
rithm on sets of problems produced by a multimodality
problem generator. The study will be constructed in the
form of a repeaed-measures fadorial experiment, re-
porting results from multivariate analysis of variance
Reseach questions involve dfeds of various aspeds of
problems on performance of the particle swarm and ge-
netic dgorithms with mutation or crossover, or both.

One difficulty with empiricd comparisons of seach
algorithms is that results may not generalize beyond the
test problems used. For instance, a new algorithm may
be caefully tuned so that it outperforms ome existing
algorithms on a few problems. Unfortunately, the results
of such studies typicdly have only weé& predictive value
regarding performance on new problems. We would like
to be &le to charaderize problems in a way that allows
us to predict the performance of an algorithm on new,
previously unseen problems.

There ae several ways to strengthen the results
obtained from empiricd studies. The first is to remove
the oppatunity to hand-tune dgorithms to a particular
problem or sets of problems. Problem generators allow
us to report results over a randomly generated set of
problems from particular classes of problems rather than
a few hand-chosen examples. Thus we increase the
predictive power of the results by describing
performance on the problem classas awhole.

An advantage of problem generators is that they can
be parameterized, alowing reseachers to design
controlled experiments in which one or more properties

William M. Speas
Code 5510 - Al Center
Naval Research Laboratory
Washington, DC 20375-5337
spears@aic.nrl.navy.mil

of a dass of problems can be varied systematicdly to
study the dfeds on particular search agorithms. This
provides a second method for improving empiricd
results, by alowing s to conduct well-designed
experiments which look a main effeds as well as
interadions of independent variables. While it is
understood that al possble ombinations of all
concevable variables cannot be manipulated in a single
study, a small number of representative levels of
variables which are mnsidered important can be studied
systematicdly; when the dfeds of these variables are
understood, then other variables can be introduced, urtil
all relevant eff eds have been charted.

One of the most important variables to consider is
time. Many empiricd studies report the performance of
algorithms at the end of a run, say at 20,000 evaluations
or after 10 minutes. However, as we will show,
conclusions can often turn out to be surprisingy
dependent on the time aitoff, often reversing if a smaller
(or larger) cutoff is used. Investigation of the processes
over time is important for a scientific understanding of
the behaviors of these dgorithms, as well as giving
important information to enginees who may wish to
develop applications using them. Thus a third method
for improving empiricd results is to sample the
performance of algorithms many times during a run.

2. Particle Swarm

The particle swarm agorithm is an adaptive
algorithm based on a socia-psychologicd metaphor; a
population of individuals adapt by returning
stochasticdly toward previously succesgul regionsin the
seach space and are influenced by the successes of their
topdogicd neighbors. In particle swarm, individuals
(particles) are represented as vedors X;(t) (i.e., the
vedor for particle i at timet). Particle swarm adaptation,
originaly presented as a method for seaching continuous
spaces [3, 4], has recantly been adapted to hinary spaces
through a simple modificaion [5]. Instead of moving
particles as % (t) = %;(t—1 +Ax; (t), particles exist as

vedors of probabiliti es, defined as a logistic function
s(A % (t)). For eah vedorX;(t), a random vedor

ﬁi (t) ischosen from a uniform distribution in [0.0, 1.0];
if pig (1) <s(Axq (1) then xiq(t) =1, else xig(t) = 0.
Preliminary tests have found this algorithm to perform
satisfadorily on standard test functions [5]; the present
experiment was designed in part as a rigorous

investigation of the properties of the discrete particle
swarm algorithm.

3. The Multimodal Problem Generator

The multimodality of (i.e., number of pes in) a
seach spaceis an important charaderistic of that search
space This sdion outlines a smple problem generator
that produces random problems with a cntrollable
degree of multimodality. The moativation for this
generator stemmed from an interest in the differences
between mutation and crossover in genetic dgorithms,
and its implementation below will alow insights into
charaderistics of the performance of the particle swarm
as well. Consider a simple two peak problem, with
optima & 000..000and 111..111 Individuals (strings)
with roughHy 50% 1's and Os are the lowest fitness
strings, while individuals with mostly 1's or mostly 0O's
have high fitness Mutation of any high fitnessindividual
on either peak will tend to ke the individual on that
ped, driving it up or down the pe& to a small degree
Crosover, however, produces quite different results,
depending on the locaion of the parents. If the two
parents are on the same pe&, the offspring are dso
highly likely to be on that peak. However, if the two
parents are on the two dfferent pedks, the off spring are
highly likely to be in the valley between the two pedks,
where the fitnessis low.

One can hypothesize, then, that crossover may hurt
GA performance on the two peek problem. What if there
are more than two pe&ks? It appeas reasonable to
hypothesize that crossover could be een more
deleterious, since the aosver of individuas on
different peas is even more likely to produce poa
off spring, urtil the population has converged to one peak.
To explore these hypotheses a multimodality problem
generator was creaed, in which the number of peas (the
degree of multimodality) can be cntrolled easily and
methodicdly by the experimenter. The description of the
generator is asfollows.

The idea is to generate a set of P random L-bit
strings, which represent the locaion of the P pessin the
space To evaluate an arbitrary bit string, first locate the
neaest pea (in Hamming space. Then the fitnessof the
bit string ¢ is the number of bits the string has in common

with that neaest pek, divided by L. The optimum fitness
for an individual is 1.0.

f(c) = % rlngllx {L - Hamming(c, Peakj)}

This particular problem generator is a generalizaion of
the P-pek problemsintroduced in[1]. De Jonget a. [2]
compared the performance of various GAs on problems
with 1 pea&k and problems with 500 peeks. What was
most noticedle in that study was the severe drop in
performance of GA's including crossover for the 500
pedk problems, whil e the performance arvesfor the GA
with mutation only (i.e.,, no crosover) are dmost
identicd for the two classes of problems. This provides
strong confirmation of the increasing initial advantage of
mutation as multimodality increases.

4. Design of the experiment

The experiment reported here used the multimodality
generator to investigate the dfeds of number of pesks
(P) and length of bit vedor (L) on the performance of
four algorithms, measured as a vedor of best-so-far per-
formancevalues smpled over time:

* A GA using crosover and seledion only (GA_c)

* A GA using mutation and seledion only (GA_m)

* A “traditional” GA with both crossover and muta-
tion, plus sledion (GA), and

* Thebinary particle swarm (PS).

Thus the study is conceved as a 4x2x2 fadtorial ex-
periment, with threebetween-groups fadors:

e Typeof agorithm
e Number of pe&ks (20vs. 100 peks), and
e Longer and shorter bit vedors (20 vs. 100 hts)

and one within-trial facor, which is cdled simply “time.”

It was hypothesized that charaderistics of the dgo-
rithms would interad with problem dimensions, and that
the cnditions under which an algorithm might excd or
fail could eventually be identified. With this knowledge,
reseachers can choose an algorithm which is appropriate
for their particular cese.

Dependent variablesin this experiment were the best-
so-far performance evaluations of ead trial at the 20th
(first generation) evaluation, the 1,00Qth, 2,000th, and so
onto the 20,000 evaluation -- atotal of 21 measurements
per trial. Multivariate analysis of variance (MANOVA)
comprised tests of the dfeds of the three independent
variables, including main effeds and interadions, on the
vedor of values, that is, the series of changes in per-
formance over time.

5. Method

Programs written in C were compiled on a Sun So-
laris machine running Unix. For ead setting of L and P
twenty random problems were generated. Each algo-
rithm was run once on ead of those problems, with eah
trial extending for 20,000 evaluations. Random seeds
spedfied for ead trial determined that all algorithms
operated on the same problems. An “evaluation” com-
prised adua evauation of the objedive function; this
was not done when a bit vedor had not changed from the
previous evaluation due to algorithmic operations. The
mutation rate for GA and GA_m was 0.001, the aoss-
over rate was 0.60 for GA and GA_c; for the particle
swarm, Vmax was 2.0 and ¢ (the “acceeration constant”)
was <t a 2.0. Two levelsof L and P were alministered:
levels for both variables were 20, in the low condition,
and 100in the high. Populations for all algorithms com-
prised 100individuals.

6. Reaults

All multivariate dfeds reported below were signifi-
cant with 0=0.0001 There is reason to be mncerned
that heteroscedasticity of data, espedaly small or zero
variancein cdlsthat rapidly and urenimously converged
on the global optimum, may have resulted in unceresti-
mation d error variance and subsequent inflation o F
ratios. Thus, this report will not dwell on p-values, but
only suggest that F is a good indicaion d the relative
amourt of variance eplained by ead fador. Inthein-
terest of saving space descriptions of analyses will refer
to the graphs that follow, rather than reporting the mul-
titude of means.

6.1. Timemain effect

All agorithms improved owver time, with most trials
ascending from a mediocre randam start to the global
optimum or nea it, resulting in a very large statisticd
effed of time, F(20, 285=214340. The following sec-
tions report how the experimental fadors interaced with
time.

P=20, L=20

0.7

Evals (20-20,000)

6.2. Algorithm x Time

The interadion d algorithm with time was moder-
ately strong, F(60, 85111)=16.67. Acrossthe four

Figures 1-4. Mean best-so-far performance of
the four algorithms compared within each of
the four conditions: high/low L x high/low P.

condtions, it is e that GA_m generally tended to per-
form well in ealy evaluations and fade later in the time
series, while GA and GA_c tended to start with a rush
followed by slowed improvement, then picked up until
they outperformed GA_m. PS on most trials garted
somewhat slower than GA_m but faster than the other

0.9 7/

0.8 +

P=100, L=20

0.7 +

[0 T e e e e I S L I e e e B S |
Evals (20-20,000)

P=20, L=100

Evals (20-20,000)

P=100, L=100

0.9 T
08T .5 _ 7

0.7 7

0.6 +—+——————+—F————————+——
Evals (20-20,000)

two GA’s, and was in al cdls the first algorithm to
overtake GA_m; in threeof the cdlsit was the first, and
sometimes the only, algorithm to attain a mean perform-
anceof 1.0. Inthe cdl whereit did na attain the global
optimum firgt, it was mnd, following GA_m in the
L=20, P=20 condtion.

6.3. P (Number of peaks) x Time

Varying the number of pedks affeded the dynamics
of the dgorithms rather strondy, F(20, 285=22.70. The
effed is £ in the pronourced dp in the airves of GA
and GA_c when P=100, much lesswhen P=20. The two
GA'’s with crosover showed fast improvement in the
very ealiest evaluations, then leveled ou, with gradual
but persistent improvement for the last half of the trials.
Thus, the dfed of P is e in owerall diminished mean
performance, though much o this effed will be e-
plained below by interadions.

6.4.

The variable which interaded the most, by far, with
time, was L, the length of the bit string being ogimized,
F(20, 285 = 98578. In the graphs, this can be seen as
an owerall depresson d performance in the two L=100
cdls, compared to the eae with which all algorithms
found the global optimum when L=20. In fad, when
L=20, al trials wttled on the global optimum before
5,000 evauations, when L=100, a gred many trials
failed to find the optimal bit string after 20,000 evalua-
tions. Thus this variable made the diff erence between an
easy and a hard situation.

L (Bit string length) x Time

6.5.

Number of pedks interaced wealy with agorithm,
F(60, 85112) = 3.34, suggesting that the dfed of P was
not importantly different between the dgorithms. In
comparing the graphs, it can be seen that the two graphs
with P=20 dffer from the two with P=100 mainly in an
incresse in dfficulty for GA and GA_c with the higher
number of peas, contrasted with almost identicd per-
formanceby GA_m and PSunder baoth levels of P.

Interaction of Algorithm x P x Time

6.6.

The interadion d agorithm with L over time was
moderate, F(60, 85112) = 15.04. When L=20, GA_ m
improved rapidly from the start of the trial diredly to the
global optimum, followed by PS with GA and GA ¢
lagging kehind, and all algorithms converging quickly on
the optimum. On the other hand, when L=100, theinitial
rush by GA_m faltered short of the optimum, to be
overtaken by GA and GA_c; these dgorithms with
crosover started dowly but outperformed GA_m in the
long run. PS found the global optimum on al trias,
somewhat more sowly than GA_m but faster than GA
and GA_c when L=20, and faster than al other algo-
rithms when L=100. Hence GA_m was most affeded,
and PSleast affeded, by changes in the length of the bit
string.

Interaction of Algorithm xL x Time

6.7.

Number of pedks interaded moderately with length
of the bit string, F(20, 285=14.69. Looking at the
graphs, we seethat the dfed of L was greaer when P
was high. For ead level of L, performance was lower
when P was high than when P was low, but the dfed
was greaer, and cccurred later in the sequence, when L
was high.

Interactionof L x P x Time

6.8.

The interadion d the three independent variables
with time was dight, F(60, 851.12) = 3.68. The “dip” in
performance by GA and GA ¢ was most pronourced
when bah L and P were high, while GA_m and PS per-
formed approximately the same in bah condtions where
L was high, and the same in the condtions where L was
low. Most of this variance however is explained by sim-
pler interadions.

Interaction of Algorithm xL xP x Time

6.9.

The patterns of univariate dfeds over time, shownin
the Appendix, can help explain the pattern of multivari-
ate dfedsreported above. The main effea of algorithm,
that is, the difference in performance between the vari-
ous agorithms, is norsignificant when the trials begin, as
it shoud be with randam initiali zation, but then increases
steadily urtil abou the 4,000h evauation. This
spreading d agorithms in the statistics is e in the
graphs as the “dip” in the aossover algorithms, versus
the steg improvement of GA_m and PS Differences
deaease for approximately the next 10,000 evaluations,

Univariate effects

until the point that GA and GA_c cach upwith GA_m,
then increase again as crosover overtakes mutation.

The main effed of P, number of pess, starts out
high, apparently becaise with more peéks it is more
likely that arandam start will be nea one: high-P cond-
tions garted with somewhat better performance evalua-
tions. The dfed then rapidly deaeases to norsignifi-
cance with a nadir at 2,000 evauations, then sowly
increases until abou 8,000 evaluations, where the dfed
of P on the dosver agorithms begins to dminish si-
multaneoudly with the tapering df of improvement by
GA_m and the dfed deaeases, once @ain, nealy to
norsignificance

The dfea of L aso begins high, as randam functions
are dfeded by the higher dimensiondlity of the high-L
condtion. The ceatral limit theorem suggests that
evaluations of higher dimension will have smaller vari-
ance, which means that the best value found after 20
evaluations will be lessextreme, i.e., neaer to 0.5. The
effed of L increases rapidly urtil abou 2,000 evalua
tions, then begins to deaease gjain; this pattern results
from the fad that all algorithms had readed the global
optimum in al trias of the L=20 condtions by the
5,00h evaluation, while the L=100 trials continued to
improve, closing the gap. Note dso that after the
5,00h evaluation, interadions of other fadors with L
are gual to the main effed of that fador, as the low
level of L contributes no varianceto the total.

The interadion d algorithm x L increases from non-
significanceto arather high F by the 4,000th evaluation,
as the GA’s with crosover (GA and GA _c) flatten ou,
diverging from the rapid-starting algorithms, before fi-
nally beginning to ascend. The dfead of algorithm x P
incresses to abou 6-12,000 evauations, refleding the
relatively flatter ealy improvement of GA and GA ¢
when P is higher. The increase of the P x L interadion
at abou 7,000 evaluations again refleds the relatively
greder difference between the qosover algorithms and
the others when bah P and L were high.

Finaly, the threeway interacion simply follows the
trend d the dgorithm x P interadion after abou 5,000
evaluations; as was mentioned ealier, the low-L cond-
tions contribute nathing to the variance dter this point,
asall trials have onverged uranimously.

7. Conclusions

Our method o using a multivariate analysis of vari-
ance to analyze the performance of different algorithms
on random problems creaed by a parameterized problem
generator has yielded some interesting insights. The
multivariate dfeds represent diff erences in the dynamic
processes of severa algorithms over time and thus per-

mit no small number of simple descriptive statistics, such
as means, to report. In general, the largest effed by far,
next to the main effed of time itself, was the dfed of
increasing the length of the bit string. This swoud na be
surprising, as the size of the cmmbinatorial problem ex-
pands exporentially with L. What might be surprising is
the fad that increasing the problem from 220 to 2100 did
not prevent these robust algorithms from succeealing, but
only slowed them down dightly. The exception there of
course is GA_m, the genetic dgorithm with mutation
only, which never succeeled in finding the global opti-
mum in 20000 evaluations when bah L and P were
high, and foundit only oncewhen L was high and P low.
The poa performance of GA_m when L is high appar-
ently arises from our use of a @nstant mutation rate of
0.001L AsL increases the propartion of individuals that
are mutated also increases, creaing too much disruption.

De Jonget a. [2] had naed that crosover might not
perform espedally well on functions feauring high mo-
dality. In their study it was e that GA and GA ¢
started ou slowly, and performed relatively poaly, for a
gred number of evauations, until finaly a “criticd
mass’ was attained as a majority of chromosomes con-
verged on a single pe&; after that happened, perform-
ance improved rapidly, usualy urtil a global optimum
was found Thiswas contrasted with the performance of
GA_m, which began with arush bu quickly ceaed im-
proving. These dfeds were dealy evident in the ar-
rent data; in fad, we can elaborate somewhat beyondthe
previous findings. GA and GA_c, the two algorithms
with crossover, started ou, in al condtions, amost as
fast as GA_m, then flattened ou. The flattening d per-
formance is least evident in the L=20, P=20 cdl, a on-
dition which al algorithms foundeasy, but even here the
two agorithms with crosover are seen to slow after a
strong start.

The flattening o progressis en in the arrent data,
to some degree in al the adosover agorithms in al
condtions. High dmensionality and espedally high
multimodality exaggerate the tendency for crosover to
flouncer before progresing. The oppaite dfed was
seen with GA_m; the mutation algorithm always garted
faster than any of the others, but leveled out usually at
abou the same point the aossover algorithms began to
improve.

These results justify two modificaions to mutation
that are sometimes performed. The first isto use amuta-
tion rate propartional to 1/L, in an attempt to maintain a
constant level of disruption asL increases. The second is
to reduce the mutation rate a the process continues, al-
lowing mutation-only GAs to continue making progress
in the latter stages of seach. It should also be noted that
we ae using low mutation rates due to the lad of elitism

in our versions of GA. Higher mutation rates are useful
when elitism is included, becaise the best individuals
will not be lost due to disruption. Interestingly, our re-
sults also suggest that a novel strategy for multimodal
functions might be to shift the emphasis from nmutation to
crosover during the aurse of arun. Findly, it is inter-
esting to note that the traditional GA, with both crosover
and mutation, is the worst performer and the dgorithm
most adversely affeded by increasing multimodality.
This raises srious concerns about the aittomatic use of
both mutation and crossover in a GA, suggesting that it is
often gpodto remove one of those operators.

In these trials the particle swarm agorithm readed
the global optimum faster than any aher except in the
P=20, L=20 condtion. PSwas hardly affeded at al by
increasing the modality of problems, and while it did na
start progressng as rapidly as GA_m in the L=20 cond-
tions, it quickly caught up and surpassed the mutation
algorithm’s performance long hkefore the GA’s with
crosover did. PSwas aso the least affeded by changes
in problem dimensiondlity. The particle swarm found
the global optimum on every trial, in every condtion,
and was the only algorithm for which that statement is
true -- the most PSever required was 14,620 evaluations
to attain the global optimum. In sum, the particle swarm
appeasto be robust, given the variations presented here.

References

[1] De Jong, K. A. and Speas, W. M. (1990. An analysis of
of the interading roles of popuation size and crossover in ge-
netic dgorithms. In H.-P. Schwefel and R. Manner , (Eds.),
Proceedings of the First International Conference on Parallel
Problem Solving from Nature, 38-47. Springer-Verlag.

[2] De Jong K., Potter, M., and Speas, W. (1997). Using
problem generators to explore the dfeds of epistasis. In T.
Béck, (Ed.), Proceedings of the Seventh International Confer-
ence on Genetic Algorithms, 338345 Morgan Kaufmann.

[3] Kennedy, J. (1997). The particle swarm: Socia adaptation
of knowledge. Proceedings of the 1997 International Confer-
ence on Evolutionary Computation (Indianapdlis, Indiana),
|EEE Service Center, Piscataway, NJ, 303-308

[4] Kennedy, J., and Eberhart, R. C. (1995. Particle swarm
optimizaion. Proceedings of the IEEE International Confer-
ence on Neural Networks (Perth, Austraia), IEEE Service
Center, Piscataway, NJ, IV: 19421948

[5] Kennedy and Eberhart, R. C. (1997, in presy. A discrete
binary version d the particle swarm algorithm. Procealings of
the 1997 International Conference on Systems, Man, and
Cybernetics.

Appendix. Univariate F statistics over time (degrees of freedom =3 for Alg and its interactions, 1 otherwise).

Evals Alg P L AlgxL AlgxP PxL AlgxPxL
20 0.18 165.07 353616 0.46 0.18 3325 0.58
1,000 67.24 2520 1011236 5.00 1.04 0.22 1.40
2,000 165.02 0.18 1467993 54.87 3.83 1351 0.17
3,000 26110 353 1451503 21061 352 0.06 1.43
4,000 28239 23.30 1059387 27478 7.87 20.16 7.58
5,000 217.89 60.90 609026 217.89 16.77 60.90 16.77
6,000 18159 12167 423901 18159 3299 12167 3299
7,000 14504 19055 290538 14504 49.22 19055 49.22
8,000 10120 17305 180874 10120 45.05 17305 45.05
9,000 7249 155.65 118971 72.49 4157 15565 4157
10,000 4711 10329 73947 4711 2918 10329 2918
11,000 4181 80.21 52933 4181 2110 80.21 2110
12,000 45.00 7292 48422 45.00 4973 7292 19.73
13,000 50.44 64.51 41093 50.44 1864 64.51 1864
14,000 5314 43.03 34084 5314 14.30 43.03 14.30
15,000 7761 30.55 33490 7761 13.64 30.55 1364
16,000 10581 27.97 37771 10581 10.80 27.97 10.80
17,000 14212 2794 40091 14212 9.11 2794 9.11
18,000 18860 22.25 41782 18860 6.88 2225 6.88
19,000 16457 10.20 30136 16457 3.80 10.20 3.80
20,000 15223 6.50 25334 15223 2.07 6.50 2.07

